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Preface

These are notes of lectures given at the Department of Mechanics and Mathematics
of the Kazan State University in Tatarstan, Russian Federation, in September 2013.
The author wants to thank the colleagues their, in particular Adel Abyzov, for their
kind invitation and warm hospitality. He is also grateful to Bachuki Mesablishvili for
proof reading this text.

The purpose of the talks is to show how algebraic notions can be introduced at an
early stage in general categories, thus providing a framework which turns out to be
most useful to decribe more advanced theories and research.

Together with the elementary notions for abelian groups, the corresponding terms
are introduced in a categorical language. This leads naturally to a formalism which
allows to handle algebraic and coalgebraic terminology in a general setting. At the
end of the course the reader will be ready to deal with bimonads and Hopf monads in
arbitrary categories.

Before beginning we will recall the notion of a Hopf algebra in vector spaces.
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Hopf algebras

A k-vector space H is called a k-bialgebra if it is an

algebra µ : H ⊗k H → H, η : k → H, and a

coalgebra ∆ : H → H ⊗k H, ε : H → k,

such that ∆ and ε are algebra morphisms, where multiplication on H ⊗k H is
derived from the canonical twist map

tw : H ⊗k H → H ⊗k H, a⊗ b 7→ b⊗ a,

by defining (a1 ⊗ a2) · (b1 ⊗ b2) = a1b1 ⊗ a2b2.
Besides composition, Endk(H) allows for a convolution product for f, g ∈ End(H),

f ∗ g (h) = (f ⊗ g)(∆h),

making (Endk(H), ∗,+) a ring.
If the identity map I : H → H has an inverse S with respect to ∗, this is called an

antipode, that is,
I ∗ S = η ◦ ε = S ∗ I.

A bialgebra which has an antipode is a Hopf algebra.
As an example, consider the polynomial ring k[X] with the usual multiplication

of polynomials, a coproduct

∆ : k[X]→, k[X]⊗ k[X], X 7→ X ⊗ 1 + 1⊗X,

and the antipode
S : k[X]→ k[X], x 7→ −x.

The purpose of this lecture is to analyse the structures involved and to formulate
the notions for arbitrary categories.
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Algebras and coalgebras

1 Abelian groups

In this section we recall fundamentals of abelian groups which we will need later on.

1.1. Abelian groups. An abelian group is defined as a set G with a map

+G : G×G→ G, (a, b) 7→ a+G b,

with the properties, for all a, b, c ∈ G,

associativity (a+G b) +G c = a+G (b+G c),
commutativity a+G b = b+G a,

identity element there exists 0 ∈ G,with a+G 0 = a = 0 +G a,
inverse element there exists − a ∈ G,with a+G (−a) = 0 = (−a) +G a.

We will mostly write + instead of +G if no confusion arises.
The integers Z form an abelian group; they act on any (abelian) group G by

Z×G→ G, (n, g) 7→ n · g =


g + . . .+ g, n-times if n ≥ 0

(−g) + . . .+ (−g), (−n)-times if n < 0

0 if n = 0.

This means that every abelian group is a Z-module (and vice versa).

1.2. Homomorphisms. Given two abelian groups (G,+G) and (H,+H), a map
f : G→ H is called a (group) homomorphism provided

f(a+G b) = f(a) +H f(b), for all a, b ∈ G.

The image of f , a subgroup of H, is defined as

Im (f) = f(G) = {f(g) | g ∈ G} ⊆ H.

The set of homomorphisms from G to H is denoted by Hom(G,H). Note that
these homomorphisms are nothing but Z-linear maps.

For f, g ∈ Hom(G,H), the sum is defined by

(f +Hom(G,H) g)(a) = f(a) +H g(a), for all a ∈ G,

making Hom(G,H) an abelian group.
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2 1. Abelian groups

Clearly, the identity map IG : G → G is a group homomorphism and for any two
homomorphism f : G→ H and g : H → K, the composition g ◦ f : G→ K is again a
homomorphism.

Thus on End(G) := Hom(G,G) we have a product ◦ (composition) and an addition
+End(G) induced by +G. These operations are distributive making (End(G), ◦,+End(G))
a ring (see 3.1).

1.3. Subgroups and factor groups. Let (G,+) be an abelian group. A subset
U ⊂ G is a subgroup if it is closed under the group operation and inverses, that is,

u, v ∈ U implies u+ v ∈ U, −u ∈ U.

The subset {0} ⊂ G is the smallest subgroup of G, we usually denote it just by 0.
It is characterised as the smallest group generated by a single element.

There exists precisely one homomorphism 0→ G and one G→ 0.

Every subgroup U induces an equivalence relation on G, by defining for a, b ∈ G,

a ∼U b⇔ a− b ∈ U.

The set of equivalence classes, denoted by G/U , has an abelian group structure
given, for a, g ∈ G, by

G/U ×G/U → G/U, (a, b) 7→ a+ b,

where x denotes the equivalence class of x ∈ G.

By definition, the canonical projection p : G→ G/U, a 7→ a, is a surjective group
homomorphism.

1.4. Products of abelian groups. Let {Gλ}Λ be a family of abelian groups. Then
the cartesian product ∏

Λ
Gλ = {(gλ)Λ, gλ ∈ Gλ},

is an abelian group by componentwise addition and there are projections

πµ :
∏

Λ
Gλ, (gλ)Λ 7→ gµ.

Denoting P =
∏

ΛGλ we observe the following property:

For every family of homomorphisms {fλ : X → Gλ}Λ, there is a unique homo-
morphism f : X → P with πλ ◦ f = fλ for all λ ∈ Λ.

This corresponds just to the bijectivity of the map

Φ : Hom(X,
∏

Λ
Gλ)→

∏
Λ

Hom(X,Gλ), f 7→ (πλ ◦ f)Λ.

1.5. Coproducts of abelian groups. Let {Gλ}Λ be a family of abelian groups.
The subset of the cartesian product∐

Λ
Gλ = {a ∈

∏
Λ
Gλ | πλ(a) 6= 0 only for finitely many λ ∈ Λ},
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is a subgroup with injections

εµ : Gµ →
∐

Λ
Gλ, aµ 7→ (aµδµλ)λ∈Λ.

Denoting Q =
∐

ΛGλ we observe the following property:

For every family of homomorphisms {gλ : Gλ → Y }Λ, there is a unique homomor-
phism f : Q→ Y with g ◦ ελ = gλ for all λ ∈ Λ.

This corresponds just to the bijectivity of the map

Ψ : Hom(
∐

Λ
Gλ, Y )→

∏
Λ

Hom(Gλ, Y ), g 7→ (g ◦ ελ)Λ.∐
ΛGλ is also called the (external) direct sum and written as

⊕
ΛGλ.

1.6. Kernel. For a homomorphism f : G→ H of abelian groups, the kernel is defined
as

Ke f = {a ∈ G | f(a) = 0H}.
Ke f is a subgroup of G and characterised by the property:

For any homomorphism g : L→ G with f ◦g = 0 there is a unique homomorphism
q : H → Ke f with commutative diagram (with inclusion i)

L
q

||
g

��
Ke f

i // G
f // H.

Furthermore, f factors as

G
f //

p

��

H

G/Ke f
f̄

;;

where p : G→ G/Ke f is the canonical projection and f̄ is injective.

1.7. Equaliser. Consider two homomorphisms G
f //
f ′
// H of abelian groups. The

equaliser of (f, f ′) is defined as the subgroup

Eq(f, f ′) = {a ∈ G | f(a) = f ′(a)}

and for the inclusion k : Eq(f, f ′)→ G we have the property:
for every homomorphism g : L → G with f ◦ g = f ′ ◦ g, there exists a unique

homomorphism u : L→ Eq(f, f ′) such that g = k ◦ u.
This is visualized by the commutative diagram

L

u

zz
g

��
Eq(f, f ′)

k // G
f //
f ′
// H.

By definition, Eq(f, f ′) is just the kernel of f − f ′.
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1.8. Pullback of homomorphisms. For any pair f1 : H1 → H, f2 : G2 → H of
homomorphisms of abelian groups, consider the homomorphism

p∗ = f1 ◦ π1 − f2 ◦ π2 : G1 ×G2 → H,

where πi : G1 × G2 → Gi, i = 1, 2, are the canonical projections. With P = Ke p∗

and the restrictions π′i of πi to P ⊂ G1 ×G2, the square

P
π′2 //

π′1
��

G2

f2
��

G1
f1 // H

is called the pullback for (f1, f2) and has the property:

for every pair of homomorphisms g1 : X → G1, g2 : X → G2 with f1 ◦ g1 = f2 ◦ g2,
there is a unique homomorphism g : X → P with π′1 ◦ g = g1 and π′2 ◦ g = g2.

1.9. Cokernel. For a homomorphism f : G → H of abelian groups, f(G) is a
subgroup of H, and the cokernel of f is defined as Coke f = H/f(G) with the canonical
projection q : H → Coke f and this has the property:

for any group homomorphism g : H → L with g ◦ f = 0, there exists a unique
homomorphism ḡ : H/f(G) → L with g = v ◦ p, that is, we have the commutative
diagram

G
f // H

g

��

p // H/f(G)

v
{{

L.

1.10. Coequaliser. Consider two homomorphisms G
f //
f ′
// H of abelian groups.

The coequaliser of (f, f ′) is defined as Coeq (f, f ′) = H/Im (f−f) with the canonical
projection c : H → Coeq (f, f ′) and has the property:

for every homomorphism h : H → Y with h ◦ f = h ◦ f ′, there exists a unique
homomorphism v : Coeq (f, f ′)→ Y such that h = v ◦ c.

This is visualized in the commutative diagram

G
f //
f ′
// H

c //

h
��

Coeq (f, f ′)

v
yy

Y.

By definition, the coequaliser of (f, f ′) is just the cokernel of f − f ′.

1.11. Pushout of homomorphisms. Let g1 : G → H1, g2 : G → H2 be two
homomorphisms of abelian groups. With the injections εi : Hi → H1 ⊕H2, i = 1, 2,
we form the morphism

q∗ = ε1 ◦ g1 − ε2 ◦ g2 : G→ H1 ⊕H2.
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The Coke q∗ together with the canonical homomorphisms ε̄i : Hi → H1⊕H2 → Coke q∗

is called the pushout of (g1, g2). It has the property:
for any pair of homomorphisms h1 : H1 → Y , h2 : H2 → Y with h1 ◦ g1 = h2 ◦ g2,

there is a unique homomorphism h : Coke q∗ → Y with h ◦ ε̄1 = h1, h ◦ ε̄2 = h2, that
is, we have a commutative diagram

G
g2 //

g1
��

H2

ε̄2
��

h2

��

H1
ε̄1 //

h1
))

Coke q∗

h

$$
Y .

1.12. Special homomorphisms. A homomorphism f : G→ H of abelian groups is
called

monomorphism if f is injective;
epimorphism if f is surjective;
isomorphism if f is bijective;

null morphism if f(g) = 0 for all g ∈ G.

1.13. Characterisations of monomorphisms. The following are equivalent for a
homomorphism f : G→ H of abelian groups:

(a) f is a monomorphisms;

(b) for any homomorphism g, h : L→ G, f ◦ g = f ◦ h implies g = h;

(c) f is the kernel of the projection p : H → H/f(G);

(d) f is the coequaliser of H
p //
0
// H/f(G) .

1.14. Characterisations of epimorphisms. The following are equivalent for a
homomorphism f : G→ H of abelian groups:

(a) f is an epimorphisms;

(b) for any homomorphism g, h : H → L, g ◦ f = h ◦ f implies g = h;

(c) f is the cokernel of the inclusion i : Ke f → G.

(d) f is the equaliser of Ke f
i //
0
// G .

1.15. Characterisations of isomorphisms. The following are equivalent for a
homomorphism f : G→ H of abelian groups:

(a) f is an isomorphisms (bijective);

(b) f is a monomorphism and an epimorphism;

(c) there exists a homomorphism g : H → G with g ◦ f = IG and f ◦ g = IH .

1.16. Exact sequences. A sequence of morphisms G
f−→ H

g−→ L of abelian groups
is called exact if Im f = Ke g. This means that g ◦f = 0 and in the resulting diagram

G
f //

f̄ !!

H
g //

p ##

L

Ke g

i

<<

Coke f

ḡ

;;

,
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f̄ is epimorph and - equivalently - ḡ is monomorph.
A sequence of group homomorphisms {fi : Ai → Ai+1 | i ∈ N} is called exact at Ai

if fi−1 and fi form an exact sequence. It is called exact if it is everywhere exact.

For a homomorphism f : G→ H of abelian groups we have:

(i) 0→ G
f→ H is exact if and only if f is monomorph;

(ii) G
f→ H → 0 is exact if and only if f is epimorph;

(iii) 0→ G
f→ H → 0 is exact if and only if f is an isomorphism;

(iv) 0→ K
i→ G

f→ H
p→ L→ 0 is exact if and only if i is the kernel of f and p is

the cokernel of f .

Exact sequences of the form 0 → K
i→ G

f→ H → 0 are called short exact
sequences or extensions of H by K.

1.17. Homotopy Lemma. Consider the commutative diagram of abelian groups
with exact rows,

G1
f1 //

ϕ1

��

G2
f2 //

ϕ2

��

G3

ϕ3

��

// 0

0 // H1
g1 // H2

g2 // H3

The following assertions are equivalent:

(a) there exists α : G3 → H2 with g2 ◦ α = ϕ3;

(b) there exists β : G2 → H1 with β ◦ f1 = ϕ1.

1.18. Bilinear maps. Let M , N and G be abelian groups. A map β : M ×N → G
is called bilinear if

β(m1 +m2, n) = β(m1, n) + β(m2, n),

β(m,n1 + n2) = β(m,n1) + β(m,n2),

for all m,m1,m2 ∈M , n, n1, n2 ∈ N .
The set of all these maps we denote by Bil(M × N,G). The sum of two β, β′ ∈

Bil(M ×N,G) is defined by

(β + β′)(m,n) = β(m,n) +G β
′(m,n), for m ∈M, n ∈ N,

making Bil(M ×N,G) an abelian group.

1.19. Tensor product. For abelian groups M , N , form the free Z-module Z(M×N)

over the set M ×N and denote by [m,n] the elements of the canonical basis. Let K
be the submodule of Z(M×N) generated by elements of the form

[m1 +m2, n]− [m1, n]− [m2, n], [m,n1 + n2]− [m,n1]− [m,n2],

with m,mi ∈M, n, ni ∈ N. Put M ⊗N := Z(M×N)/K and define the map

τ : M ×N →M ⊗N, (m,n) 7→ m⊗ n := [m,n] +K .
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By definition of K, the map τ is bilinear. Note that τ is not surjective but the image
of τ , Im τ = {m⊗ n | m ∈M, n ∈ N}, is a generating set (not a basis) of M ⊗N as
a Z-module.

For a bilinear map β : M×N → G, G any abelian group, define a Z-homomorphism

γ̃ : Z(M×N) → G, [m,n] 7→ β(m,n).

Obviously K ⊂ Ke γ̃ and hence γ̃ factorises over τ . (M ⊗ N, τ) is called the tensor
product of M and N and we have observed the following property:

for any bilinear map β : M × N → G, there is a unique group homomorphisms
γ : M ⊗N → G with commutative diagram

M ×N
τ
��

β // G

M ⊗N
γ

;;

.

1.20. Tensor product and direct sums. Let M and N =
⊕

ΛNλ be abelian
groups, with canonical injections ελ : Nλ → N and projections πλ : N → Nλ. Then
(M ⊗N, IM ⊗ ελ) is a direct sum of {M ⊗Nλ}Λ, i.e.,

M ⊗ (
⊕

Λ
Nλ) '

⊕
Λ

(M ⊗Nλ),

that is, the tensor product commutes with direct sums.

Summarising the facts observed so far we have:

1.21. Properties of the tensor product. Let M be any abelian group.

(1) G 7→M ⊗G maps abelian groups to abelian groups.

(2) For any homomorphism f : G → H, IM ⊗ f : M ⊗ G → M ⊗ H is a group
homomorphism.

(3) For any homomorphism f : G→ H, g : H → L,

(IM ⊗ g) ◦ (IM ⊗ f) = IM ⊗ g ◦ f.

(4) For any abelian group G, Z⊗G→ G, n⊗ g 7→ ng, is an isomorphism.

1.22. Hom-tensor relation. Let L, M and N be abelian groups and denote by
Bil(L×M,N) the set of the bilinear maps L×M → N . By the definition of L⊗M ,
the canonical map τ : L×M → L⊗M yields a bijection

ψ1 : Hom(L⊗M,N)→ Bil(L×M,N), α 7→ α ◦ τ.

There is also map

ψ2 : Bil(L×M,N)→ Hom(M,Hom(L,N)), β 7→ [m 7→ β(−,m)],

with inverse ψ−1
2 : ϕ 7→ [(u,m) 7→ ϕ(m)(u)], and ψ2 ◦ ψ1 yields the isomorphism

ψM,N : Hom(L⊗M,N)→ Hom(M,Hom(L,N)), δ 7→ [m 7→ δ(− ⊗m)],
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with inverse map ψ−1
M : ϕ 7→ [u⊗m 7→ ϕ(m)(u)].

