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Abstract

We present several examples in noncommutative quantum cosmology, using the WKB-
type approximation with a deformation on the minisuperspace variables. This procedure gives
a straightforward algorithm to incorporate noncommutativity to cosmology and inflation.
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Introduction

There is a renewed interest in noncommutative theories to explain the appropri-
ate modification of classical General Relativity and, hence, of spacetime symmetries
at short-distance scales, that implies modifications at large scales. General quantum
mechanics arguments indicate that it is impossible to measure a classical background
spacetime at the Planck scale due to the effects of gravitational backreaction [1]. It is
therefore tempting to incorporate the dynamical features of spacetime at deeper kine-
matical level using the standard techniques of noncommutative classical field theory
based on the so called Moyal product in which for all calculation purposes (differentia-
tion, integration, etc.) the space time coordinates are treated as ordinary (commutative)
variables and noncommutativity enters into play in the way in which fields are multi-
plied [2]. Using a modified symplectic structure on the space variables in the Hamilton
approach, we assume that the minisuperspace variables do not commute, and for this
purpose we will modify the Poisson structure. This approach does not modify the Hamil-
tonian structure in the noncommutative fields. According to the approach used here,
the momenta in both spaces are the same, P u = Pqu; that is, they commute in both
spaces.

Another way to extract useful dynamical information is through the WKB semiclas-
sical approximation to the quantum Wheeler - DeWitt equation using the wave function
U = ¢5@") | In this approach, we consider the usual approximation to the derivatives
and the corresponding relation between the Einstein — Hamilton — Jacobi (EHJ) equa-
tion. It was possible to obtain classical solutions at the master equation found by this
procedures. The classical field equations were checked for all solutions using the RE-
DUCE 3.8 algebraic packages.

The main idea in this paper is to find classical commutative and noncommutative
quantum solutions.

1. Quantum cosmology and the WKB approximation

Our goal is to present a WKB-type method for noncommutative quantum cosmology.
We start by reviewing the quantum cosmological models we are interested in here,
and find the classical evolution through a WKB-type approximation. The following
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models are presented: Kantowski—Sachs cosmology, FRW cosmology with cosmological
constant coupled to a scalar field, and a cosmological model within the framework of
string theory.

1.1. Kantowski—Sachs cosmology. The first example we are interested in is
the Kantowski—Sachs universe. This is one of the simplest anisotropic cosmological
models. We are also interested in a wide set of analytical solutions it admits. The
Kantowski - Sachs line element is [3]

ds? = —N2dt* + exp (2\/55) dr? + exp (72\/5(5 + Q)) (d9? + sin? ddg?) . (1)
From the general relativity Lagrangian we can construct the canonical momenta,
12
HQ:—WeXp< \/_ﬁ—Q\/_Q)Q Hg—ﬁexp< \/_ﬁ—Q\/_Q) (2)

Using canonical quantization and a particular factor ordering, we get the WDW equa-

0
tion. Through the usual identifications Il = —ia—Q and Ilg = —i% we get

0? 0? 3
The solution to this equation is given by

1) = exp (iiux/gﬁ) K, (4 exp [—\/gﬂb , (4)

where v is the separation constant and Kj;, are the modified Bessel functions.
We now proceed to apply the WKB-type method. For this we propose the wave
function

U(8,9) ~ exp[i(S1(8) + S2(Q))] - (5)
The WKB approximation is reached in the limit

‘8251(5)‘ P <asl(5)>2, ‘8252(9)‘ P <asg(m>2

(6)

03?2 ap 002 o0
and gives the Einstein — Hamilton — Jacobi (EHJ) equation
9S(Q)\? | (95:(8)\°
— —4 —2v3Q) =0.
( 70 ) + 9 8exp ( V3 ) 0 (7)

Solving Eq. (7) one gets the functions Sy, S and can find the temporal evolution. First
we fix the value of N(t) = 24exp (—\/gﬁ — 2\/§Q) ; by using (2) and the definition for

Q
the momenta Il = ds(;éﬁ) and Ilg = dS;é ) we obtain the classical solutions
1 48 )
Qt In | = cosh? (2v/3Ps, (t —t ,
(1) = 5=t | - cosht® (23R w)] .

