

Endo - inside

Krino – secrete





# The regulatory systems of the body

- nervous system
- endocrine system(system of humoral regulation)

# The endocrine system

- endocrine glands
- groups of endocrine cells
- single endocrine cells





- Glands have ducts
- They produce hormones

Hormao (greek) — «inducing, stimulating» (1902 year, Starling and Bayliss)

#### **Hormones:**

- Highly active substances
- Are secreted into the bloodstream
- Act on remotely located target organs



# Hormones can be:

- Water-soluble substances
  - Receptor on the cell membrane
  - The binding to the receptor 

     cascade of reactions 

     activation of certain enzymes
- Fat-soluble substances
  - Receptor in the cytoplasm

# The glands

- Hypothalamus
  - Hypophysis
    - Gonads
    - Suprarenal glands
    - Thyroid gland
- Parathyroid glands
- Pancreas
- Epiphysis
- Thymus





Negative feedback mechanism

### Hypothalamus

 Produces releasing hormones which stimulate or suppress the production of hypophyseal (pituitary) hormones



- Pituitary (tropic hormones) act on the glands (sex, thyroid, adrenal cortex)
- Secretion of releasing hormones is regulated by blood levels of hormones of the endocrine glands according to negative feedback mechanism



### Hypothalamus

Part of the brain (diencephalon)

Important center of neuro-humoral regulation



# The hypothalamus is composed of nuclei (bodies of neurons)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.





# Neurons produce hormones:

- Acting (influencing) on the hypophysis
- Acting on target organs

# Hormones acting on the hypophysis (releasing hormones)

- Get to the hypophysis through the bloodstream
- Are divided into:
  - Stimulatory (liberins)
  - Inhibitory (statins)



### Stimulatory

### **Inhibitory**

- Thyroliberin-TSH secretion
- Corticoliberinsecretion of ACTH
- Gonadoliberinsecretion of FSH, LH
- Somatoliberinsecretion of somatotropic hormone
- Prolactoliberinprolactin secretion

- Somatostatin –
   secretion of somatotropic hormone
- Prolactostatin prolactin secretion

#### Hormones acting on target organs

- Are produced by supraoptic and paraventricular nuclei of the hypothalamus
- Are stored in the hypophysis (get there via axons )
- Are secreted into the bloodstream from the hypophysis:
  - Vasopressin (ADH)
  - Oxytocin



# Hypophysis (pituitary gland)

Develops from two sources:

Diencephalon neurohypophysis

Pharynx (Rathke's pouch)adenohypophysis

Pars intermedia



# Neurohypophysis

- Stores and secretes two hormones of the hypothalamus:
  - Vasopressin (ADH)

Oxytocin

#### Vasopressin

- Increases the reabsorption of water in the collecting ducts (water retention
   → increase of circulating blood volume and blood pressure)
- Increases the vascular SMC (increase of BP)





# Oxytocin

Increases uterus SMC (orgasm, menstruation, childbirth)

 Increases SMC of ducts of mammary glands (Milk allocation at feeding)



### Oxytocin

- Maternal behavior
- Marital behavior
- Love, empathy, compassion, kindness, altruism, the ability to communication

## Adenohypophysis

- Produces hormones that act on:
  - endocrine glands (tropic hormones)
  - target cells
- Parts of the adenohypophysis:
  - The intermediate part
  - Anterior part





# The intermediate part



- Melanocyte-stimulating hormone
  - Stimulates synthesis and secretion of melanin by melanocytes of the skin, hair, eyes











#### Acidophiles

- STH (somatotropic)
- Prolactin (lactotropic)

#### Basophils

- FSH and LH (gonadotropic)
- TSH (thyreotropic)
- ACTH (kortikotropic)







# Somatotropic hormone

- Enhances cell division and growth:
  - Enhances the synthesis of protein
  - Uses fatty acids as an energy source
  - Stores glucose as glycogen
- Increases the proliferative activity of cells in the growth zone of long bones and bone mineralization

# Disturbances of somatotropic hormone secretion

- Increased production:
  - in children gigantism
  - in adults acromegaly

 Decrease in production - pituitary dwarfism (nanism)