Every homomorphism f : N → N ′ leads to a commutative diagram

Hom(L⊗M,N)
Hom(L⊗M,f) //

ψM,N
��

Hom(L⊗M,N ′)

ψM,N′

��
Hom(M,Hom(L,N))

Hom(M,Hom(L,f))// Hom(M,Hom(L,N ′)) ,

and any homomorphism g : M →M ′ yields a commutative diagram

Hom(L⊗M ′, N)
Hom(I⊗g,N) //

ψM′,N
��

Hom(L⊗M,N)

ψM,N
��

Hom(M ′,Hom(L,N))
Hom(g,Hom(L,N))// Hom(M,Hom(L,N)) .

Related to any abelian groups L,G, we have the homomorphisms

εG : L⊗Hom(L,G)→ G, u⊗ f 7→ f(u),
ηG : G→ Hom(L,L⊗G), g 7→ [u 7→ u⊗ g],

satisfying the (triangular) identities

εL⊗G ◦ (IL ⊗ ηG) = IL⊗G, Hom(L, ε) ◦ ηHom(L,G) = IHom(L,G),

described by the commutative diagrams

L⊗G
I⊗ηG //

=

��

L⊗Hom(L,L⊗G)

εL⊗Gvv
L⊗G ,

Hom(L,G)
ηHom(L,G)//

=

��

Hom(L,L⊗Hom(L,G))

Hom(L,ε)uu
Hom(L,G) .
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2 Categories

The data above give an example of the notion of a category which is basic for what
will follow.

2.1. Categories. A category A is given by

(1) a class of objects, Obj(A);

(2) for any objects A,B in A, there exists a set of morphisms MorA(A,B), with

MorA(A,B) ∩MorA(A′, B′) = ∅ for (A,B) 6= (A′, B′);

(3) a composition of morphisms, that is a map

� : MorA(A,B)×MorA(B,C)→ MorA(A,C), (f, g) 7→ g � f,

for every triple (A,B,C) of objects, which is associative (in an obvious way);

(4) for every A ∈ Obj(A) there is an identity morphisms IA ∈ MorA(A,A), with
IA � f = f for any f ∈ MorA(A,B) and g � IA = g for any g ∈ Mor(B,A)

We often write MorA(A,B) = Mor(A,B) and, for short, A ∈ A instead of A ∈ Obj(A).
The composition g � f is usually denoted by gf . For f ∈ Mor(A,B) we also write

f : A→ B or A
f−→ B; A is called the source and B the target of f .

The following notions can be defined in any category without saying anything
about their existence. Throughout A will always denote a category.

2.2. Product of objects. Let {Aλ}Λ be a family of objects in A. An object P in A
with morphisms (projections) {πλ : P → Aλ}Λ is called the product of {Aλ}Λ, if for
every family {fλ : X → Aλ}Λ, there is a unique morphism f : X → P with πλ �f = fλ
for all λ ∈ Λ.

As for abelian groups, the object P is often denoted by
∏

ΛAλ. Note that this is
not meant as a hint how to construct such an object in general.

The definition is equivalent to bijectivity of the map

Φ : MorA(X,
∏

Λ
Aλ)→

∏
Λ

MorA(X,Aλ), f 7→ (πλ � f)λ∈Λ.

2.3. Coproducts of objects. Let {Aλ}Λ be a family of objects in A. An object Q
with morphisms (injections) {ελ : Aλ → Q}Λ is called the coproduct of {Aλ}Λ, if for
every family {gλ : Aλ → Y }Λ, there is a unique morphism g : Q→ Y with g � ελ = gλ
for all λ ∈ Λ.

Writing Q =:
∐

ΛGλ this corresponds to the bijectivity of the map

Ψ : MorA(
∐

Λ
Aλ, Y )→

∏
Λ

MorA(Gλ, Y ), g 7→ (g � ελ)Λ.

2.4. Equaliser. The equaliser (difference kernel) of two morphisms G
f //
f ′
// H in

A is defined as a morphism k : K → G with f � k = f ′ � k and the property that
for every morphism g : L → G with f � g = f ′ � g, there exists a unique morphism
u : L→ K such that g = k � u.
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2.5. Coequaliser. The coequaliser (difference cokernel) of two morphisms G
f //
f ′
// H

in A is defined as a morphism c : H → C with c � f = c � f ′ and the property that
for every morphism h : H → Y with h � f = h � f ′, there exists a unique morphism
v : C → Y such that h = v � c.

2.6. Special morphisms. A morphism f : G→ H in A is called

monomorphism if for any g, h : L→ G, f � g = f � h implies g = h;
epimorphism if for any g, h : H → L, g � f = h � f implies g = h;
bimorphism if f is monomorph and epimorph;

retraction if there exists g : H → G with f � g = IH ;
coretraction if there exists g : H → G with g � f = IG;

isomorphism if f is a retraction and a coretraction.

2.7. Special objects. In any category A, an object A is called

initial object if MorA(A,B) has just one element, for any B ∈ A;
terminal object if Mor A(C,A), has just one element, for any C ∈ A;

zero object if A is an initial and a terminal object.
.

2.8. Zero morphism. Let A be a category with zero object 0. Then for any objects
A,B, there is exactly one morphism A → B which factors through 0, that is, it can
be written as A→ 0→ B. This is called the zero morphism and denoted by 0A,B or
just 0.

2.9. Kernel and cokernel. Let f : G → H be a morphism in a category A with
zero object.

(1) The kernel of f is defined as a morphism k : K → G with f �k = 0, such that for
any morphism g : L→ G with f � g = 0, there is a unique morphism u : H → K
with g = k � u.

Clearly, the kernel of f is just the equaliser of G
f //
0
// H

(2) The cokernel of f is defined as a morphism with c : H → C c � f = 0, such that
for any morphism h : H → L with h�f = 0, there exists a unique homomorphism
v : C → L with h = v � c.

The cokernel of f is just the coequaliser of G
f //
0
// H .

2.10. Pullback of morphisms. Let f1 : B1 → B, f2 : A2 → B be morphisms in A.
A commutative diagram

P
p2 //

p1
��

A2

f2
��

A1
f1 // B

is called the pullback for (f1, f2) if, for every pair of morphisms g1 : X → A1, g2 : X →
A2 with f1 � g1 = f2 � g2, there is a unique morphism g : X → P with p1 � g = g1 and
p2 � g = g2.
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2.11. Pushout of morphisms. Let g1 : A→ B1, g2 : A→ B2 be two morphisms in
A. A commutative diagram in A

G
g2 //

g1
��

B2

q2
��

B1
q1 // Q

is called the pushout for (g1, g2) if, for every pair of morphisms h1 : B1 → Y , h2 :
B2 → Y with h1 �g1 = h2 �g2, there is a unique morphism h : Q→ Y with h� q1 = h1

and h � q2 = h2.

2.12. Additive categories. A category A is called additive if for any objects A,B ∈
A, the set MorA(A,B) has an additive group structure + satisfying the distributive
laws for f, g ∈ MorA(A,B), h ∈ MorA(C,A), k ∈ MorA(B,D),

(f + g) � h = f � h+ g � h, k � (f + g) = k � f + k � g.

2.13. Abelian categories. The category A is called abelian if

(i) it has a zero-object,

(ii) it has finite products and coproducts,

(iii) every morphism has a kernel and a cokernel,

(iv) every monomorphism is a kernel and every epimorphism is a cokernel.

It can be shown that abelian categories are also additive.

The abelian groups form a category Ab with the objects all abelian groups and
morphisms between abelian groups G,H are the homomorphisms, i.e. MorAb(G,H) =
Hom(A,B). This is (the prototype of) an abelian category.

The non-commutative groups form a category Grp (Objects: groups, morphisms:
group homomorphisms) in which monomorphisms need not be kernels and which is
not additive.

Another basic example is the category Set where the objects are sets and the
morphisms between sets X,Y are just the maps, i.e. MorSet(X,Y ) = Map(X,Y ). In
Set the initial object is {∅} and the terminal object is presented by a singleton; thus
there is no zero-object in Set.

The connection between two categories is given by

2.14. Functors. A covariant functor F : A→ B between two categories consists of
assignments

Obj(A)→ Obj(B), A 7→ F (A),

Mor(A)→ Mor(B), f : A→ B 7→ F (f) : F (A)→ F (B),

such that F (IA) = IF (A) and F (fg) = F (f)F (g).

Contravariant functors reverse the composition of morphisms.
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The composition of two covariant functors again yields a covariant functor.
A functor F : A → B is said to preserve properties of an object A ∈ Obj(A) or a

morphism f ∈ Mor(A), if T (A), resp. T (f), again have the same properties.
The functor F reflects a property of A, resp. of f , if whenever F (A), resp. F (f),

has this property, then this is also true for A, resp. f .
By definition, all functors preserve identities and commutativity of diagrams. Any

covariant functor F : A→ B assigns to a morphism A→ B in A a morphism F (A)→
F (B), i.e. for every pair A, B in Obj(A) we have a (set) map

FA,B : MorA(A,B)→ MorB(F (A), F (B)).

Any contravariant functor F : A→ B induces the map

FA,B : MorA(A,B)→ MorB(F (B), F (A)) .

Properties of these maps lead to the definition of

2.15. Special functors. A functor F : A→ B is called

faithful if FA,B is injective for all A,B ∈ Obj(A);
full if FA,B is surjective for all A,B ∈ Obj(A);

fully faithful if F is full and faithful;
an embedding if the assignment F : Mor(A)→ Mor(B) is injective;
representative if for every B ∈ Obj(B) there is an A ∈ Obj(A) with B ' F (A).

Instead of representative one also says surjective on objects.

The relation between two functors is described by

2.16. Natural transformations. A natural transformation α : F → F ′ between
two covariant functors F, F ′ : A→ B is given by a family of morphisms

αA : F (A)→ F ′(A) in B, A ∈ Obj(A),

such that any f : A→ B in A induces the commutative diagram in B

F (A)
F (f) //

αA
��

F (B)

αB
��

F ′(A)
F ′(f) // F ′(B) .

Given another pair of functors G,G′ : B → C with any natural transformation
β : G→ G′, the diagram

GF
Gα //

βF
��

GF ′

βF ′

��
G′F

G′α // G′F ′

is commutative and thus there is a natural transformation (Godement product)

βα := βF ′ �Gα = G′α � βF : GF → G′F ′.

In what follows we will use functors and natural transformations as basic tools for
general constructions.
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2.17. Mor-functors. Let A,B,C be objects in A. Any morphisms f : B → C yields
the following maps between morphism sets,

Mor(A, f) : MorA(A,B)→ MorA(A,C), u 7→ f � u,
Mor(f,A) : MorA(C,A)→ MorA(B,A), v 7→ v � f.

These induce a covariant functor MorA(A,−) : A→ Set,

Mor(A,−) : Obj(A)→ Obj(Set), B 7→ MorA(A,B),

MorA(A)→ Map, f 7→ MorA(A, f),

and a contravariant functor MorA(−, A) : A→ Set,

MorA(−, A) : Obj(A)→ Obj(Set), B 7→ MorA(B,A),

MorA(A)→ Map, f 7→ MorA(f,A).

Note that MorA(A,−) always preserves monomorphisms while MorA(−, A) con-
verts epimorphisms into monomorphisms; MorA(A, f) is injective if and only if f is
monomorph, MorA(f,A) is injective if and only if f is epimorph.

Properties of the Mor-functors may be used to specify special objects.

2.18. Definitions. An object A in A is called

generator if MorA(A,−) is faithful;
projective if MorA(A,−) preserves epimorphisms;

cogenerator if MorA(−, A) is faithful;
injective if MorA(−, A) converts monomorphisms to epimorphisms.

Depending on the properties of the category under consideration these objects can
be characterised in different ways.

In the category Ab, the integers Z form a projective generator since for any abelian
group G, Hom(Z, G) ' G and hence Hom(Z,−) : Ab → Set is faithful and preserves
epimorphisms.

2.19. Adjoint functors. Let L : A → B and R : B → A be (covariant) functors
between any categories A, B. The pair (L,R) is called adjoint (or an adjunction) if
any of the two equivalent conditions holds:
(a) there is an isomorphism, natural in A ∈ A and B ∈ B,

ϕA,B : MorB(L(A), B)→ MorA(A,R(B)),

that is, any morphisms f : A→ A′, g : B → B′ induce commutative diagrams

MorB(L(A′), B)
ϕA′,B //

Mor(L(f),B)

��

MorA(A′, R(B))

Mor(f,R(B))

��
MorB(L(A), B)

ϕA,B //MorA(A,R(B)),

MorB(L(A), B)
ϕA,B //

Mor(L(A),g)
��

MorA(A,R(B))

Mor(A,R(g))
��

MorB(L(A), B′)
ϕA,B′ //MorA(A,R(B′));
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(b) there are natural transformations η : IA → RL and ε : LR→ IB (unit and counit)
with commutative diagrams (triangular identities)

L
Lη //

=
!!

LRL

εL
��
L,

R
ηR //

=
""

RLR

Rε
��
R.

Unit and counit are obtained by

ηA = ϕL(A),L(A)(IL(A)), εB = ϕ−1
R(B),R(B)(IR(B)),

and we have the properties

ϕ : L(A)
f−→ B 7−→ A

ηA−→ RL(A)
R(f)−→ R(B),

ϕ−1 : A
g−→ R(B) 7−→ L(A)

L(g)−→ LR(B)
εB−→ B.

If (L,R) form an adjoint pair, then L is called left adjoint to R and R is said to
be right adjoint to L. Adjoints are unique up to natural isomorphisms.

2.20. Properties of adjoint functors. Let (L,R) be an adjoint pair of functors (as
in 2.19).

(1) L preserves epimorphisms and coproducts.

(2) R preserves monomorphisms and coproducts.

2.21. Properties of unit and counit. Let (L,R) be an adjoint pair of functors.

(1) (i) R is faithful if and only if εB is an epimorphism for each B ∈ B.

(ii) R is full if and only if εB is a coretraction for each B ∈ B.

(iii) R is full and faithful if and only if ε is an isomorphism.

(2) (i) L is faithful if and only if ηA is a monomorphism for each A ∈ A.

(ii) L is full if and only if ηA is a retraction for each A ∈ A.

(iii) L is full and faithful if and only if η is an isomorphism.

2.22. Natural transformations for adjoints. For two adjunctions (L,R) and
(L̃, R̃) between A and B, with respective units η, η̃ and counits ε, ε̃, there is an
isomorphism between the natural transformations

h : Nat(L, L̃)→ Nat(R̃, R), α 7→ ᾱ := Rε̃ ◦RαR̃ ◦ ηR̃,

h−1 : Nat(R̃, R)→ Nat(L, L̃), ᾱ 7→ α := εL̃ ◦ LᾱL̃ ◦ Lη̃.
We say that α and ᾱ are mates under the adjunctions (L,R) and (L̃, R̃).

These maps are obtained from the commutative diagram

MorB(L̃R̃(B), B)
' //

MorB(α
R̃(B)

,B)

��

MorA(R̃(B), R̃(B))

MorA(B,ᾱB)
��

MorB(LR̃(B), B)
' //MorA(R̃(B), R(B)),

by considering the image of ε̃ ∈ MorB(L̃R̃(B), B).
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2.23. The pair (U ⊗−, Hom(U,−)). For any abelian group U , the endofunctors

U ⊗− : Ab→ Ab, Hom(U,−) : Ab→ Ab,

form an adjoint pair by the natural isomorphism (see 1.22)

Hom(U ⊗M,N)→ Hom(M,Hom(U,N)), δ 7→ [m 7→ δ(− ⊗m)].

We may consider the notion of tensor product also in an arbitrary category. For
this we need the

2.24. Product of categories. The product A × B of two categories A, B has as
objects the ordered pairs (A,B) of objects A ∈ Obj(A), B ∈ Obj(B), the morphisms
sets are

MorA×B((A,B), (A′, B′)) = MorA(A,A′)×MorB(B,B′),

and componentwise composition

(f, g) � (f, g) = (f ′ � f, g � g).

Hereby I(A,B) = (IA, IB).

2.25. Monoidal category. A category A is said to be monoidal if there is a functor

� : A× A→ A, (A,B) 7→ A�B,

called tensor product, a unit object I ∈ A, and natural families of isomorphisms in A,

αA,B,C : (A�B)� C → A� (B � C),

rA : A� I→ A, `A : I�A→ A,

called the associativity, right unit, and left unit constraints, respectively, inducing
commutativity of the diagram ....

(A�B)� (C �D)
αA,B,C�D

**
((A�B)� C)�D

αA�B,C,D
44

αA,B,C�ID
��

A� (B � (C �D))

(A� (B � C))�D
αA,B�C,D // A� ((B � C))�D)

IA�αB,C,D

OO

(A� I)�B
αA,I,B //

rA�IB &&

A� (I�B)

IA�`Bxx
A�B

By MacLane’s coherence theorem we may assume that α, r and ` are the identity
maps.