B(t) = Bo + 2Pg0(t — 1),

where 3y and P, are the initial conditions. These solutions are the same as we get by
solving the field equations of general relativity.
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2. Stringy quantum cosmology

Our final example is related to the graceful exit of pre-big bang cosmology [4]. This
model is based on the gravi-dilaton effective action in 143 dimensions

S=-% [deVTge (R +0,60%6+ V) ®)

where )y is the fundamental string length, ¢ is the dilaton field with V' the possible dila-
ton potential. Working with an isotropic background, and setting a(t) = exp (6(t)/\/§)
after integrating by parts, we get

S = —% /dr (&2 B2+ Ve—%) . (10)

Y

We have used the time parametrization ! dt = e ? dr, the gauge goo = 1, and in-
- d?

troduced ¢ = ¢ — ln/ <)\—f> — \/gﬂ. From this action we calculate the canonical

momenta, IIg = A\;4" and II; = —Xs@' . From the classical Hamiltonian we find the

WDW equation:

0% 2 ovz -2 wia
In particular for a potential of the form V(¢) = —Vj em‘z’, the quantum solution is
- . m—2 2)\5\/‘70 m—2\ -
U(9, 8) = exp (i iy Vﬂ) K; {m exp <<T> ¢>] . (12)

The classical solutions for the scale factor and the dilaton are

1 it 2 (Ps
0 soch2 [ 222 (1 — 2) (1 —
VoaZ * (QAS (m=2)(r TO)) ’ 13

m— 2
8r) = o+ L7 —m).

In

o(1) =

Here m = 0 and m = 4; the solutions were obtained in [4] and are used in connection
with the graceful exit from pre-big bang cosmology in quantum string cosmology.

3. Noncommutative quantum cosmology
and the WKB-type approximation

In this section we construct noncommutative quantum cosmology for the examples
presented in the previous section and calculate the classical evolution via a WKB-type
approximation. To get the classical cosmological solutions would be a very difficult task
in any model of noncommutative gravity [5-7] due to the highly nonlinear nature of
the field equation. We will follow the original proposals of noncommutative quantum
cosmology that was developed in [3]. This will allow us to get the desired classical
solutions. The first noncommutative example that we present is the noncommutative
KS, and finally stringy noncommutative quantum cosmology. We start by presenting,
in quite a general form, the construction of noncommutative quantum cosmology and
the WKB-type method to calculate the classical evolution.

Let us start with a generic form for the commutative WDW equation. This is de-
fined in the minisuperspace variables x, y. As mentioned in [3] a noncommutative
deformation of the minisuperspace variables is assumed

[x,y] = 6. (14)

1The prime denotes differentiation in respect to 7.
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This noncommutativity? can be formulated in terms of noncommutative minisuperspace
functions with the Moyal product of functions

0 (= =
F(@y) < g(@.y) = fa,y)exp (i3 (9.0, = 9,8.) ) gla.y). (15)

Then the noncommutative WDW equation can be written as
(-2 + 12 — V(x,y)) * ¥(x,y) = 0. (16)

We know from noncommutative quantum mechanics [9, 10] that the symplectic structure
is modified changing the commutator algebra. It is possible to return to the original
commutative variables and usual commutation relations if we introduce the following
change of variables:

0 0
:c%:n+§ﬂy and yﬂyfiﬂz. (17)
Taking this into account and using the usual substitutions Ilqu =—i0qx we arrive to

0? 0? .00 00

This is the Noncommutative WDW equation (NCWDW) and its solutions give the
quantum description of the noncommutative Universe. We can use the NCWDW to find
the temporal evolution of our noncommutative cosmology by a WKB-type procedure.
For this we propose that the noncommutative wave function has the form ¥yc(3,9) =
~ exp [i(Sne1(8) + Sve2(2))], which in the limit

}82518\;5021(5)} < <8SN805(5)>2’ ‘8255\;822(9)} P <aSN8CQQ(Q)>2, )

yields the noncommutative Einstein — Hamilton — Jacobi equation (NCEHJ), that gives

the solutions to Syc1 and Syea. After the identification II,, . = —LSNCl) and

ox
a(S
IMyye = 7% together with the definitions of the canonical momenta and Eq. (17)
Y
we can find the time dependent solutions for = and y.
In the rest of this section we will apply this ideas to the examples that have already

been presented.

4. Noncommutative Kantowski— Sachs cosmology

Using the method outlined in the preceding paragraphs with respect to Eq. (3) we
find the NCWDW equation

{;’_(; S sexp{-2v3 (- 1572 ) }] w0 o (20)

Then the solution of the NCWDW equation is

U(Q, §) = exp (ii\/ﬁuﬂ) K, <4exp [\/EQ + gyo]) . (21)

2This commutation relation implies an uncertainty principle giving an absolute minimal distance in
minisuperspace.
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Usually the next step is to construct a “Gaussian” wave packet and do the physics with
the new wave function. This is not needed for our purposes, as we are interested in the
classical solutions by applying the WKB-type method outlined in the previous section.
Using Eqs. (5), and (6) we find the solutions for S1(3) and S2(€2) which have the form

S1(8) = Pp, 5,
S2(Q) = \/_\/ — 48 exp \/§9Pg0) exp (72\/59) +

Ps, \/PBQO — 48 exp (f\/§9Pg0) exp (72\/59)
\/§ Pﬁo

(22)

Then the deformation of the momenta provide us with the noncommutative classical
solutions

Qt) = 2\1/_ In

B(t) = Bo + 2P, (t — to) — ngotanh2 [2\/§Pg0 (t — to)} .