286 cm, 200 kg

acromegaly



### **Prolactin**



Stimulates
 milk secretion
 by cells of the
 mammary
 gland





# The mammary glands

- Complicated alveolar-tubular glands
- Derivatives of the sweat glands







# Development of mammary glands

- Estrogens growth of the stroma and ducts, fat deposition
- Progesterone development of the lobules and alveoles
- The main growth during pregnancy (all hormones)

#### **Prolactin**



 During pregnancy, prolactin effect is suppressed by estrogens and progesterone – every day is allocated a few ml of colostrum



 After delivery, levels of estrogens and progesterone decreases sharply and lactation begins



## Oxytocin

- Hypothalamic hormone
- Causes a increase in alveolar SMC of the mammary gland and milk excretion into the ducts
- Oxytocin is stimulated by applying a baby to the mammary gland





 A few weeks after delivery prolactin level falls to normal

 Each latch baby to mammary glands increases the level of prolactin and oxytocin for 10-20 times, providing milk for the next feeding



#### FSH – Follicle Stimulating Hormone

- In females is responsible for cyclic changes on ovaries
- In males is responsible for spermatogenesis (stimulates cells of Sertoli inducing the production of ABP (androgen-binding protein), inhibin and activin)



- In females:
  - Induces ovulation
  - Takes part in transformation of follicle cells into the cells of corpus luteum
- In males stimulates Leidig cells inducing testosteron production

# Female reproductive glands

Exocrine function – ova

Endocrine function – female sex hormones



# Ovarian hormones

Estrogens

Progesteron





## Estrogens

- Growth of sex organs
- Maturation of uterine and vaginal mucosa
- Growth of mammary glands (growth of ducts and stroma, accumulation of fat)
- Growth of bones in length, however, fast "closing" of growth zones
- Female type of fat accumulation
- Development of skin blood vessels (increased bleeding in case of superficial cuts)

# Progesterone

- Stimulates uterine glands secretion
- Prepares endometrium for implantation of fetus
- Stimulates development of secretory parts (lobules and alveoles) of mammary glands (without secretion)



# **Ovarial-Menstrual Cycle**



 Ovarial cycle – cyclic changes in the ovary

Menstrual cycle – cyclic changes in the uterus





# Follicular phase (1-14 days of cycle)

Hypothalamus – gonadoliberin

Hypophysis – FSH

- Follicular cells of ovary estrogéns:
  - Ovary follicle maturation
- Uterus restoration of endometrium



## Ovulation(14th day)



On the top of FSH secretion and LH release



# Luteine phase (15-28th days of cycle)

- Hypothalamus gonadoliberin
  - Hypophysis- LH
  - Follicular cells luteinization

- progesterone + estrogens:
- Preparing of endometrium for the implantation of foetus

#### Определение дней, оптимальных для оплодотворения

- Расчет дней овуляции
- Измерение базальной температуры
- Изменения слюны
- Изменения шеечной слизи



# Fertilization hasn't happened

 Regression of corpus luteum – levels of hormones decrease sharply – constriction of uterine spiral arteries – necrosis and rejection of the endometrium (menstuation)















Horionic gonadotropin prolongates life of corpus luteum hormones of corpus luteum prolongate pregnancy









- Provides the foetus with oxygen and nutrition
- Excretes carbon dioxide and metabolism products from the foetus
- Produces hormones











# Hormones of pregnancy

- Human Chorionic Gonadotropin (HCG)
- Estrogens
- Progesterone
- Human chorionic somatomammotropine (placental lactogene)

# Chorionic gonadotropin

- First time can be found 8 days after fertilization (pregnancy test)
- is very common with LH in its structure and functions
- Stimulates corpus luteum pregnancy is prolongated
- Stimulates Leydig sells of foetus –
   testosterone development of boy (male)



## Estrogens

#### **During pregnancy:**

- Growth of uterus
- Growth of mammary glands (ducts)
- Growth of external genital organs
- Relaxation and increased elasticity of pelvic ligaments, ligaments of sacro-iliac joint and pubic symphysis