Clearly, the category Ab is a monoidal category with � = ⊗. However, many
properties known for ⊗ need not hold for � in monoidal categories in general.
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3 Rings and modules

Based on the knowledge about abelian groups we introduce associative rings and the
category of their modules.

3.1. Rings. A ring is an abelian group R with a bilinear map

m̃ : R×R→ R, (r, s) 7→ rs,

called multiplication, satisfying the associativity condition (rs)t = r(st), for r, s, t ∈ R,
and a unit element 1R ∈ R, that is r1R = r = 1Rr, for all r ∈ R. Note that the unit
can be characterised by the group homomorphism η : Z→ R, 1Z 7→ 1R.

By the property of the tensor product (R⊗R, τ), we have the commutative diagram

R×R
τ
��

m̃ // R

R⊗R
m

77

and this shows that - using the tensor product - rings can be defined by referring to
a group homomorphisms m. Then the associativity and unitality conditions can be
expressed by commutativity of the diagrams

R⊗R⊗R IR⊗m //

m⊗IR
��

R⊗R
m
��

R⊗R m //M

, Z⊗R η⊗IR //

'
%%

R⊗R
m
��

R⊗ ZIR⊗ηoo

'
yy

R .

3.2. Ring morphisms. Given rings R and R′, a linear map f : R→ R′ is said to be
a ring (homo)morphism provided the diagrams

R⊗R f⊗f //

m

��

R′ ⊗R′

m′

��
R

f // R′,

Z
η

��

η′

  
R

f
// R′

are commutative, that is, for a, b ∈ R,

f(ab) = f(a)f(b), f(1R) = 1R′ .

3.3. R-modules. Let (R,m, η) be a ring. A left R-module is an abelian group M
with a bilinear map %̃M : R×M →M, called the action, subject to the associativity
and unitality conditions,

r(sm) = (rs)m and 1Rm = m, for any r, s ∈ R, m ∈M .

Similar to the ring case, the tensor product (R ⊗M, τ) allows to replace the bilinear
map in the definition by the homomorphism %M in the diagram

R×M
τ
��

%̃M //M

R⊗M
%M

66

,

and the conditions on %M are expressed by commutativity of the diagrams
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R⊗R⊗M IR⊗%M//

µ⊗I
��

R⊗M
%M
��

R⊗M %M //M ,

Z⊗M η⊗IM //

' %%

R⊗M
%M
��

M .

Right R-modules are defined symmetrically by interchanging R ×M with M ×R
and making the appropriate adaptions.

3.4. R-morphisms. A group homomorphism g : M → N between left R-modules
is called an R-homomorphism or R-linear provided g(rm) = rg(m), for any r ∈ R,
m ∈M , this means commutativity of the diagram

R⊗M IR⊗g //

%M
��

R⊗N
%N
��

M
g // N .

The set of all these maps is denoted by HomR(M,N). With the induced addition
this is a subgroup of the abelian group Hom(M,N) (=HomZ(M,N)). It can be
characterized as an equaliser

HomR(M,N) // Hom(M,N)
%N◦(R⊗−) //

Hom(%M ,N)
// Hom(R⊗M,N).

The composition of two R-morphisms is again an R-morphism and EndR(M) :=
HomR(M,M) is a subring of End(M).

For R-morphisms of right R-modules the formulas are to be adapted in an obvious
way. In the expression HomR(M,N), the subscript R indicates the module structure
of the objects M,N which we have in mind. In case of ambiguity we will write
HomR−(M,N) for left R-module morphisms and Hom−R(M,N) for right R-module
morphisms.

3.5. Category of R-modules. By RM we denote the category of left R-modules,
that is, the objects are left R-modules and the morphisms are the R-module homo-
morphisms (R-linear maps).

For any abelian group X, R⊗X is a left R-module by m⊗IX : R⊗R⊗X → R⊗X,
and this induces the functor

R⊗− : Ab→ RM, X 7→ (R⊗X,m⊗ IX),

which is left adjoint to the forgetful functor UR : RM → Ab, (M,ρM ) 7→ M , by the
isomorphism

HomR(R⊗X,M)→ Hom(X,M), f 7→ f ◦ (η ⊗ IX),

with inverse map

X
h−→M 7→ R⊗X IR⊗h−−−→ R⊗M ρM−−→M.



18 3. Rings and modules

RM is an abelian category: The zero-object is the 0-module. Products (coproducts)
of R-modules are obtained from the product (coproduct) of abelian groups endowed
with an R-module structure. Kernels and cokernels of R-linear maps are defined in
the same way as for abelian groups. Monomorphisms are the same as injective linear
maps and can be considered as equalisers, epimorphisms are just surjective R-linear
maps and are coequalisers.

3.6. The Kleisli category of a ring. For the ring R, the Kleisli category RM̃ is
defined as the category whose objects are those of Ab and whose morphisms between
X and Y are

Mor
RM̃

(X,Y ) = Hom(X,R⊗ Y ),

with composition of g ∈ Mor
RM̃

(X,Y ) and h ∈ Mor
RM̃

(Y,Z) given by

X
g−→ R⊗ Y IR⊗h−−−→ R⊗R⊗ Z m⊗IZ−−−−→ R⊗ Z.

There are functors

Φ : Ab→ RM̃, X
f−→ Y 7→ X

η⊗X−−−→ R⊗X IR⊗f−−−→ R⊗ Y,

Ψ : RM̃→ RM, X
g−→ R⊗ Y 7→ R⊗X IR⊗g−−−→ R⊗R⊗ Y m⊗IY−−−−→ R⊗ Y,

yielding the commutative diagram

Ab
R⊗− //

Φ !!

RM

RM̃.

Ψ

<<

Ψ is a full embedding and hence corestriction yields an equivalence between RM̃
and the image of Ψ, a subcategory of RM.

3.7. Category of bimodules. Let R and S be rings. An abelian group M which is
a left R-module ρM : R⊗M →M and a right S-module Mρ : M ⊗ S →M , is called
an (R,S)-bimodule, if

(rm)s = r(ms), for any m ∈M , r ∈ R, and s ∈ S,

that means commutativity of the diagram

R⊗M ⊗ S ρM⊗I //

I⊗Mρ
��

M ⊗ S

Mρ

��
R⊗M ρM //M.

Morphisms between (R,S)-bimodules M,N are group morphisms which are R-linear
as well as S-linear, we denote them by HomR,S(M,N).

These data define the category of (R,S)-bimodules which is denoted by RMS ; it
is also an abelian category.
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3.8. Tensor product of modules. Given a ring R, let Mρ : M ⊗R→M be a right
module, ρN : R ⊗ N → N a left module, and G an abelian group. A bilinear map
β : M ×N → G is called R-balanced if

β(mr, n) = β(m, rn), for all m ∈M , n ∈ N and r ∈ R.

An abelian group T with an R-balanced map τ : M ×N → T is called the tensor
product of M and N if every R-balanced map

β : M ×N → G, G an abelian group ,

can be uniquely factorised over τ , that is, there is a unique homomorphism γ : T → G
with commutative diagram

M ×N β //

τ
��

G

T

γ

;;

.

Such a T is unique up to isomorphism and is usually written T = M ⊗R N . It is
determined by the coequaliser diagram

M ⊗R⊗N
IM⊗ρN //
Mρ⊗IN

//M ⊗N //M ⊗R N.

3.9. Module structure of tensor products. By construction, the tensor product
M ⊗R N of MR and RN is only an abelian group. However, if TMR or RNS are
bimodules, then M ⊗R N becomes a (T, S)-bimodule by the actions of t ∈ T , s ∈ S,

t(
∑

mi ⊗ ni)s =
∑

(tmi)⊗ (nis).

3.10. Tensor product with R. Regarding R as an (R,R)-bimodule, for every
R-module RN , there is an R-isomorphism

µN : R⊗R N → N,
∑

ri ⊗ ni 7→
∑

rini.

The map exists since the map R × N → RN, (r, n) 7→ rn, is balanced; it obviously
has the given properties.

3.11. Associativity of the tensor product. Given rings R,S and three modules
MR, RNS and SL, the tensor products (M ⊗R N) ⊗S L and M ⊗R (N ⊗S L) can be
formed and there is an isomorphism

αM,N,L : (M ⊗R N)⊗S L→M ⊗R (N ⊗S L), (m⊗ n)⊗ l 7→ m⊗ (n⊗ l) .

This can be derived from the corresponding property of abelian groups.

3.12. Hom-tensor relation. For rings R,S, let RPS be an (R,S)-bimodule.

(1) HomR(P,−) : RM→ SM, M 7→ HomR(P,M),
f 7→ HomR(P, f)

is a left exact covariant functor preserving direct products.
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(2) P ⊗S − : SM→ RM, X 7→ P ⊗S X,
g 7→ IP ⊗ g.

is a right exact covariant functor preserving direct sums.

(3) The two functors are adjoint by the natural isomorphism for M ∈ RM, N ∈ SM,

ψ′M,N : HomR(P ⊗S N,M)→ HomS(N,HomR(P,M)), δ 7→ [n 7→ δ(− ⊗ n)].

It is straightforward to verify that the objects involved have the module structure
required for these assertions. The isomorphism ψ′M,N in (3) is the restriction of the
corresponding isomorphism ψM,N for abelian groups (see 1.22). It is just to verify
that the specified subsets correspond to each other.

Again properties of related functors can be used to define special objects. So UR
is called flat provided U ⊗R − preserves monomorphisms.

3.13. Tensor product and linear maps. Let M,N be left modules over a ring
R. The dual space M = HomR(M,R) is a right R-module by the action of s ∈ R on
f ∈M , f · s (m) := f(m)s for all m ∈M .

(1) The map M∗ × N → HomR(M,N), (f, n) 7→ [m 7→ f(m)n], is (obviously)
R-balanced and hence it induces a group homomorphism

ϑ : M∗ ⊗R N → HomR(M,N).

(2) ϑ is an isomorphisms provided M has a finite dual basis (i.e., MR is finitely
generated and projective).

(3) The evaluation ev : M∗ ×M → R, (f,m) 7→ f(m), is R-balanced and hence
factorises over a group homomorphism

ev : M∗ ⊗RM → R.

(4) If M has a finite dual basis, we get the linear map

EndR(M)
ϑ−1
//M∗ ⊗RM ev // R.

This is the trace map on matrix rings.

3.14. Category of (R,R)-bimodules. For any ring R, the category of (R,R)-
bimodules, denoted by RMR (see 3.7), is an abelian category. For any two bimodules
M,N , M ⊗R N is again an (R,R)-bimodule and R⊗RM 'M .

Thus (RMR,⊗R, R) is a monoidal category (with unit object R).

3.15. Commutative rings. If R is a commutative ring, left R-modules may be
considered as (R,R)-bimodules canonically. Then for R-modules M,N,L, the R-
balanced maps β : M ×N → L are just as R-bilinear maps. M ⊗RN is an R-module
and the factoring map γ : M ⊗R N → L is R-linear.

The category MR is monoidal with unit object R and the twist map is defined,

tw : M ⊗R N → N ⊗RM, m⊗ n 7→ n⊗m.

These observation apply in particular for vector spaces over fields. Over the real
numbers R, the scalar products are familiar examples of R-bilinear maps.
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Recall that a ring R was defined in 3.1 by a bilinear map and modules were
considered in the monoidal category Ab. Since over a commutative ring R, RM is also
a monoidal category, these definitions can be generalised to the following situation.

3.16. Algebras and their modules. Let R be a commutative ring. An algebra
over R is an R-module A with R-linear maps

µ : A⊗R A→ A, η : R→ A,

the multiplication and unit, subject to associativity and unitality conditions (see 3.1).
An R-module M is said to be a left A-module provided there is an R-linear map

ρM : A⊗RM →M, a⊗m 7→ am,

subject to associativity and unitality conditions (see 3.3). Morphisms between A-
modules (M,ρM ) and (N, ρN ) are defined as R-linear maps which are also A-linear
and they can be characterised as an equaliser

HomA(M,N) // HomR(M,N)
%N◦(A⊗R−) //

Hom(%M ,N)
// HomR(A⊗RM,N).

Of course, every algebra A is also a ring and rings may be seen as Z-algebras.
The category of all left A-modules is denoted by AM. It is an abelian category

but not monoidal. Similar to 3.5, there is a functor

A⊗R − : RM→ AM, X 7→ (A⊗R X,m⊗ IX),

which is left adjoint to the forgetful functor UA : AM → RM, (M,ρM ) 7→ M , by the
isomorphism

HomA(A⊗R X,M)→ HomR(X,M), f 7→ f ◦ η ⊗R X.

As in 3.6, the Kleisli category AM̃ of an R-algebra A is defined as the image of the
free functor A⊗R − in AM.
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4 Coalgebras and comodules

As pointed out in the preceding section, the definition of algebras over a commutative
ring is essentially the same as a ring over Z. Nevertheless properties of the base ring
can have an influence on the behavior of the modules over algebra. So we gain some
generality if we introduce coalgebras over an arbitrary commutative ring. In this
section R will be a commutative ring.

4.1. Coalgebras. A coalgebra over R is an R-module C with linear maps

∆ : C → C ⊗R C, ε : C → R,

the comultiplication and the counit, inducing commutative diagrams

C
∆ //

∆
��

C ⊗R C

IC⊗∆
��

C ⊗R C
∆⊗IC // C ⊗R C ⊗R C ,

C
∆ //

IC

&&
∆
��

C ⊗R C

ε⊗IC
��

C ⊗R C
IC⊗ε

// C .

The coalgebra C is called cocommutative if ∆ = tw ◦∆

4.2. Sweedler’s Σ-notation. For an elementwise description of the maps we use
the Σ-notation, writing for c ∈ C

∆(c) =
∑

c1 ⊗ c2,

where c1 and c2 do not denote single elements but families of elements of C representing
the element ∆(c); they are by no means uniquely determined. With this notation, the
coassociativity of ∆ is expressed by∑

∆(c1)⊗ c2 =
∑

c1 1 ⊗ c1 2 ⊗ c2 =
∑

c1 ⊗ c2 1 ⊗ c2 2 =
∑

c1 ⊗∆(c2),

and hence the notation is often shortened to

(∆⊗ IC)∆(c) = (IC ⊗∆)∆(c) =
∑
c1 ⊗ c2 ⊗ c3.

The conditions for the counit are described by∑
ε(c1)c2 = c =

∑
c1ε(c2).

Cocommutativity is equivalent to the equality
∑
c1 ⊗ c2 =

∑
c2 ⊗ c1.

Coalgebraic structures are closely related to algebraic ones. For example, the
module of R-linear maps from a coalgebra C to any R-algebra is an R-algebra (e.g.
[15, 1.3]).

4.3. The algebra HomR(C,A). For any R-linear map ∆ : C → C ⊗R C and an
R-algebra A, HomR(C,A) is an R-algebra by the convolution product

f ∗ g = µ ◦ (f ⊗ g) ◦∆, i.e., f ∗ g(c) =
∑

f(c1)g(c2),

for f, g ∈ HomR(C,A) and c ∈ C. Furthermore,
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(1) ∆ is coassociative if and only if HomR(C,A) is an associative R-algebra, for
any R-algebra A.

(2) C is cocommutative if and only if HomR(C,A) is a commutative R-algebra, for
any commutative R-algebra A.

(3) C has a counit if and only if HomR(C,A) has a unit, for all R-algebras A with
a unit.

4.4. Coalgebra morphisms. Given R-coalgebras (C,∆, ε) and (C ′,∆′, ε′), an R-
linear map f : C → C ′ is said to be a coalgebra morphism provided the diagrams

C
f //

∆
��

C ′

∆′

��
C ⊗R C

f⊗f // C ′ ⊗R C ′ ,

C
f //

ε   

C ′

ε′

��
R

are commutative, that is ∆′ ◦ f = (f ⊗ f) ◦∆ and ε′ ◦ f = ε, i.e., for any c ∈ C,∑
f(c1)⊗ f(c2) =

∑
f(c)1 ⊗ f(c)2, ε′(f(c)) = ε(c).

4.5. Coproduct of coalgebras. For a family {Cλ}Λ of R-coalgebras, put C =⊕
ΛCλ, the coproduct in MR, iλ : Cλ → C the canonical inclusions, and consider the

R-linear maps

Cλ
∆λ−→ Cλ ⊗ Cλ ⊂ C ⊗ C, ε : Cλ → R.

By the properties of coproducts of R-modules there exist unique maps

∆ : C → C ⊗R C with ∆ ◦ iλ = ∆λ, ε : C → R with ε ◦ iλ = ελ.

(C,∆, ε) is called the coproduct (or direct sum) of the coalgebras Cλ. It is obvious
that the iλ : Cλ → C are coalgebra morphisms.

The coproduct constructed above is the coproduct in the category of coalgebras,
that is, objects are coalgebras and morphisms are coalgebra morphisms.

The definition of comodules over coalgebras is derived from modules over algebras
by reversing the arrows.