0
__Pﬁoa

8
— cosh2 2v/3Ps, (t — to) 5

(23)

These solutions have already been obtained in [8], where the authors deform the
symplectic structure at a classical level changing the Poisson brackets.

5. Stringy noncommutative quantum cosmology

As in the previous examples, we introduce the noncommutative relation [¢, 3] = 6,
and from the classical Hamiltonian we find the NCWDW equation

- 00 -
35~ o~ W@ mer{m-26G-ig ol ven -0 e
The noncommutative wave function is

U($, B)=exp (:I:z‘m221/ )K {QQSl/?exp{(mm ( y) H . (25)

Using the NCWKB-type method the classical solutions for the noncommutative string
cosmology are:

Br)=

0
__Pﬁov

P? P,
Bo 2 Bo _ _
Tz sech (2)\5 (m—2)(r To)) 5

o :5”%(““) 0722 tanh | T2~ 2(r — )|

(26)

The classical evolution for string cosmology can be calculated for m = 0 and m = 4.
An interesting issue concerns the B field that is turned off in the string cosmology
model [4] and does not contribute to the effective action. In open string theory, however,
noncommutativity arises precisely in the low-energy limit of string theory in the presence
of a constant B-field. The # parameter that we have introduced in the minisuperspace
could then be understood as a kind of B-field related with the Neveu—Schwarz B-field.
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6. Conclusions

In this work we have presented the NCWKB-type method for noncommutative quan-
tum cosmology and with this procedure found the noncommutative quantum solutions
for two noncommutative quantum cosmological models.

By means of the WKB approximation of the corresponding NCWDW equation, one
gets the noncommutative generalized Einstein — Hamilton - Jacobi equation (NCEHJ),
from which the classical evolution of the noncommutative model is obtained. The exam-
ples we have studied here were the Kantowski—Sachs cosmological model and a string
quantum cosmological model. In the commutative scenario, the classical solutions found
from the WKB-type method are solutions to the corresponding Einsteins field equations.
In this approach the effects of noncommutativity are encoded in the potential through
the Moyal product of functions. We only need the NCWDW equation and the approxi-
mations (6) to get the NCEHJ and, from it, the noncommutative classical behavior can
easily be constructed. As already mentioned, in [11, 12] the effects of noncommutativity
were studied in connection with inflation, but the noncommutative deformation was
only done in the matter sector neglecting the gravity sector. The procedure developed
here has the advantage that we can implement noncommutativity in both sectors in
a straightforward way and find the classical solutions (i.e., inflationary models). These
ideas are being explored and will be reported elsewhere.

We would like to thank M.P. Ryan for enlightening discussions on quantum cosmol-
ogy. This work was partially supported by PROMEP grants 103.5/08/2919.

Pesrome

9. Mena, O. Obpezon, M. Cabudo, 3. Kano, K. Hu-Pomepo. O nedpbopMrupOBaHHBIX MUHMU-
CyTIeprnpOCTPAHCTBEHHBIX TIEPEMEHHBIX B KBAHTOBONU KOCMOJIOTUU.

Paccmorpeno HECKOBKO MPUMEPOB M3 HEKOMMYTATUBHONW KBAHTOBOW KOCMOJIOTHUU C IIPH-
MEHEHUEM METO/Ia KBa3UKJIACCUIeCKOro npubamxkenus ¢ gedopManueil MUHUCYTIEPIPOCTPAH-
CTBEHHBIX TIEPEMEHHBIX. /laHHas METOINKA MPECTABIACT COOO0M MPAMOM aJrOPUTM I BKJIIO-
YeHUsl HEKOMMYTATUBHOCTU B KOCMOJIOTHIO U TEOPUIO pacmupenusa BcemeHHoll.

KiroueBble cjioBa: HEKOMMYTATUBHASA KOCMOJIOTHs, KBAHTOBAs KOCMOJIOT U, KBA3UKJIAC-
CAYeCcKOoe MPUubIUKEHME.
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