# **Progesterone**

#### **During pregnancy:**

- Depression of mother's immune response against foetus
- Decrease of uterine SMC contractibility
- Supression of lactation



#### Chorionic somatomammotropin

- Development of mammary gland
- Growth of foetus
- Mother's glucose goes primarily to the foetus (fat plays a role of additional source of energy in mother's body)



## Male sex glands

- Exocrine function sperm
- Endocrine function male sex hormones



Interstitial Leydig cells (testosterone)

Sertoli cells (ABP, inhibin, activin)



#### **Testosterone**



- Necessary for the sperm maturation
- Produced by Leydig cells under the LH influence (in prenatal period - under the HCG influence)
- Testosterone suppresses secretion of gonadoliberin by hypothalamus



#### **Testosterone**

- The development of male fetus
- Lowering (descent) of testicles into the scrotum

#### **Testosterone**

- The growth of sex organs
  - Man's type of hair distribution (and hair loss in case of genetic predisposition)
  - Bone growth in length and increase of bone density, but rapid closure of growth zones
  - The growth of the larynx ("breaking" of voice)
  - Enhanced production of sebum
  - Protein synthesis and muscle growth (anabolic effect)
  - Stimulation of production of red blood cells
  - Ability to make decisions



- FSH stimulates Sertoli cells for the development of androgen-binding protein (ABP)
- ABP provides a high level of testosterone around spermatogenic epithelium
- Sertoli cells produce inhibin and activin, regulating the FSH secretion





 Stimulates follicular thyroid cells for the synthesis and secretion of thyroxine and 3iodothyronine

## Thyroid gland

- Contains two types of cells:
  - Follicular (A-cells)
  - Parafollicular (C-cells)



## Follicular cells

- Form a wall of bubbles— follicles йод
- Under the influence of TSH:
  - Cells produce iodine- containing hormones T3,
     T4 and thyroglobulin
  - Thyroglobulin the storage form of iodinecontaining hormones, it is the colloid in the follicle
  - T3 and T4 are secreted into the bloodstream



# Effects of Iodine-containing hormones

- Stimulation of growth
- Development and maturation of the brain
- Stimulation of heartbeats and breathing
- Stimulation of the metabolism:
  - Protein synthesis
  - Mobilization and synthesis of fats
  - Storage of glucose

# Violations of secretion of Iodine-containing hormones

• Increased production - hyperthyroidism





# Violations of secretion of Iodine-containing hormones

- Decreased production:
- Hypothyroidism (miksedema) in adults
- Cretinism in children





## Parafollicular cells

- Single cells located between the follicles
- Produce calcitonin (thyrocalcitonin)





## Calcium

Absorption in the gut



Reabsorption in the kidney



Destruction of the bone





- Calcitonin secretion is stimulated by high levels of calcium in the blood
- Calcitonin blocks osteclasts and bone resorption-the level of calcium in the blood decreases



# Parathyroid gland

 The main cells of glands secrete parathyroid hormone (PTH)



2004 MARCIA HARTSOCK



## Parathyroid gland

- PTH secretion is stimulated by low level of calcium in the blood
  - PTH converts vitamin D to its active formincreases calcium absorption in the gut
  - PTH increases reabsorption of calcium in kidney
  - PTH stimulates osteclasts and bone resorption

Calcium level in blood raises



#### Vitamin D

- Is produced in skin
- Is activated in liver (1) and in kidney (2)
- Activation in the kidney occurs under the action of PTH
- The active form enhances calcium absorption in the gut

## Regulation of calcium level in blood





## ACTH-AdrenoCorticoTropic Hormone

 Stimulates the adrenal cortex cells to synthesis and secretion of steroid hormones



- The cortex (from the mesoderm)
- The medulla (from the neural crest, sympathetic ganglion)





## The adrenal cortex

- Glomerular area mineralocorticoids (aldosterone)
- Beam area glucocorticoids (cortisol)
- Reticulated area sex hormones





#### Aldosterone



Aldosterone secretion is
 stimulated by angiotensin -2 and ACTH

 Aldosterone promotes sodium reabsorption and potassium secretion in the distal convoluted tubules