4.6. C-comodules. A right C-comodule is an R-module M with an R-linear map

ρM : M −→M ⊗R C,

inducing commutative diagrams

M
%M //

%M

��

M ⊗R C

IM⊗∆
��

M ⊗R C
%M⊗IC //M ⊗R C ⊗R C,

M
%M //

IM $$

M ⊗R C
IM⊗ε
��
M.
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For the value of %M on elements m ∈M we write

%M (m) =
∑

m0 ⊗m1.

Then coassociativity and counitality are expressed by the equalities∑
%M (m0)⊗m1 =

∑
m0 ⊗∆(m1), m =

∑
m0ε(m1).

In view of the first of these equations the notation is often shortened to

(IM ⊗∆) ◦ %M (m) =
∑

m0 ⊗m1 ⊗m2.

Note that the elements with subscript 0 are in M while all the elements with positive
subscripts are in C.

An R-module with a coassociative and counital right coaction is called a C-
comodule.

4.7. C-comodule morphisms. Given left C-comodules M and N , a C-comodule
morphism is an R-linear map f : M → N with a commutative diagram

M
f //

ρM

��

N

ρM

��
M ⊗R C

f⊗I // N ⊗R C,

that is %N ◦ f = (f ⊗ IC) ◦ %M , and for any m ∈M ,∑
f(m)0 ⊗ f(m)1 =

∑
f(m0)⊗m1.

The set HomC(M,N) of C-morphisms from M to N is an R-module and by definition
that it is characterized as an equaliser

HomC(M,N) // HomR(M,N)
(−⊗IC)◦%M //

HomR(M,%N )
// Hom(M,N ⊗R C).

The composition of two C-morphisms is again a C-morphism and the endomorphisms
EndC(M) := HomC(M,M) form a subring of EndR(M).

The right C-comodules together with the comodule homomorphisms form the cat-
egory of right C-comodules which we denote by MC . As mentioned before, MC is an
additive category.

4.8. Coproducts in MC . Let {Mλ, %
M
λ }Λ be a family of C-comodules. Put M =⊕

ΛMλ, the coproduct in MR, iλ : Mλ → M the canonical inclusions, and consider
the linear maps

Mλ
%Mλ−→Mλ ⊗R C ⊂M ⊗R C.

By the properties of coproducts of R-modules, there exists a unique R-linear map

%M : M →M ⊗R C, such that %M ◦ iλ = %Mλ ,
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and this map is coassociative and counital (since all the %Mλ are).

(M, iλ) is the coproduct of the {Mλ}Λ in MC .

4.9. Kernels and cokernels in MC . Let f : M → N be a morphism in MC . The
cokernel g of f in MR yields the exact commutative diagram

M
f //

%M

��

N
g //

%N

��

L // 0

M ⊗R C
f⊗IC // N ⊗R C

g⊗IC // L⊗R C // 0,

which can be completed commutatively in MR by some %L : L → L ⊗R C. It is a
minor exercise to show that this is a coassociative and counital coaction ([15, 3.5]).

This shows that cokernels exist in the category MC .

Dually, for the kernel h of f in MR there is a commutative diagram

0 // K
h //M

f //

%M

��

N

%N

��
0 // K ⊗R C

h⊗IC //M ⊗R C
f⊗IC // N ⊗R C ,

where the top sequence is always exact while the bottom sequence is exact provided
f is C-pure as an R-morphism. If this is the case, the diagram can be extended
commutatively by an R-linear map %K : K → K ⊗R C which can be shown to be
coassociative and counital.

Thus, for example, kernels exist in MC provided C is flat as an R-module.

For modules N,M , N is said to be (sub-)generated by M if N is a (submodule of
a) homomorphic image of a direct sum of copies of M . If every module in a category
A is subgenerated by M , then M is called a subgenerator of A. A similar terminology
is applied for comodules.

4.10. The category MC . For any R-module X, X⊗RC is a right C-comodule with
coaction induced by ∆. This yields a functor

−⊗R C : RM→MC , X 7→ (X ⊗R C, IX ⊗∆),

which is right adjoint to the forgetful functor UC : MC → RM, (M,ρM ) 7→M , by the
isomorphism

HomC(M,X ⊗R C)→ HomR(M,X), f 7→ (IX ⊗ ε) ◦ f.

(1) MC is an additive category with coproducts and cokernels.

(2) For any generator P ∈ RM, C ⊗R P is a subgenerator in MC , in particular, C
is a subgenerator in CM.

(3) For any monomorphism f : X → Y in RM, f ⊗R IC : X ⊗R C → Y ⊗R C is a
monomorphism in MC .



26 4. Coalgebras and comodules

(4) For any family Xλ of R-modules, (
∏

ΛXλ) ⊗R C is the product of the C-
comodules Xλ ⊗R C.

Note that in MC monomorphisms need not be injective maps. This is a conse-
quence of the fact that the functor −⊗R C : RM→ RM need not preserve monomor-
phisms. However, functors which have a left adjoint always preserve monomorphisms
and products and hence so does − ⊗R C : RM → MC . This explains properties (3)
and (4).

The R-module structure of C has a strong influence on the properties of MC , [15,
3.14].

4.11. Proposition. For an R-coalgebra C, the following are equivalent:

(a) C is flat as an R-module;

(b) every monomorphism in MC is injective;

(c) the forgetful functor MC → RM respects monomorphisms.

In this case, MC is an abelian category and

(i) for any cogenerator Q ∈ RM, Q⊗R C is a cogenerator in MC ;

(ii) for any injective X ∈ RM, X ⊗R C is injective in CM.

4.12. The Kleisli category of a coalgebra. For an R-coalgebra C, the Kleisli
category M̃C is defined as the category whose objects are those of RM and whose
morphisms between X and Y are

MorM̃C (X,Y ) = HomR(X ⊗R C, Y ),

with composition of g ∈ MorM̃C (X,Y ) and h ∈ MorM̃C (Y,Z) given by

X ⊗R C
IX⊗∆−−−−→ X ⊗R C ⊗R C

g⊗IC−−−→ Y ⊗ C g−→ Z.

The identity in MorM̃C (X,X) is given by IX ⊗ ε : X ⊗R C → X. There are functors

Φ : RM→ M̃C , X
f−→ Y 7→ X ⊗R C

f⊗IC−−−→ Y ⊗R C
IY ⊗ε−−−→ Y,

Ψ : M̃C →MC , X ⊗R C
g−→ Y 7→ X ⊗R C

IX⊗∆−−−−→ X ⊗R C ⊗R C
g⊗IC−−−→ Y ⊗R C,

yielding the commutative diagram

RM
−⊗RC //

Φ ""

MC

M̃C .

Ψ

<<

Ψ is a full embedding and hence corestriction yields an equivalence between M̃C

and the image of Ψ, a subcategory of MC .

Left comodules and related notions over a coalgebra C are defined symmetrically
to the right handed case. The category of left C-comodules is denoted by M.
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4.13. Cotensor product of comodules. For M ∈MC and N ∈ CM, the cotensor
product M ⊗C N is defined as an equaliser in MR,

M ⊗C N //M ⊗R N
%M⊗IN //

IM⊗N%
//M ⊗R C ⊗R N.

4.14. Cotensor product of comodule morphisms. Let f : M →M ′, g : N → N ′

be morphisms of right, resp. left, C-comodules. Then there is a unique R-linear map,

f ⊗C g : M ⊗C N −→M ′ ⊗C N ′,

yielding a commutative diagram

M ⊗C N //

f⊗Cg
��

M ⊗R N
%M⊗IN //

IM⊗N%
//

f⊗g
��

M ⊗R C ⊗R N

f⊗IC⊗g
��

M ′ ⊗C N ′ //M ′ ⊗R N ′
%M
′⊗IN′ //

IM′⊗N
′
%

//M ′ ⊗R C ⊗R N ′ .

4.15. The cotensor functor. For any M ∈MC there is a covariant functor

M ⊗C − : CM→MR, N 7→ M ⊗C N,
f : N → N ′ 7→ IM ⊗C f : M ⊗C N →M ⊗C N ′.

Similarly, every left C-comodule N yields a functor −⊗C N : MC →MR.
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5 Monads and comonads

Let R be a commutative ring. Recall that, for any R-algebra (A,µ, η), we have the
tensor functor A⊗R − : RM→ RM. By the isomorphism

(A⊗R A)⊗RM ' A⊗R (A⊗RM),

the functor (A⊗R A)⊗R − can be seen as composition of A⊗R − with A⊗R − and
the multiplication induces a natural transformation

µ⊗− : A⊗R A⊗R − → A⊗R −.

A-modules are defined by R-linear maps A⊗RM →M (A-actions). This leads to the
following definition for endofunctors on arbitrary categories.

Let A denote any category.

5.1. Actions of endofunctors and their morphisms. Given an endofunctor
F : A→ A, an F -action on an object A ∈ Obj(A) is a morphism

%A : F (A)→ A in A.

We say a morphism f : A → A′ in A respects F -actions on objects if it induces
commutativity of the diagram

F (A)
F (f) //

%A
��

F (A′)

%A′
��

A
f // A′ .

Obviously, the composition of two morphisms respecting F -actions is again of this
type and thus we have the category of objects with F -actions.

Note that F -actions are defined for any functors F : A→ A. So, for example, any
R-module N gives rise to a functor N ⊗R − : RM → RM. For algebras A we usually
require associativity and put more conditions on the A-actions. Similarly, we define a
product on endofunctors satisfying associativity conditions and consider their actions
compatible with those.

5.2. Monads. A monad on A is a triple F = (F, µ, η), where F : A→ A is a functor
and

µ : FF → F , η : IA → F ,

are natural transformations with commutative diagrams

FFF
µF //

Fµ
��

FF

µ

��
FF µ

// F ,

F
ηF //

Fη
��

=

""

FF

µ

��
FF µ

// F .
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Thus A⊗R − : RM→ RM is a monad if and only if A is an associative R-algebra
with unit.

5.3. Morphisms of monads. Given two monads F = (F, µ, η) and F′ = (F ′, µ′, η′)
on A, a natural transformation α : F → F ′ is called a morphism of monads if the
following induced diagrams commute:

FF
αα //

µ

��

F ′F ′

µ′

��
F

α // F ′,

IA
η //

η′   

F

α
��

F ′.

The definitions of A-modules and their morphisms are generalised to

5.4. Modules for monads. Given a monad F = (F, µ, η) on a category A, an
F-module is an object A ∈ Obj(A) with an F -action %A : F (A) → A inducing com-
mutative diagrams

FF (A)
µA //

F%A
��

F (A)

%A

��

A
ηA //

IA !!

F (A)

%A

��
F (A) %A

// A , A .

The F-modules together with the morphisms preserving the F-action form a category
which we denote by AF .

In particular, for any A ∈ Obj(A), F (A) is an F-module by

µA : FF (A)→ F (A).

This yields the free functor

φF : A→ AF , A 7→ (F (A), µA),

which is left adjoint to the forgetful functor UF : AF → A by the bijection

MorAF (F (A), B)→ MorA(A,UF (B)), f 7→ f ◦ ηA.

The construction of the Kleisli category for a ring can readily be transferred to

5.5. The Kleisli category of a monad. For a monad F on a category A, the
Kleisli category ÃF is defined as the category whose objects are those of A and whose
morphisms between X and Y are

MorÃF (X,Y ) = MorA(X,F (Y )),

with composition of g ∈ MorÃF (X,Y ) and h ∈ MorÃF (Y, Z) given by

X
g−→ F (Y )

F (h)−−−→ FF (Z)
µZ−−→ F (Z).
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There are functors

Φ : A→ ÃF , X
f−→ Y 7→ X

ηX−−→ F (X)
F (f)−−−→ F (Y ),

Ψ : ÃF → AF , X
g−→ F (Y ) 7→ F (X)

F (g)−−−→ FF (Y )
µY−−→ F (Y ),

yielding the commutative diagram

A φF //

Φ   

AF

ÃF .
Ψ

==

Ψ is a full embedding and hence corestriction yields an equivalence between ÃF
and the image of Ψ, the subcategory of AF generated by all free F -modules.

Although the modules for a monad F are fairly close to the modules over an
associative unital algebra, there are many properties of the category of A-modules
which are not shared by all F-modules. This depends on the special properties of
A ⊗R −: it is a right exact functor which preserves direct sums and cokernels. This
implies, for example, that A⊗RR, the image of R, is a (projective) generator in AM.

The notions of coalgebras and comodules as considered in 4.1 and 4.6 are the
blueprint for the introduction of comonads and their comodules.

5.6. G-coactions and their morphisms. For an endofunctor G : A → A, a G-
coaction on an A ∈ Obj(A) is a morphism

%A : A→ G(A) in A.

We say a morphism f : A→ A′ between objects with G-coactions respects the coaction
if it induces commutativity of the diagram

A
f //

%A

��

A′

%A
′

��
G(A)

G(f) // G(A′) .

With this morphisms, the objects with G-coactions form a category.

5.7. Comonads. A comonad on a category A is a triple G = (G, δ, ε), where G :
A→ A is a functor and

δ : G→ GG, ε : G→ IA,

are natural transformations with commuting diagrams

G
δ //

δ
��

GG

Gδ
��

GG
δG // GGG ,

G
δ //

δ
��

=

""

GG

εG
��

GG
Gε
// G.
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5.8. Morphisms of comonads. Given two comonads G = (G, δ, ε) and G′ =
(G′, δ′, ε′), a natural transformation β : G → G′ is called a morphism of comonads if
it induces commutativity of the diagrams

G

δ
��

β // G′

δ′

��
GG

ββ // G′G′ ,

G
β //

ε   

G′

ε′

��
IA.

5.9. Comodules for comonads. A G-comodule is an object A ∈ Obj(A) with a
G-coaction %A : A→ G(A) in A and commutative diagrams

A
%A //

%A

��

G(A)

δA
��

A
%A //

IA ##

G(A)

εA

��
G(A)

G%A // GG(A) , A.

The G-comodules together with the morphisms preserving the G-coaction form a
category which we denote by AG.

For any object A ∈ Obj(A), G(A) is a comodule canonically and thus we have the
free functor

φG : A→ AG, A 7→ (G(A), δA),

which is right adjoint to the forgetful functor UG : AG → A by the bijection

MorAG(B,G(A))→ MorA(UG(B), A), f 7→ εA ◦ f.

The construction of the Kleisli category for coalgebras is the blueprint for

5.10. The Kleisli category of a comonad. For a comonad G on a category A, the
Kleisli category ÃG is defined as the category whose objects are those of A and whose
morphisms between X and Y are

MorÃG(X,Y ) = HomR(G(X), Y ),

with composition of g ∈ MorÃG(X,Y ) and h ∈ MorÃG(Y, Z) given by

G(X)
δX−−→ GG(X)

G(g)−−−→ G(Y )
h−→ Z.

The identity in MorÃG(X,X) is given by εX : G(X)→ X. There are functors

Φ : A→ ÃG, X
f−→ Y 7→ G(X)

G(f)−−−→ G(Y )
εY−→ Y,

Ψ : ÃG → AG, G(X)
g−→ Y 7→ G(X)

δX−−→ GG(X)
G(g)−−−→ G(Y ),

yielding the commutative diagram

A φG //

Φ   

AG

ÃG.
Ψ

==
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Ψ is a full embedding and hence corestriction yields an equivalence between ÃG
and the image of Ψ, the subcategory of AG generated by the cofree G-comodules.

Properties of these categories depend heavily on the properties of the comonad G.

Recall that an endofunctor F : A→ A is left adjoint to an endofunctor G : A→ A
provided there is a functorial isomorphism

MorA(F (X), Y )
' //MorA(X,G(Y )).

5.11. Right adjoints of monads. Let (F,G) be an adjoint pair of endofunctors on
A and assume (F,m, e) to be a monad. The FF is again an endofunctor with right
adjoint GG by the isomorphism

MorA(FF (X), Y ) ' MorA(F (X), G(Y )) ' MorA(X,GG(Y )),

with unit and counit

ε̄ : FFGG
FεG // FG

ε // IB, , ē : IA
η // GF

GηF // GGFF .

By 2.22, the natural transformation m : FF → F has a mate δ := m̄ : G→ GG, and
e : IA → F has a mate ε := ē : G → IA under the given adjunctions and we obtain
the commutative diagrams

MorA(F (X), Y )
' //

MorA(m,Y )

��

MorA(X,G(Y ))

MorA(X,δ)

��
MorA(FF (X), Y )

' //MorA(X,GG(Y ))

MorA(F (X), Y )
' //

MorA(e,Y )

��

MorA(X,G(Y ))

MorA(X,ε)

��
MorA(X,Y )

= //MorA(X,Y ).

Thus the right adjoint functor G has a comonad structure (G, δ, ε).

It may come as a surprise that, in the situation considered in 5.11, the category
of F -modules is isomorphic to the category of G-comodules.

5.12. Modules and comodules for an adjoint pair. Let (F,G) be an adjoint pair
of functors with unit η : IA → GF and counit ε : FG → IA. Let F be a monad and
consider G with the induced comonad structure. Then the (Eilenberg-Moore) categories
AF and AG are isomorphic to each other.

Proof. The isomorphism is given by a functor leaving objects and morphisms
unchanged and turning F -module structure maps to G-comodule structure maps and
vice versa. An F -module %A : F (A)→ A induces a morphism

A
ηA // GF (A)

G%A // G(A),
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making A an G-comodule. Similarly, a comodule %A : A→ G(A) induces

F (A)
F%A // FG(A)

εA // A,

defining an F -module structure on A.

It remains to show that module morphisms are also comodule morphisms. An
F -module morphism f : A′ → A yields a commutative diagram

F (A′)
Ff //

%A′

��

F (A)

%A

��
A′

f // A ,

from which we obtain the commutative diagram

A′
f //

ηA′

��

A

ηA
��

GF (A′)
GFf //

G%A′
��

GF (A)

G%A
��

G(A′)
Gf // G(A).

Commutativity of the outer rectangle shows that f is also a G-comodule morphism.
Similarly one proves that G-comodule morphisms are also F -module morphisms. tu

5.13. Right adjoints of comonads. Let (F,G) be an adjoint pair of endofunctors
on A and assume (F, δ, ε) to be a comonad. With similar arguments as in 5.11 we
deduce from 2.22 that the mates m = δ̄ : GG → G and e = ε̄ : IA → G lead to a
monad (G,m, e).

Thus for an adjoint pair (F,G), F is a comonad if and only if G is a monad.
Related to such a pair we have the categories AF and AG. Unlike to the monad-

comonad case considered in 5.12, here we do not get an equivalence between AF and
AG. In this case the Kleisli categories ÃF and ÃG are isomorphic to each other. This
follows by the canonical isomorphisms for A,A′ ∈ A,

MorÃF (A,A′) ' MorAF (φFA, φFA′) ' MorA(F (A), A′)

' MorA(A,G(A′)) ' MorAG(φGA, φGA
′) ' MorÃG(A,A′).

The interest in monads and comonads arose originally from the fact that any
adjunction produces a monad and a comonad.

5.14. Comonads and monads induced by adjunctions. Consider an adjoint pair
of functors F : A→ B, G : B→ A with unit η : IA → GF and counit ε : FG→ IB.

(1) (i) T = (T = GF,GεF, η) is a monad on A;

(ii) there is a (comparison) functor Ĝ : B→ AT , B 7→ (G(B), GεB);
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(iii) there is a functor F̃ : ÃT → B,

A
g−→ T (A′) 7→ F (A)

F (g)−−−→ FGF (A′)
εF (A′)−−−−→ F (A′).

(2) (i) S = (S = FG,FηG, ε) is a comonad on B;

(ii) there is a (comparison) functor F̂ : A→ BS , A 7→ (F (A), FηA);

(iii) there is a functor G̃ : ÃS → B,

S(A)
g−→ A′ 7→ G(A)

ηF (A)−−−−→ GFG(A)
G(g)−−−→ G(A′).

The functors defined above, called comparison functors, yield commutative dia-
grams

ÃT
UT

&&
F̃
��

A F //

φT

88

φT &&

B

Ĝ
��

G // A

AT
UT

88

,

B̃S
US

&&
G̃
��

B G //

φS
88

φS &&

A

F̂
��

F // B

BS
US

88

.

Proof. (1.i) The unitality conditions are expressed by the diagram

GF
ηGF //

= $$

GFGF

GεF
��

GF
GFηoo

=zz
GF ,

whose commutativity follows from the triangular identities (see 2.19).

Naturality of ε implies commutativity of

FGFG
εFG //

FGε
��

FG

ε
��

FG
ε // IB,

and this can be extended to the commutative diagram

GFGFGF
GεFGF //

GFGεF
��

GFGF

GεF
��

GFGF
GεF // GF,

showing associativity of the product GεF : GFGF → GF .

(1.ii) We show that for any B ∈ B, GεB : GFG(B)→ G(B) defines a GF -module.
Consider again the first square in the proof (1.i). Action of G from the left and
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application to B yields the commutative diagram

GFGFG(B)
GεFGB//

GFGεB
��

GFG(B)

GεB
��

GFG(B)
GεB // G(B).

This proves the associativity condition for the GF -module G(B). Unitality follows
from the triangular identities (2.19). Again by naturality of ε, for any f ∈ B, G(f) is
a GF -module morphism.

(1.iii) Clearly morphisms in ÃT are taken to morphisms in B. It remains to show

that the assignment respects composition of morphisms A
g−→ T (A′) and A′

h−→ T (A′′).
For this consider the diagram

F (A)
F (g) // FGF (A′)

FT (h) //

εF (A′)
��

FTT (A′′)
FGεF (A′′) //

εFGF (A′′)
��

FGF (A′′)

εF (A′′)
��

F (A′)
F (h) // FGF (A′′)

εF (A′′) // F (A′′)

in which all partial diagrams are commutative. This shows that composition of mor-
phisms is preserved by our assignment.

The proofs for (2) follow by similar arguments and commutativity of the diagrams
is seen by direct verification. tu
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6 Monads and comonads in module categories

In this section we study the notions considered in the preceding section for arbitrary
categories in the category of R-modules, R a commutative ring.

6.1. Adjoint endofunctors on RM. For any R-moduleM , the endofunctors−⊗RM
and HomR(M,−) form an adjoint pair by the isomorphism

ψMX,Y : HomR(X ⊗RM,Y )→ HomR(X,HomR(M,Y )), γ 7→ [x 7→ γ(x⊗−)],

with unit ν : I → HomR(M,−⊗RM) and counit ε : Hom(M,−)⊗RM → I.

First we apply 5.11 and 5.12 to algebras.

6.2. Proposition. For an R-module A, the following are equivalent:

(a) A is an R-algebra;

(b) −⊗R A : RM→ RM is a monad;

(c) HomR(A,−) : RM→ RM is a comonad.

In this case the categories MA = M−⊗RA and MHom(A,−) are isomorphic.

Proof. The assertions are special cases of 5.11 and 5.12. The algebra structure
on A, m : A ⊗R A → A and e : R → A, correspond to the comonad structure on
HomR(A,−),

HomR(A,−)
m∗−→ HomR(A⊗R A,−)

ψAA,−−→ HomR(A,HomR(A,−)),

HomR(A,−)
e∗−→ HomR(R,−),

where m∗ = HomR(m,−) and e∗ = HomR(e,−).
The right A-module structure ρN : N ⊗RA→ N induces a HomR(A,−)-comodule

structure on N ,

ρ̂N : N
νN // HomR(A,N ⊗R A)

Hom(A,ρN ) // HomR(A,N).

On the other hand, a comodule structure ρN : N → HomR(A,N) induces an A-module
structure on N ,

ρ̃N : N ⊗R A
ρN⊗I// HomR(A,N)⊗R A

εN // N.

The equivalence between module and comodule category is given by

MA⊗R− →MHom(A,−), (M,ρN ) 7→ (M, ρ̂N ),

keeping the morphisms unchanged. tu

6.3. Value at R. Since R is a generator in RM and −⊗RA preserves direct sums and
epimorphisms, the functor −⊗RA : RM→ RM is fully determined by the value at R,
that is by R ⊗R A ' A. Similarly, a natural transformation ϕ : − ⊗R A → −⊗R B
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between tensor functors is of the form ϕR ⊗R −, where ϕR : A → B is an R-linear
map.

In general, HomR(A,−) is not determined by A∗ = HomR(A,R), unless it pre-
serves direct sums and epimorphisms, that is, unless A is a finitely generated and
projective R-module. However, HomR(A,−) is determined by HomR(A,Q) for any
cogenerator Q ∈ RM since it is left exact and preserves direct products. For a natural
transformation ψ : HomR(A,−)→ HomR(B,−) between Hom functors, it follows by
the Yoneda Lemma that ψ = HomR(ψR,−), where ψR : B → A is an R-linear map.

Now let (C,∆, ε) be an R-coalgebra, 4.1. For properties of the category MC of
right C-comodules we refer to 4.10 and 4.11.

In view of the adjointness of the endofunctors C⊗R− and HomR(C,−), the latter
has a monad structure by 5.13.

6.4. Proposition. For an R-module C, the following are equivalent:

(a) C is an R-coalgebra;

(b) −⊗R C : RM→ RM has a comonad structure;

(c) HomR(C,−) : RM→ RM has a monad structure.

Hereby the coalgebra structure maps ∆ : C → C ⊗R C, ε : C → R, correspond to
the monad structure

HomR(C,HomR(C,−))
'−→ HomR(C ⊗R C,−)

∆∗−→ HomR(C,−),

HomR(R,−)
ε∗−→ HomR(C,−),

where ∆∗ = HomR(∆,−), ε∗ = HomR(ε,−), and the isomorphism is from 6.1.
Henceforth we will write [C,−] = HomR(C,−) for short. Applying 5.4 we have

the definition of [C,−]-modules and the category M[C,−] with the (free) functor

φ[C,−] : RM→M[C,−]

being left adjoint to the forgetful functor U[C,−] : M[C,−] → RM. Following [21], the
[C,−]-modules are also called C-contramodules.

By left exactness of the functor [C,−] we obtain (with similar arguments as in the
comodule case) special properties of [C,−]-modules.

6.5. The category M[C,−]. Let C be an R-coalgebra.

(1) M[C,−] is an additive category with products and kernels.

(2) For any M ∈M[C,−], Hom[C,−]([C,R],M) 'M .

(3) For any epimorphism h : X → Y in RM, [C, h] : [C,X]→ [C, Y ] is an epimor-
phism (not necessarily surjective) in M[C,−].

(4) For any family Xλ of R-modules, [C,
⊕

ΛXλ] is the coproduct of the [C,−]-
modules [C,Xλ].

For C-comodules it is not always clear if the kernel of a C-comodule morphism is
a subcomodule. Here we need some condition to make the cokernel of a [C,−]-module
again a [C,−]-module.
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6.6. Proposition. Let C be an R-algebra. If CR is projective, then for any [C,−]-
submodule K ⊂M , the R-module M/K is a [C,−]-module.

Proof. By assumption we have the commutative diagram with exact rows

0 // [C,K]

��

// [C,M ]

��

// [C,M/K] // 0

0 // K //M //M/K // 0,

which can be completed commutatively by an R-morphism [C,M/K] → M/K. It is
routine to check that this provides M/K with a [C,−]-module structure. tu

As observed above, in M[C,−] epimorphisms need not be surjective maps. This is
the case under the following conditions.

6.7. Proposition. For an R-coalgebra C, the following are equivalent:

(a) CR is projective;

(b) every epimorphism in M[C,−] is surjective;

(c) the forgetful functor M[C,−] →MR respects epimorphisms.

In this case, M[C,−] is an abelian category and

(i) for any generator P ∈ RM, [C,P ] is a generator in M[C,−];

(ii) for any projective Y ∈ RM, [C, Y ] is projective in M[C,−].

Proof. (b)⇒(a) For any epimorphism f : K → L in RM, Hom(C, f) : HomR(C,K)→
HomR(C,K) is an epimorphism in M[C,−] and hence surjective by (b). This means
that CR is projective.

(c)⇒(a) is shown with a similar argument.

(a)⇒(c) Assume CR to be projective and consider an epimorphism f : M → N in
M[C,−]. Then the cokernel h : N → N/f(M) is a morphism in M[C,−] and 0f = hf = 0.
Since f is an epimorphism this implies N = f(M). tu

Recall that for any R-coalgebra C, the dual space C∗ = HomR(C,R) has a ring
structure by the convolution product for f, g ∈ C∗, f ∗ g = (g ⊗ f) ◦ ∆ (convention
opposite to [15, 1.3]). The relation between C-comodules and modules over the dual
ring of C is well studied (e.g. [15, Section 19]). Now it follows from the general
observations in 5.11 and 5.13 that a coalgebra C gives rise to two comonads and two
monads on RM,

−⊗R C and HomR(C∗,−), −⊗R C∗ and HomR(C,−).

Relation between those is given by morphisms which are well-known in module theory
- but usually not viewed under this aspect.

6.8. The comonads −⊗R C and [C∗,−]. The comonad morphism

α : −⊗R C → HomR(C∗,−), c⊗− 7→ [f 7→ f(c)−],
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yields a faithful functor

Gα : MC −→ M[C∗,−] 'MC∗ ,

N
%N−→ N ⊗R C 7−→ N

%N−→ N ⊗R C
αN−→ HomR(C∗, N),

and the following are equivalent:

(a) αN is injective for each N ∈ RM;

(b) Gα is a full functor;

(c) C is a locally projective R-module.

If these conditions are satisfied, MC can be identified with σ[CC∗ ], the full subcat-
egory of MC∗ subgenerated by C. This follows from the fact that C is a subgenerator
in MC .

6.9. C-comodules and C∗-modules. The relation between C-comodules and C∗-
modules can be given directly by observing that (e.g. [15, 4.1])

(i) for any M ∈MC is a (unital) right C∗-module by

⇀ : M ⊗R C∗ →M, m⊗ f 7→ (IM ⊗ f) ◦ %M (m) =
∑

m0f(m1).

(ii) any morphism h : M → N in MC is a C∗-module morphism, that is,

HomC(M,N) ⊂ HomC∗ (M,N);

(iii) this yields a faithful functor from MC to σ[CC∗ ].

(iv) this is an equivalence MC → σ[CC∗ ] if and only if α (in 6.8) is a monomorphisms
(α-condition).

Similar to 6.8, C-contramodules can be related to C∗-modules.

6.10. The monads [C,−] and −⊗R C∗. The monad morphism

β : −⊗R C∗ → HomR(C,−), −⊗ f 7→ [c 7→ f(c)−],

yields a faithful functor

Fβ : M[C,−] −→ MC∗ ,

HomR(C,M)
%M−→M 7−→ M ⊗R C∗

βM−→ HomR(C,M)
%M−→M,

and the following are equivalent:

(a) β is surjective for all M ∈ RM;

(b) Fβ is an isomorphism;

(c) C is a finitely generated and projective R-module.

In general, C is not a [C,−]-module and [C,R] is not a C-comodule. In fact,
[C,R] ∈ CM holds provided C is finitely generated and projective as an R-module.

We now consider the relationship between the categories of C-comodules and C-
contramodules. As indicated in 5.13, the two categories need not be equivalent. This
becomes evident from their properties listed in 6.5 and 4.10, respectively. However
they are related by an adjoint pair of functors.
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6.11. Correspondence of categories. Let C be an R-coalgebra. Then

HomC(C,−) : MC →M[C,−], M 7→ HomC(C,M),

is a functor which has a left adjoint given by the contratensor product defined for
(N, ρ) ∈MC and (M,α) ∈M[C,−] as the coequaliser

HomR(C,M)⊗R N
h //

α⊗RIN
//M ⊗R N //M ⊗c N,

for the map h : f ⊗R n 7→ (IN ⊗R f) ◦ ρ(n).

This follows by Dubuc’s Adjoint Triangle Theorem applied to the diagram

MC HomC(C,−) //

HomC(C,−)

  

M[C,−]

U[C,−]

}}
MA

C⊗R−

``

φ[C,−]

==

by the existence of the functor in the upper line and the fact that MC has coequalisers
(see Dubuc [19, Appendix], Positselski [42], [8, Section 4]).

6.12. Equivalence of subcategories. Take any X ∈ RM. Since − ⊗R C is right
adjoint to the forgetful functor, HomC(C,−) takes

X ⊗R C 7→ HomC(C,X ⊗R C) ' HomR(C,X).

On the other hand, the functor −⊗[C,−] C transfers

HomR(C,X) 7→ HomR(C,X)⊗[C,−] C ' X ⊗R C.

This shows that the full subcategory of MC , whose objects are of the form X⊗RC,
is equivalent to the full subcategory of M[C,−], with objects HomR(C,X), X ∈ RM
(Kleisli subcategories, e.g. [8]).
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7 Tensor product of algebras

7.1. R-rings. An (R,R)-bimoduleA is called anR-ring if there are (R,R)-homomorphisms
mA : A ⊗R A → A (multiplication) and ιA : R → A, ιA(1R) = 1A (unit), subject to
associativity and unitality conditions. Thus A is just an associative unital ring with
ring homomorphism ιA : R→ A.

A⊗R− is an endofunctor on RM and is left adjoint to the endofunctor HomR(A,−).
We will often write ⊗ instead of ⊗R for short (in diagrams).

7.2. Tensor product of R-rings. Given two R-rings (A,mA, ιA) and (B,mB, ιB),
the tensor product A⊗R B is again an R-bimodule. An (R,R)-bilinear map

ϕ : B ⊗R A→ A⊗R B,

allows for the definition of a product on A⊗R B,

mϕ : A⊗B ⊗A⊗B IA⊗ϕ⊗IB // A⊗A⊗B ⊗B mA⊗mB // A⊗B,

that is, mϕ = (mA ⊗mB) ◦ (IA ⊗ ϕ⊗ IB). For computational reasons we write

ϕ(b⊗ a) =
∑

aϕ ⊗ bϕ =
∑

r
ar ⊗ br,

and thus for a, c ∈ A, b, d ∈ B,

(a⊗ b) ·ϕ(c⊗ d) =: mϕ(a⊗ b, c⊗ d) =
∑

acϕ ⊗ bϕd.