## Glucocorticosteroids

(glucocorticoids)

- Increase sugar level in blood
- The destruction of the protein



- Mobilization and redistribution of the fat
- Increase vascular reactivity
- The suppression of inflammation and immunity

# Violations of the adrenal hormones production

Increased production -Cushing's syndrome





# Violations of the adrenal hormones production

- Decreased production- Addison's syndrome:
  - Weakness
  - Decreased blood pressure
  - Skin pigmentation
  - Depression



#### Medulla

- Production of hormones stimulated by sympathetic neurons endings
  - Epinephrine
    - Stimulation intensity and frequency of the heart contractions
    - Vasoconstriction of the skin and organs
    - Relaxation of bronchial, intestinal SMCs
    - Insulin suppression, glucagon stimulation
  - Norepinephrine
    - Stronger effect on blood vessels, weaker-on everything else



## Kidney hormones

Renin

Erythropoietin

## Juxtaglomerular apparatus (JGA)

The cells of bringing arteriole

The cells of the distal tubule (tight spot)

mesangial cells





### The function of the JGA

- Produce renin in case of:
  - Decreasing the blood pressure (decrease of the stretching of the bringing arteriole wall) and/or
  - Increasing the concentration of sodium in the lumen of the distal tubules (pick up the solid spot cells)

#### Renin

triggers a cascade of reactions leading to increased Blood Pressure

#### **Decrease in Blood Pressure:**



synthesis

Renin

Angiotensinogen (in the liver) Angiotensin 1

Angiotensin 1 (in the lungs) Angiotensin 2

# Angiotensin 2

Vessels
spasm of the SMC

adrenal glands aldosteron

↑ sodium reabsorption

#### **Brain (hypothalamus)**

- ADH (vasopressin) −↑reabsorption of water
- Thirst (increase in water consumption)





## Atriopeptin

(sodium uretical factor)

- Produced by atrial myocytes in response to high blood pressure
- Effects decreasing blood pressure:
  - Reduced sodium reabsorption in the dist. tubules
  - Acceleration of filtering
  - The suppression of the renin and aldosterone synthesis



### **Pancreas**





(b) Pancreatic histology

Pancreatic islet -(endocrine)





(c) Exocrine and endocrine cells (LM x 120)

# Cells of the Langerhans islets

- β-cells (insulin)
- $\bullet$   $\alpha$ -cells (glucagon)
- ∆-cells (somatostatin)
- F-cells (pancreatic polypeptide)



### Insulin - the anabolic

- Decreases the blood glucose level:
  - Carries glucose from the blood into the cells
  - «Excess» glucose stores as glycogen (in liver and muscles)
- Puts the fat from the blood into fat cells
- Stimulates the synthesis and deposition of fatty acids
- Stimulates the synthesis and deposition of protein



# Glucagon – the katabolik

- Raises the blood glucose levels:
  - Stimulates the release of glucose from glycogen ( glycogenolysis )
  - Stimulates the formation of glucose from fat and protein (gluconeogenesis)
    - Stimulates the breakdown of fat (lipolysis)
    - Stimulates the breakdown of protein



### Other hormones

#### Somatostatin

- An analogue of the hypothalamic somatostatin
  - Inhibits the secretion of growth hormone in the pituitary
  - Regulates the secretion of insulin and glucagon in the islets cells

#### Pancreatic polypeptide

 Suppresses the external secretion function of the pancreas

# **Epiphysis**

Part of the diencephalon (1)





### Hormones

- The precursor serotonin (in the daytime, it needs glucose and ultraviolet irradiation )
  - Sleep, appetite, mood, emotion
  - Algesthesia
  - Sexual arousal and inhibition
- Melatonin (in the nighttime from the serotonin)
  - The regulation of circadian (daily, seasonal) rhythms
  - The suppression of the gonadotropic hormones secretion by the pituitary
  - Antitumor activity

# **Thymus**



- There is a differentiation and training of Tlymphocytes in the thymus
- The process is regulated by the thymus epithelial cells hormones- timopoetins
- The function of the thymus is inhibited by glucocorticoids











# Involution of the thymus