If (A⊗R B,mAB, 1A ⊗ 1B) is a unital associative R-ring, it is called a smash product
of A and B and we denote it by A⊗ϕB. For this certain properties of ϕ are required:
The conditions

1A ⊗ b = (1A ⊗ b) ·ϕ(1A ⊗ 1B) = ϕ(b⊗ 1A), (7.1)

a⊗ 1B = (a⊗ 1B) ·ϕ(1A ⊗ 1B) = ϕ(1B ⊗ a), (7.2)

are called normality conditions. Applying these the associativity conditions

(1A ⊗ b) ·ϕ((a⊗ 1B) ·ϕ(c⊗ 1B)) = ((1A ⊗ b) ·ϕ(a⊗ 1B)) ·ϕ(c⊗ 1B), (7.3)

((1A ⊗ b) ·ϕ(1A ⊗ d)) ·ϕ(a⊗ 1B) = (1A ⊗ b) ·ϕ((1A ⊗ d) ·ϕ(a⊗ 1B)), (7.4)

can be written as

ϕ(b⊗ ac) = (mA ⊗ I)(I ⊗ ϕ)(ϕ(b⊗ a)⊗ c), (7.5)

ϕ(bd⊗ a) = (I ⊗mB)(ϕ⊗ I)(b⊗ ϕ(d, a)). (7.6)

On the other hand, multiplying (7.3) by 1A⊗d from the right shows that c⊗d associates
with the two other elements in (7.3). Continuing with similar arguments one can show
that the normality conditions together with 7.3 and 7.4 imply associativity of mϕ.
Expressing these conditions by commutativity of diagrams we have shown:

7.3. Algebra entwinings. Consider R-rings A, B. For an (R,R)-bilinear map
ϕ : B ⊗R A→ A⊗R B, the following are equivalent:
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(a) (A⊗R B,mϕ, 1A ⊗ 1B) is an associative unital R-ring;

(b) A⊗R − induces a monad Â⊗R− : BM→ BM, by

B ⊗M %−→M 7−→ B ⊗A⊗M ϕ⊗IM−−−−→ A⊗B ⊗M IA⊗%−−−→ A⊗M ;

(c) A⊗ϕB ⊗B − : BM→ BM is a monad with commutative diagram

BM
A⊗ϕB⊗B− //

UB
��

BM

UB
��

RM
A⊗R− //

RM,

where UB is the forgetful functor;

(d) ϕ induces functors Â⊗R− and B̃⊗R− with commutative diagrams

BM
Â⊗R− //

UB
��

BM

UB
��

RM
A⊗R− //

RM,

RM
B⊗R− //

φA
��

RM

φA
��

AM̃
B̃⊗R− //

AM̃

where UB is the forgetful and φA the free functor and AM̃ is the Kleisli category;

(e) ϕ induces commutativity of the diagrams

B ⊗B ⊗A mB⊗IA //

IB⊗ϕ
��

B ⊗A
ϕ

��
B ⊗A⊗B ϕ⊗IB // A⊗B ⊗B IA⊗mB// A⊗B,

A
ιB⊗IA //

IA⊗ιB ##

B ⊗A
ϕ

��
A⊗B,

(7.7)

B ⊗A⊗A IB⊗mA //

ϕ⊗IA
��

B ⊗A
ϕ

��
A⊗B ⊗A IA⊗ϕ // A⊗A⊗BmA⊗IB// A⊗B,

B
IB⊗ιA //

ιA⊗IB ##

B ⊗A
ϕ

��
A⊗B.

(7.8)

If these conditions ares satisfied, we call ϕ - more precisely (A,B)ϕ - an algebra
entwining.

Proof. (a)⇔(e) follows from the considerations in 7.2.

(e)⇒(b) Consider a B-module % : B ⊗R M → M . To show associativity of the
B-action on A⊗RM , we need commutativity of the diagram

B ⊗B ⊗A⊗M IB⊗ϕ⊗IM //

mB⊗IA⊗IM

��

B ⊗A⊗B ⊗M
ϕ⊗IB⊗IM

��

IB⊗IA⊗% // B ⊗A⊗M
ϕ⊗IM
��

A⊗B ⊗B ⊗M IA⊗IB⊗% //

IA⊗mB⊗IM
��

A⊗B ⊗M
IA⊗%
��

B ⊗A⊗M ϕ⊗IM // A⊗B ⊗M IA⊗% // A⊗M.



7. Tensor product of algebras 43

Indeed, the left hand rectangle is commutative by commutativity of the rectangle in
(7.7), the right upper rectangle is commutative by functoriality of the tensor product,
and the right lower diagram is commutative since % is a B-homomorphism.

The triangle in (7.7) implies commutativity of the upper triangle in the diagram

A⊗M ιB⊗IA⊗IM //

IA⊗ιB⊗IM

))
=

��

B ⊗A⊗M

ϕ⊗IM
��

A⊗M A⊗B ⊗M,
IA⊗%

oo

while the lower triangle is commutative by unitality of the B-module M . This shows
unitality of the A⊗RM as B-module.

Any B-module morphism f : M → N is transferred to IA⊗f : A⊗RM → A⊗RN
and to show that this is a B-module morphisms we need commutativity of the diagram

B ⊗A⊗M IB⊗IA⊗f //

ϕ⊗IM
��

B ⊗A⊗N
ϕ⊗IN
��

A⊗B ⊗M IA⊗IB⊗f //

IA⊗%M
��

A⊗B ⊗N

IA⊗%N
��

A⊗M IA⊗f // A⊗N,

which is obvious since the lower rectangle is commutative since f is a morphism in

BM and the upper rectangle is commutative by functoriality of the tensor product.

To show that Â⊗r− is a monad on BM, we need that mA⊗RM : A⊗R A⊗M →
A⊗M and ιA : R⊗RM → A⊗RM give morphisms in BM for any % : B⊗RM →M
in BM. The first condition follows from the diagram

B ⊗A⊗A⊗M ϕ⊗I⊗I//

IB⊗mA⊗IM
��

A⊗B ⊗A⊗M I⊗ϕ⊗I// A⊗A⊗B ⊗M

mA⊗IB⊗IM
��

I⊗I⊗%// A⊗A⊗M

mA⊗IM
��

B ⊗A⊗M ϕ⊗IM // A⊗B ⊗M IA⊗% // A⊗M,

in which the left rectangle is commutative by commutativity of the rectangle in (7.8)
and the right square is commutative by naturality of mA ⊗−.

For the condition on ιA, consider the diagram

B ⊗M IB⊗ιA⊗IM //

%

��

ιA⊗IB⊗IM ))

B ⊗A⊗M
ϕ⊗IM
��

A⊗B ⊗M

IA⊗%
��

M
ιA⊗IM // A⊗M,
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in which the triangle is commutative by the commutative triangle in (7.8) and the
trapezium is commutative by naturality of ιA ⊗R −. This shows that ιA ⊗R − is a
natural transformation of endofunctors of BM.

(e)⇒(d) To define the functor M̃⊗R− : M̃→ M̃, recall that the bijection HomA(A⊗
X,A⊗ Y )→ HomR(X,A⊗ Y ).

Thus to describe the functor it is enough to explain its action on g ∈ HomR(X,A⊗
Y ). This is sent to

B ⊗R X
IB⊗g−−−→ B ⊗R A⊗R X

ϕ⊗IX−−−−→ A⊗R B ⊗R X.

It follows from the rectangle in (7.8) that this definition defines a functor. The triangle
in (7.8) leads for f : X → Y in RM to commutativity of the diagram

B ⊗X IB⊗ηA⊗X //

ηA⊗IB ))

B ⊗A⊗X IB⊗IA⊗f //

ϕ⊗IX
��

B ⊗A⊗ Y
ϕ⊗IY
��

A⊗B ⊗X IA⊗IB⊗f // A⊗B ⊗ Y

which shows commutativity of the right diagram in (d). The proof is now complete.
tu

So far we did not give any example for an ϕ : B⊗RA→ A⊗RB with the properties
required above. We mention two

7.4. Examples.

(1) For any ring R and R-ring A, the map

ϕ : A⊗R A→ A⊗R A, a⊗ b 7→ ab⊗ 1A + 1A ⊗ ab− a⊗ b, (7.9)

is an algebra entwining (thus making A⊗R A an associative ring).

(2) For commutative rings R and R-algebras A, B, the canonical twist map is an
algebra entwining. This gives the product usually considered on A⊗R B.

7.5. (A,B)ϕ-modules. For an algebra entwining (A,B)ϕ, ϕ-bimodules are defined
as R-modules M which are both A-modules ν : A⊗RM →M as well and B-modules
% : B ⊗RM →M implying commutativity of the diagram

B ⊗A⊗M ϕ⊗IM //

IB⊗ν
��

A⊗B ⊗M
IA⊗%
��

B ⊗M % //M A⊗Mνoo

(7.10)

For elements a ∈ A, b ∈ B and m ∈M this conditions reads b(am) =
∑
aϕ(bϕm).

Morphisms between ϕ-bimodules are R-linear maps which are A-module and B-
module morphisms and we denote the resulting category by A,BM(ϕ).

The following categories are isomorphic for an algebra entwining (A,B)ϕ:

(a) A,BM(ϕ) - the category of ϕ-bimodules;
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(b) (BM)
Â⊗R−

- the category of Â⊗R-modules over BM;

(c) A⊗ϕBM - the category of left A⊗ϕ B-modules.

Proof. (c)⇒(b) By the normality conditions, the maps

IA ⊗ ιB : A→ A⊗ϕ B, ιA ⊗ IB : B → A⊗ϕ B

are algebra morphisms and thus every A ⊗ϕ B-module has a canonical A-module
and B-module structure. Any A ⊗ϕ B-module γ : A ⊗ϕ B ⊗R M → M leads to a
commutative diagram

B ⊗M ιA⊗IB⊗IA//

%

))

A⊗ϕ B ⊗M
γ

��

A⊗MIA⊗ιBIMoo

ν

uu
M ,

where % and ν are defined as the corresponding compositions. It is straightforward to
verify that these maps satisfy the condition (7.10). tu

7.6. Yang-Baxter equation. Let A, B, C be R-modules with linear maps

ϕBA : B ⊗R A→ A⊗R B, ϕCB : C ⊗R B → B ⊗R C, ϕCA : C ⊗R A→ A⊗R C.

The triple (ϕBA, ϕCB, ϕCA) is said to satisfy the Yang-Baxter equation if it induces
commutativity of the diagram

C ⊗B ⊗A
IC⊗ϕBA

��

ϕCB⊗IA // B ⊗ C ⊗A IB⊗ϕCA // B ⊗A⊗ C
ϕBA⊗IC
��

C ⊗A⊗B ϕCA⊗IB // A⊗ C ⊗B IA⊗ϕCB // A⊗B ⊗ C.

7.7. Tensor product of three algebras. Let (A,mA, ιA), (B,mB, ιB) and (C,mC , ιC)
be R-algebras with algebra entwinings

ϕBA : B ⊗R A→ A⊗R B, ϕCB : C ⊗R B → B ⊗R C, ϕCA : C ⊗R A→ A⊗R C.

The following statements are equivalent:

(a) (ϕBA, ϕCB, ϕCA) satisfies the Yang-Baxter equation;

(b) A⊗ϕBA B ⊗− lifts to a monad ̂A⊗ϕBA B⊗− : MC →MC ;

(c) A⊗R B ⊗R C has a ring structure with product

(mA ⊗mB ⊗mC) ◦ (IA ⊗ ϕBA ⊗ ϕCB ⊗ IC) ◦ (IA ⊗ IB ⊗ ϕCA ⊗ IB ⊗ IC)

and unit ιA ⊗ ιB ⊗ ιC ;

(d) (IA ⊗ ϕCB) ◦ (ϕCA ⊗ IB) : C ⊗R A ⊗ϕBA B → A ⊗ϕBA B ⊗R C is an algebra
entwining.
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Proof. (a)⇒(b) The algebra entwinings ϕCA and ϕCB give rise to monads Â⊗−
and B̂⊗− on MC . By the Yang-Baxter condition, every C-module % : C ⊗RM →M
leads to the commutative diagram

C ⊗B ⊗A⊗M
IC⊗ϕBA⊗IM

��

ϕCB⊗IA⊗IM // B ⊗ C ⊗A⊗M IB⊗ϕCA⊗IM // B ⊗A⊗ C ⊗M
ϕBA⊗IC⊗IM
��

IB⊗IA⊗%// B ⊗A⊗M
ϕBA⊗IM
��

C ⊗A⊗B ⊗M ϕCA⊗IB⊗IM // A⊗ C ⊗B ⊗M IA⊗ϕCB⊗IM // A⊗B ⊗ C ⊗MIA⊗IB⊗%// A⊗B ⊗M.

(a)⇒(d) The normality conditions on ϕCA and ϕCB yield the commutative dia-
grams

A⊗B ιC⊗IA⊗IB //

IA⊗ιC⊗IB

))

IA⊗IB⊗ιC

##

C ⊗A⊗B
ϕCA⊗IB
��

A⊗ C ⊗B

IA⊗ϕCB
��

A⊗B ⊗ C,

C
IC⊗ιA⊗ιB//

ιA⊗IC⊗ιB

((

IA⊗IB⊗ιC

""

C ⊗A⊗B
ϕCA⊗IB
��

A⊗ C ⊗B

IA⊗ϕCB
��

A⊗B ⊗ C,

which show normality for the entwining under consideration.
The commutativity of the rectangle in (7.7) follows from the diagram (where ob-

vious identity transformations are deleted)

C ⊗ C ⊗A⊗B
ϕCA

��

mC // C ⊗A⊗B ϕCA // A⊗ C ⊗B
ϕCB
��

C ⊗A⊗ C ⊗B
ϕCB

��

ϕCA // A⊗ C ⊗ C ⊗B
ϕCB

��

mC
55

A⊗B ⊗ C

C ⊗A⊗B ⊗ C ϕCA // A⊗ C ⊗B ⊗ C ϕCB // A⊗B ⊗ C ⊗ C,

mC

OO

where the pentagons are commutative by the properties of ϕCA and ϕCB, respectively,
and the square is commutative by naturality.

To prove commutativity of the rectangle in (7.8), consider the diagram

C ⊗A⊗B ⊗A⊗B ϕBA //

ϕCA
��

C ⊗A⊗A⊗B ⊗B
ϕCA

��

mA //

(1)

C ⊗A⊗B ⊗B
ϕCA

��

mB // C ⊗A⊗B
ϕCA

��
A⊗ C ⊗B ⊗A⊗B ϕBA //

ϕCB
��

(2)

A⊗ C ⊗A⊗B ⊗B
ϕCA

��

A⊗ C ⊗B ⊗B mB //

ϕCB
��

(3)

A⊗ C ⊗B
ϕCB
��

A⊗B ⊗ C ⊗A⊗B
ϕCA

��

A⊗A⊗ C ⊗B ⊗B

mA
44

ϕCB
��

A⊗B ⊗ C ⊗B
ϕCB

**

A⊗B ⊗ C

A⊗B ⊗A⊗ C ⊗B ϕBA //

ϕCB **

A⊗A⊗B ⊗ C ⊗B
mA

44

ϕCB

,,

A⊗B ⊗B ⊗ C

mB

OO

A⊗B ⊗A⊗B ⊗ C ϕBA
// A⊗A⊗B ⊗B ⊗ C,

mA

OO
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in which (1) and (3) are commutative since ϕCA and ϕCB are algebra entwinings. (2)
is commutative because of the Yang-Baxter equation, and the other inner diagrams
are commutative because of naturality of the transformations involved. The outer
morphisms yield the rectangle in (7.8) for the entwining between A⊗ϕBA B and C.

(d)⇒(a) Assume (d) holds. Then the diagram for (7.8) in the preceding proof has
to be commutative. Entering the diagram with the map

IC ⊗ ιA ⊗ IB ⊗ IA ⊗ ιB : C ⊗R B ⊗R A→ C ⊗R A⊗R B ⊗R A⊗R B,

a short argument shows that the Yang-Baxter equation is satisfied.
The remaining conclusions are left to the reader. tu
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8 Tensor product of coalgebras

Similar as for algebras we may also consider coalgebra structures on the tensor product
of two coalgebras. We will assume R to be a commutative ring.

8.1. Tensor product of coalgebras. GivenR-coalgebras (C,∆C , εC) and (D,∆D, εD),
the tensor product C ⊗R D is again an R-module and an R-linear map

ω : C ⊗R D → D ⊗R C, c⊗ d 7→ ω(c⊗ d) =:
∑

dω ⊗ cω,

induces a coproduct on C ⊗R D by

∆ω : C ⊗D ∆C⊗∆D // C ⊗ C ⊗ C ⊗ C IC⊗ω⊗ID // C ⊗D ⊗ C ⊗D ,

that is ∆ω = (IC ⊗ ω ⊗ ID)(∆C ⊗∆D), and for c ∈ C, d ∈ D,

∆ω(c⊗ d) =
∑∑

c1 ⊗ d1
ω ⊗ c2

ω ⊗ d2.

To make (C ⊗R D,∆ω, εω) a coassociative coalgebra with counit

εω = εC ⊗ εD : C ⊗R D → R,

we have the conormality condition

(ID ⊗ εC)ω(c⊗ d) = εC(c)d, (εD ⊗ IC)ω(c⊗ d) = εD(d)c. (8.1)

By definition, right counitality of εω requires (IC⊗RD ⊗ εω) ◦∆ω = IC⊗RD, that is,

c⊗ d =
∑

c1 ⊗ (ID ⊗ εC)ω(c2 ⊗ d1)εD(d2) =
∑

c1 ⊗ (ID ⊗ εC)ω(c2 ⊗ d).

Applying εC ⊗ ID, we obtain the first equality for ω in (8.1). Similarly, from the
identity (εω ⊗ IC⊗RD) ◦∆ω = IC⊗RD, the second equality in (8.1) is derived.

Coassociativity of ∆ω means commutativity of the diagram

C ⊗ C ⊗D ⊗D I⊗ω⊗I// C ⊗D ⊗ C ⊗D I⊗I⊗∆⊗∆// C ⊗D ⊗ C ⊗ C ⊗D ⊗D

I⊗I⊗I⊗ω⊗I
��

C ⊗D

∆C⊗∆D

OO

∆C⊗∆D

��

(∗) C ⊗D ⊗ C ⊗D ⊗ C ⊗D

C ⊗ C ⊗D ⊗D I⊗ω⊗I // C ⊗D ⊗ C ⊗D∆⊗∆⊗I⊗I// C ⊗ C ⊗D ⊗D ⊗ C ⊗D ,

I⊗ω⊗I⊗I⊗I

OO

Applying the map εC ⊗ ID ⊗ IC ⊗ ID ⊗ IC ⊗ εD to the last module in the diagram
(∗) this reduces to the commutative diagram

C ⊗D ⊗D ω⊗I // D ⊗ C ⊗D I⊗∆C⊗I// D ⊗ C ⊗ C ⊗D

I⊗I⊗ω
��

C ⊗D

I⊗∆D

OO

∆C⊗I
��

(∗∗) D ⊗ C ⊗D ⊗ C

C ⊗ C ⊗D I⊗ω // C ⊗D ⊗ C I⊗∆D⊗I// C ⊗D ⊗D ⊗ C ,

ω⊗I⊗I

OO
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Applying ID ⊗ εC ⊗ ID ⊗ IC and ID ⊗ IC ⊗ εD ⊗ IC to the last module in the
diagram (∗∗) and using conormality, the conditions reduce to the rectangular dia-
grams in subsequent statement. The commutativity of the triangles corresponds to
the conormality conditions in (8.1).

8.2. Coalgebra entwinings. For R-coalgebras C, D and a linear map ω : C⊗RD →
D ⊗R C, the following are equivalent:

(a) (C ⊗R D,∆ω, εω) is a counital coalgebra;

(b) C ⊗R − induces a comonad Ĉ⊗R− : DM→ DM by

N
%N−−→ D ⊗N 7→ C ⊗N IC⊗%N−−−−→ C ⊗D ⊗N ω⊗IN−−−−→ D ⊗ C ⊗N ;

(c) ω induces commutativity of the diagrams

C ⊗D
ω

��

IC⊗∆D// C ⊗D ⊗D ω⊗ID // D ⊗ C ⊗D

ID⊗ω
��

D ⊗ C ∆D⊗IC // D ⊗D ⊗ C,

C ⊗D IC⊗εD//

ω
��

C

D ⊗ C
εD⊗IC

;;

,

C ⊗D
ω

��

∆C⊗ID// C ⊗ C ⊗D IC⊗ω // C ⊗D ⊗ C

ω⊗IC
��

D ⊗ C ID⊗∆C // D ⊗ C ⊗ C,

C ⊗D εC⊗ID//

ω
��

D

D ⊗ C
ID⊗εC

;;

.

Proof. (a)⇒(c) was shown above.
(c)⇒(a) To show this it is helpful to write out the formulas explicitely (e.g. [15,

2.14]).
(c)⇒(b) The proof is similar to the proof of 7.3, (c)⇒(b). tu

In the above proposition we have shown how the tensor product of coalgebras can
be made to a coalgebra. Given a coalgebra D, one may ask which (more general)
conditions on C still allow for a coalgebra structure for C ⊗R D, that is, the functor
C ⊗R − can be lifted to a comonad Ĉ⊗R− : DM→ DM.

We observe that in the diagrams of 8.2 we find the maps

δ := ∆C ⊗ ID : C ⊗R D → C ⊗R C ⊗R D and ζ := εC ⊗ ID : C ⊗R D → D

with (ζ ⊗ ID) ◦ δ = IC⊗D. These maps are sufficient to define a coproduct on C ⊗RD
and we have to find out which conditions are needed to yield a coassociative and
counital coalgebra.

8.3. Proposition. Let (D,∆D, εD) be a coalgebra and C an R-module with maps
δ : C ⊗R D → C ⊗R C ⊗R D, ζ : C ⊗R D → D, and ω : C ⊗R D → D ⊗R C. These
lead to the map

∆CD : C ⊗D δ // C ⊗ C ⊗D I⊗I⊗∆D// C ⊗ C ⊗D ⊗D I⊗ω⊗I// C ⊗D ⊗ C ⊗D.

Then the following are equivalent:



50 8. Tensor product of coalgebras

(a) (C ⊗R D,∆CD, εD ◦ ζ) is a counital coalgebra;

(b) (C,D)ω is a cowreath.

Proof. Left to the reader. tu

8.4. Tensor product of three coalgebras. Let (C,∆C , εC), (D,∆D, εD) and
(E,∆E , εE) be R-coalgebras with coalgebra entwinings

ωCD : C ⊗R D → D ⊗R C, ωCE : C ⊗R E → E ⊗R C, ωDE : D ⊗R E → E ⊗R D.

The following statements are equivalent:

(a) (ωCD, ωCE , ωDE) satisfies the Yang-Baxter equation;

(b) C ⊗ωCD D ⊗− lifts to a comonad ̂C ⊗ωCD D⊗− : ME →ME;

(c) C ⊗R D ⊗R E has a coalgebra structure with coproduct

(IC ⊗ ID ⊗ ωCE ⊗ ID ⊗ IE ◦ (IC ⊗ ωCD ⊗ ωDE ⊗ IE) ◦ (∆C ⊗∆D ⊗∆E)

and counit εC ⊗ εD ⊗ εE.

(d) (IC ⊗ ωCE) ◦ (ωCD ⊗ IE) : C ⊗R (D ⊗R E) → (D ⊗R E) ⊗R C is a coalgebra
entwining.

Proof. Left to the reader. tu
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9 Entwining algebras and coalgebras

Having investigated tensor products of two algebras and two coalgebras, respectively,
the question arises which structures can be expected when algebras are tensored with
coalgebras.

9.1. Tensor product of algebras and coalgebras. Let (A,mA, ιA) be an R-
algebra and (C,∆C , εC) an R-coalgebra. An R-linear map

ψ : A⊗R C → C ⊗R A

is called a mixed entwining provided it induces commutativity of the diagrams

A⊗A⊗ C mA⊗IC //

IA⊗ψ
��

A⊗ C

ψ
��

A⊗ C ⊗A ψ⊗IA // C ⊗A⊗A IC⊗mA// C ⊗A ,

C
ιA⊗IC//

IC⊗ιA ##

A⊗ C

ψ
��

C ⊗A,

(9.1)

A⊗ C
ψ

��

IA⊗∆C// A⊗ C ⊗ C ψ⊗IC // C ⊗A⊗ C

IC⊗ψ
��

C ⊗A
∆C⊗IA

// C ⊗ C ⊗A,

A⊗ C
ψ
��

IA⊗εC// A

C ⊗A
εC⊗IA

;;

.

(9.2)

The triple (A,C)ψ is called an entwining structure (over R), the map ψ is known
as an entwining map, and we say that C and A are entwined by ψ.

9.2. Notation. To describe elements we write

ψ(a⊗ c) =
∑

cψ ⊗ aψ =
∑

α
cα ⊗ aα,

or use other summation indices if necessary. This leads to formulas like

(IA ⊗ ψ) ◦ (ψ ⊗ IA)(a⊗ c⊗ d) =
∑

α,β
cα ⊗ dβ ⊗ aαβ,

for all a ∈ A, c, d ∈ C. Thus the conditions on entwinings take the form

rectangle in (9.1):
∑

α c
α ⊗ (ab)αc

α =
∑

α,β c
αβ ⊗ aβbα,

rectangle in (9.2) :
∑

α c
α

1 ⊗ cα2 ⊗ aα =
∑

α,β c1
α ⊗ c2

β ⊗ aαβ.

The entwining defined should be called more precisely a left-left entwining. One
can define right-left, left-right and left-left entwining structures by replacing the pair
(C,A) with the pairs (Ccop, A), (C,Aop) and (Ccop, Aop), respectively, in the diagrams
(9.1), (9.2). These combinations lead to equivalent theories hence we mainly concen-
trate on left-left entwining structures.

9.3. Entwined modules. Associated to any entwining structure (C,A)ψ is the
category of (C,A)ψ-entwined modules denoted by C

AM(ψ). An object M ∈ C
AM(ψ) is a
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left A-module %M : A⊗RM →M and a left C-comodule %M : M → C⊗RM inducing
a commutative diagram

A⊗M %M //

IA⊗%M
��

M
%M // C ⊗M

A⊗ C ⊗M ψ⊗IM // C ⊗A⊗M.

IC⊗%M

OO

A morphism in C
AM(ψ) is a left A-module map that is at the same time a left C-

comodule map.

9.4. Entwining structures. Let (A,mA, ιA) be an R-algebra and (C,∆C , εC) a
coalgebra. For an R-linear map ψ : A⊗R C → C ⊗R A the following are equivalent:

(a) ψ is an entwining;

(b) A⊗R − induces a monad Â⊗R− : CM→ CM by

N
%N−−→ C ⊗N 7→ A⊗N %N⊗IA−−−−→ A⊗ C ⊗N ψ⊗IN−−−−→ A⊗N ;

(c) C ⊗R − induces a comonad on Ĉ⊗R− : AM→ AM by

A⊗M %M−−→M 7→ A⊗ C ⊗M ψ⊗IM−−−−→ C ⊗A⊗M IC⊗%M−−−−−→ C ⊗M.

If this conditions are satisfied we have equivalent categories

(AM)Ĉ⊗− ' (CM)
Â⊗− '

C
AM(ψ).

Proof. E.g., see [59, 5.4]. tu

We have studied when the tensor product of two algebras yields an algebra and
also when the tensor product of two coalgebras yields a coalgebra. The tensor product
of an algebra and a coalgebra leads to a new structure.

9.5. Corings. Let A be a ring. An (A,A)-bimodule C is called an A-coring if it is a
coalgebra in the category AMA of (A,A)-bimodules, that is, there are (A,A)-bilinear
maps

∆ : C → C ⊗A C and ε : C → A,

called (coassociative) coproduct and counit, with the properties

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆, and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆,

expressed by commutativity of the diagrams

C
∆ //

∆

��

C ⊗A C

IC⊗∆

��
C ⊗A C

∆⊗IC// C ⊗A C ⊗A C ,

C
∆ //

IC

%%
∆

��

C ⊗A C
ε⊗IC
��

C ⊗A C
IC⊗ε // C .
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For any A-coring C, induces a comonad C ⊗A − : AM → AM and the C ⊗A −-
modules are called left C-comodules; they are left A-modules M , with a coassociative
and counital left C-coaction, that is, an A-linear map M% : M → C ⊗AM for which

(∆⊗ IM ) ◦M% = (IC ⊗M%) ◦M%, (ε⊗ IM ) ◦M% = IM .

Left C-comodules and their morphisms form a preadditive category CM = MC⊗A−.
The free functor C ⊗A − : AM → CM is right adjoint to the forgetful functor

UC : CM→ AM.

9.6. Corings associated to entwining structures. View C ⊗R A as a right A-
module with multiplication (c⊗ a′)a = c⊗ a′a, for all a, a′ ∈ A, c ∈ C. Then:

(1) For an entwining structure (C,A)ψ, C = C ⊗RA is an (A,A)-bimodule with left
multiplication a(c ⊗ a′) = ψ(a ⊗ c)a′, and it is an A-coring with the coproduct
and counit

∆ := ∆⊗ IA : C → C ⊗R C ⊗R A ' C ⊗A C, εC := ε⊗ IA : C → A.

(2) If C = C⊗RA is an A-coring with coproduct ∆ = ∆⊗IA and counit εC = ε⊗IA,
then (C,A)ψ is an entwining structure by

ψ : A⊗R C → C ⊗R A, a⊗ c 7→ a(c⊗ 1).

(3) If C = C⊗RA is the A-coring associated to (C,A)ψ as in (1), then the category
of (C,A)ψ-entwined modules is isomorphic to the category of left C-comodules.

9.7. Entwining two algebras with a coalgebra. Let (A,mA, ιA), (B,mB, ιB) be
an R-algebras and (C,∆C , εC) an R-coalgebra with an algebra entwining ϕBA : B ⊗R
A→ A⊗RB and mixed entwinings ψAC : A⊗RC → C⊗RA, ψBC : B⊗RC → C⊗RB.
Then the following are equivalent:

(a) (ϕBA, ψBC , ψAC) satisfy the Yang-Baxter condition;

(b) (ψAC⊗IB)◦(IA⊗ψBC) : A⊗ϕBAB⊗RC → C⊗RA⊗ϕBAB is a mixed entwining;

(c) A⊗R B ⊗R C is an A⊗ϕBA B-coring.

Proof. (a)⇒(b) To prove commutativity of the rectangle in (9.1), consider the
diagram

A⊗B ⊗A⊗B ⊗ C ϕBA //

ψBC
��

A⊗A⊗B ⊗B ⊗ C
ψBC

��

mB //

(1)

A⊗A⊗B ⊗ C
ψBC

��

mA // A⊗B ⊗ C
ψBC

��
A⊗B ⊗A⊗ C ⊗B ϕBA //

ψBC
��

(2)

A⊗A⊗B ⊗ C ⊗B
ψBC

��

A⊗A⊗ C ⊗B mA //

ψAC
��

(3)

A⊗ C ⊗B
ψAC
��

A⊗B ⊗ C ⊗A⊗B
ψBC

��

A⊗A⊗ C ⊗B ⊗B

mB
44

ϕCB
��

A⊗ C ⊗A⊗B
ψAC

**

C ⊗A⊗B

A⊗ C ⊗B ⊗A⊗B ϕBA //

ψAC **

A⊗ C ⊗A⊗B ⊗B
mB

44

ψAC

,,

C ⊗A⊗A⊗B

mA

OO

C ⊗A⊗B ⊗A⊗B ϕBA
// C ⊗A⊗A⊗B ⊗B,

mB

OO
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in which (1) and (3) are commutative because ψAC and ψBC are mixed entwinings; (2)
is commutative because of the Yang-Baxter equation, and the other inner diagrams
are commutative because of naturality of the transformations involved. The outer
morphisms yield the rectangle in (9.1) for the mixed entwining between A⊗ϕBAB and
C.

The triangle in (9.1) requires commutativity of the outer triangle in

C
ιA⊗ιB⊗IC //

IA⊗ιB⊗IC

((

IC⊗ιB⊗ιB

""

A⊗B ⊗ C
ψBC
��

A⊗ C ⊗B
ψAC
��

C ⊗A⊗B.

It follows from the commutativity of the inner triangles.
For commutativity of the rectangle in (9.2) consider the diagram

A⊗B ⊗ CI⊗I⊗∆C//

ψBC
��

A⊗B ⊗ C ⊗ C ψBC // A⊗ C ⊗B ⊗ C ψAC //

ψBC
��

C ⊗A⊗B ⊗ C
ψBC

��
A⊗ C ⊗B IA⊗∆C⊗IB //

ψAC
��

A⊗ C ⊗ C ⊗B ψAC // C ⊗A⊗ C ⊗B
ψAC
��

C ⊗A⊗B ∆C⊗IA⊗IB // C ⊗ C ⊗A⊗B.

The inner rectangles are commutative since ψAC and ψBC are mixed entwinings and
the inner square is commutative by naturality.

Commutativity of the triangle in (9.2) follows from the diagram

A⊗B ⊗ C I⊗I⊗εC //

ψBC
��

A⊗B

A⊗ C ⊗B

I⊗εC⊗I
55

ψAC
��

C ⊗A⊗B,

εC⊗I⊗I

;;

in which the inner triangles are commutative by the conditions on ψAC and ψBC . tu
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10 Relations between functors

To study the relationship between various module categories, the following definition
is of interest. It was formulated in Johnstone [29] for monads but we also consider it
for arbitrary endofunctors.

10.1. Lifting for monads. Let F = (F, µF, ηF ) and G = (G,µG, ηG) be monads
on the categories A and B, respectively, and let T : A → B be a functor. A functor
T : AF → BG, is called a lifting of T provided the diagram

AF
T //

UF
��

BG
UG
��

A T // B,

is commutative, where the U ’s denote the forgetful functors.

Liftings are obtained by certain natural transformations between the functors in-
volved.

10.2. Theorem. (Applegate) Let F = (F, µF , ηF ) and G = (G,µG, ηG) be monads
on the categories A and B, respectively, and let T : A→ B be any functor.

The liftings T : AF → BG of T are in bijective correspondence with the natural
transformations λ : GT → TF inducing commutative diagrams

GGT
µGT //

Gλ
��

GT

λ
��

GTF
λF // TFF

TµF // TF,

T
ηGT //

TηF !!

GT

λ
��

TF.

The correspondence associates to any λ : GT → TF the functor

T λ : AF → BG, F (A)
%A−→ A 7→ GT (A)

λA−→ TF (A)
T (%A)−→ T (A)

A
f−→ A′ 7→ T (A)

T (f)−→ T (A′),

Proof. By the condition UG ◦ T = T ◦ UF , any lifting functor T must act on
objects A ∈ AF like T , that is, T (A) = T (A).

Any natural transformation λ : GT → TF assigns to an F -module ρA : F (A)→ A
a G-action on T (A),

GT (A)
λA // TF (A)

TρA // T (A).

To make T (A) a G-module, associativity of the G-action implies for A = T (X), X ∈ A,
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commutativity of the inner rectangle in the diagram

GGT
Gλ //

µGT

��

GGTηF

%%

GTF

GTFηF
��

=

%%
GGTF

GλF //

µGTF

��

GTFF
GTµF

// GTF

λF
��

TFF

TµF
��

GT
GTηF //

λ
**

GTF
λF // TFF

TµF // TF

TF

TFηF

OO

=

99

The inner diagrams are commutative by functoriality of composition and hence the
outer diagram yields the commutative diagram

GGT
Gλ //

µGT
��

GTF
λF // TFF

TµF
��

GT
λ // TF.

For the relation between λ and the units of F and G, consider the diagram

T
ηGT //

TηF
��

GT
λ //

GTηF
��

TF

TFηF
��

=

##
TF

ηGTF
// GTF

λF
// TFF

TµF
// TF,

in which the inner rectangles are obviously commutative. The unitality condition for
the module structure on TF implies that the composition of the maps in the bottom
line yields the identity and hence we obtain the commutative triangle required in our
statement.

To show that our conditions imply a G-module structure on TF , consider the
diagram

GGTF
GλF //

µGTF

��

GTFF
GTµF//

(1)

(2)
λFF

��

GTF

λF
��

TFFF
TFµF//

TµFF
��

(3)

TFF

TµF
��

GTF
λF

// TFF
TµF // TF,

in which diagram (1) is commutative since it is just the given diagram (applied to
F ), (2) is commutative by functoriality of composition, and (3) is commutative by
associativity of µF . Thus the outer diagram is commutative, showing the associativity
of the G-action.
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Now assume that a lifting is given, that is, TF is a G-module with structure map
β : GTF → TF ; we show that the map

λ : GT
GTηF// GTF

β // TF

has the properties observed under the lifting condition. In the commutative diagram

T
TηF //

ηGT
��

TF
=

##
GT

GTηF
// GTF

β // TF,

the bottom line yields the identity by unitality and hence TηF = λ ◦ ηGT .
The lifting functor has to transfer the morphism µF : FF → F in AF into a

morphism in AG, that is commutativity of the diagram

GTFF
GTµF //

βF
��

GTF

β
��

FTF
TµF // TF.

(10.1)

The remaining condition on λ is commutativity of the outer part of the diagram

GGT

µGT

��

GGTηF// GGTF
Gβ //

µGTF

��

GTF
GTηFF//

=

��

GTFF
βF

$$GTµFzz
GTF

β

$$

(1) TFF

TµFzz
GT

GTηF // GTF
β // TF.

This follows since the inner diagrams are commutative: the left rectangle by naturality,
the middle diagram since β is a G-morphism, and the right trapezium is just (10.1).
tu

10.3. Lifting of a tensor product to modules. The above proposition can be
applied to characterise monads (S, µ, η) on a monoidal category (C,⊗, E) (see [33])
for which the monoidal structure from C lifts to the category CS of S-modules. The
situation is described by the diagram

CS × CS
−⊗− //

US×US
��

CS
US
��

C × C −⊗− // C,

By 10.2(1), for the existence of some −⊗− making the diagram commute one needs
a natural transformation

λ : S(X ⊗ Y )→ S(X)⊗ S(Y )
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yielding commutative diagrams

SS(X ⊗ Y )
µX⊗Y //

Sλ
��

S(X ⊗ Y )

λ
��

S(S(X)⊗ S(Y ))
λS // SS(X)⊗ SS(Y )

µX⊗µY// S(X)⊗ S(Y ),

X ⊗ Y
ηX⊗Y //

ηX⊗ηY ''

S(X ⊗ Y )

λ
��

S(X)⊗ S(Y ).

This corresponds to the first three diagrams in [39, Section 7].

To make CS a unital tensor category one has to require that E is an S-module
for some morphism S(E) → E in C and that the coherence conditions are respected
(diagrams (4) to (7) in [39, Section 7]). Such monads are called Hopf monads in
Moerdijk [39] (see introduction).

10.4. Lifting for comonads. Let F = (F, δF , εF ) and G = (G, δG, εG) be comonads
on the categories A and B, respectively, and let T : A→ B be a functor.

A functor T̂ : AF → BG is called a lifting of T if the diagram

AF T̂ //

UF

��

BG

UG

��
A T // B,

is commutative, where the U ’s denote the forgetful functors.

10.5. Theorem. The liftings T̂ : AF → BG of T are in bijective correspondence with
the natural transformations ω : TF → GT inducing commutativity of the diagrams

TF
TδF //

ω
��

TFF
ωF // GTF

Gω
��

GT
δGT // GGT,

TF
TεF //

ω
��

T

GT.
εGT

==

The correspondence associates to any natural transformation ω : TF → GT , the
functor

T̂ : AF → BG, A
%A−→ F (A) 7→ T (A)

T (%A)−→ TF (A)
ωA−→ GT (A),

A
f−→ A′ 7→ T (A)

T (f)−→ T (A′).

Proof. The necessary constructions and proofs are dual to those of 10.2. tu
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10.6. Lifting of a tensor product to comodules. Let (T, δ, ε) be a comonad on
a monoidal category (C,⊗, E) for which the monoidal structure from C lifts to the
category CT of T -comodules. The situation is described by the diagram

CT × CT −⊗̂− //

UT×UT
��

CT

UT

��
C × C −⊗− // C,

By 10.5(1) for the existence of some −⊗̂− making the diagram commute one needs a
natural transformation

ϕ : T (X)⊗ T (Y )→ T (X ⊗ Y )

and a morphism E → T (E) yielding the commutative diagrams as required by 10.5
plus appropriate conditions to assure the coherence conditions.
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11 Relations between endofunctors

In this section we will specialise the preceding observations to A = B and endofunctors.

11.1. Lifting of the identity. Let F = (F, µ, η), F′ = (F ′, µ′, η′) be monads and
G = (G, δ, ε), G′ = (G′, δ′, ε′) be comonads on the category A. Then I : AF → AF ′ or
Î : AG → AG′ are liftings of the identity if the corresponding diagrams commute:

AF
I //

UF
��

AF ′

UF ′
��

A I // A,

AG Î //

UG

��

AG′

UG
′

��
A I // A.

(1) There is a bijection between the liftings I of the identity functor and the monad
morphisms α : F ′ → F .

(2) There is a bijection between the liftings Î of the identity functor and the comonad
morphisms α : G→ G′.

Proof. The assertions follow from 10.2 and 10.5. tu

In what follows we will consider the lifting of endofunctors to the category of some
modules or comodules.

11.2. Lifting of endofunctors. Let F,G and T be endofunctors of the category A.
For the functors T : AF → AF and T̂ : AG → AG we have the diagrams

AF
T //

UF
��

AF
UF
��

A T // A,

AG T̂ //

UG

��

AG

UG

��
A T // A,

and we say that T or T̂ are liftings of T provided the corresponding diagrams are
commutative.

Besides the situations considered before we may now also ask when the liftings of
a monad T are again monads.

11.3. Lifting of monads to monads. Let F = (F, µ, η) be a monad and T : A→ A
any functor on the category A.

(1) The liftings T : AF → AF of T are in bijective correspondence with the natural
transformations λ : FT → TF inducing commutativity of the diagrams

FFT
µT //

Fλ
��

FT

λ
��

FTF
λF // TFF

Tµ // TF,

T
ηT //

Tη !!

FT

λ
��

TF.
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(2) If T = (T, µ′, η′) is a monad, then the lifting T : AF → AF of T with natural
transformation λ : FT → TF is a monad if and only if we have the commutative
diagrams

FTT
Fµ′ //

λT
��

FT

λ
��

TFT
Tλ // TTF

µ′F // TF,

F
Fη′ //

η′F !!

FT

λ
��

TF.

(3) For a monad T = (T, µ′, η′), a natural transformation λ : FT → TF induces
a canonical monad structure on TF with unit η′η : I → TF if and only if the
diagrams in (1) and (2) are commutative.

In this case λ - more precisely (F, T, λ) - is called a monad entwining.

Proof. The assertion in (1) follows immediately from 10.2(1).

(2) The diagram in (2) is derived from the requirement that µ′F (A) and η′F (A) are to

be F -module morphisms for any A ∈ Obj(A). The first of these conditions corresponds
to commutativity of the rectangle (?) in the diagram

FTT
FTTη

%%
Fµ′

��

λT // TFT

TFTη
��

Tλ // TTF

TTFη
��

=

%%
FTTF

λTF //

Fµ′F
��

TFTF
TλF // TTFF

TTµ // TTF

µ′F
��

FT
FTη //

λ
��

FTF
λF //

λF
��

(?)

TFF
Tµ // TF

TF
TFη

// TFF
Tµ

22

.

The new inner diagrams are commutative by naturality or functoriality of composition.
Since µ ◦ (Fη) is the identity, the outer morphisms yield the commutative rectangle
in (2).

Now assume the diagram in (2) to be given. Applying this to F , we obtain the
big rectangle in the diagram

FTTF
Fµ′F //

λTF
��

FTF

λF
��

TFTF
TλF // TTFF

TTµ
��

µ′FF // TFF

Tµ
��

TTF
µ′F // TF,

in which also the small rectangle is commutative. The outer morphisms yield the
commutative diagram (?).
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(3) A product on TF is defined by

TFF
Tµ

##
µ̃ : TFTF → TF, TFTF

TλF // TTFF

µ′FF
99

TTµ %%

TF

TTF
µ′F

;;

(11.1)

We show that (1) and (2) imply associativity of this product. We alread know that
(2) implies commutativity of the diagram (?) in the proof of (2). Applying T from the
left and F from the right to (?), we get a commutative diagram (??) in the diagram

TFTFTF

TFTλF
��

TλFTF// TTFFTF

TTFλF
��

TTµTF //

(1)

TTFTF

TTλF
��

µ′FTF // TFTF

TλF
��

TFTTFF
TλTFF

//

TFµ′FF
��

TTFTFF
TTλFF// TTTFFF

TTTµF// TTTFF

Tµ′FF
��

µ′TFF// TTFF

µ′FF
��

TFTFF
TλFF //

TFTµ
��

(??)

TTFFF
TTµF //

TTFµ
��

TTFF

TTµ
��

µ′FF // TFF

Tµ
��

TFTF
TλF // TTFF

TTµ // TTF
µ′F // TF.

Moreover, diagram (1) is commutative by condition (1) and the remaining diagrams
are commutative by functoriality of composition or associativity properties of µ and
µ′. Now the outer morphisms show associativity of multiplication of TF . tu

Obviously TF being a monad need not imply that T and F both are monads.
In 11.3(2), conditions are given for the lifting of a monad to be a monad. More

generally one may ask how the lifted functor T becomes a monad without T being
required to be a monad. Then of course some other data must be given.

In the definition of the product on TF in (11.1), the product µ′ of T is only used
in the form µ′F : TTF → TF and the unit η′ of T is used for the unit of TF in the
form η′F : F → TF .

So we may consider more general natural transformations, for example,

ν : TTF → TF, ξ : F → TF,

to define a multiplication and a unit on TF . Of course, associativity and unitality of
TF will lead to special conditions on the maps involved. This leads to the notion of
a wreath which was introduced by Lack and Street [32] to describe monads in certain
2-categories. In L. Koautit [23] the maps ν and ξ mentioned above are used to describe
wreaths. In [32] the transformations

ν̄ : TT → TF, σ : I → TF,

were considered to define a monad structure on TF (see also [59]).
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11.4. Liftings as monads. Let F = (F, µ, η) be a monad and T : A → A any
functor. Assume T can be lifted to AF → AF by the entwining λ : FT → TF and
that there are given natural transformations ν̄ : TT → TF and σ : I → TF .

Then the lifting T̂ induces a monad on AF provided TF has a monad structure
(TF, µ, σ) with

µ : TFTF
TλF // TTFF

TTµ // TTF
ν̄F // TFF

Tµ // TF,

provided the data induce commutativity of the diagrams (cocycle condition and twisted
condition)

TTT
ν̄T //

T ν̄
��

TFT
Tλ // TTF

ν̄F // TFF

Tµ
��

TTF
ν̄F // TFF

Tµ // TF,

FTT
λT //

F ν̄
��

TFT
Tλ // TTF

ν̄F // TFF

Tµ
��

FTF
λF // TFF

Tµ // TF,

The unitality conditions come out as

F
σF //

Fσ
��

TFF

Tµ
��

FTF
λF // TFF

Tµ // TF,

T
Tσ //

Tη
��

TTF

ν̄F
��

TF TFF,
Tµ
oo

T
σT //

Tη
��

σT // TFT
Tλ // TTF

ν̄F
��

TF TFF.
Tµ

oo

As a special case one may take F to be the identity functor. Then the conditions
reduce to T being a monad.

Given λ and ν̄, the multiplication µ is obtained by the diagram

TFTF
µ //

TλF
��

TF

TTFF
ν̄FF // TFFF

TµF // TFF.

Tµ

OO

If the monad (TF, µ, η) is given, suitable λ and ν̄ are defined by the diagrams

FT
λ //

ιFT
��

TF

TFT
TFTη// TFTF,

µ

OO TT
ν̄ //

TηT
��

TF

TFT
TFTη// TFTF.

µ

OO
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11.5. Liftings as monads II. Let F = (F, µ, η) be a monad and T : A → A any
functor. Assume T can be lifted to AF → AF by the entwining λ : FT → TF and
that there are given natural (F, F )-bimodule transformations

ν : TTF → TF, ξ : F → TF,

Then the lifting T̂ induces a monad on AF provided TF has a monad structure
(TF, µ, σ)

µ̃ : TFTF
TλF // TTFF

TTµ // TTF
Tν // TF,

provided the data induce commutativity of the diagrams

TTF
ν // TF

TF,

Tξ

OO

=

;; TTF
ν // TF

TFT

Tλ

OO

FT
ξToo

λ

OO

TTFT
νT //

TTλ
��

TFT
Tλ // TTF

ν
��

TTTF
Tν // TTF

ν // TF.

Proof.

TFTFTF

TFTλF
��

TλFTF// TTFFTF

TTFλF
��

TTµTF //

(1)

TTFTF

TTλF
��

νTF //

(2)

TFTF

TλF
��

TFTTFF
TλTFF

//

TFνF
��

TTFTFF
TTλFF// TTTFFF

TTTµF// TTTFF

TνF
��

TTFF

νF
��

TFTFF
TλFF //

TFTµ
��

(??)

TTFFF
TTµF //

TTFµ
��

TTFF

TTµ
��

νF //

(3)

TFF

Tµ
��

TFTF
TλF // TTFF

TTµ // TTF
ν // TF.

Diagram (1) is commutative by the entwining property, diagram (??) is commutative
since ν is a left F -module morphism (compare proof of 11.3(2)), diagram (2) is com-
mutative by assumption (applied to F ), and commutativity of diagram (3) follows
since ν is a right F -module morphism. The outer morphisms show associativity of the
multiplication µ̃.

From the two commutative diagram

TTF

TηTF
�� TTη %%

=

**
TFTF

TλF
// TTFF

TTµ
// TTF

ν // TF

TFT

TFTη

OO

Tλ
// TTF,

TTFη

OO

=

::
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we obtain µ̃ ◦ TηTF = ν and µ̃ ◦ TFTη = ν ◦ Tλ. tu

Dual to the constructions considered in 11.3 one obtains

11.6. Lifting of comonads to comonads. Let G = (G, δ, ε) be a comonad and
T : A→ A any functor on the category A.

(1) The liftings T̂ : AG → AG of T are in bijective correspondence with the natural
transformations ϕ : TG→ GT inducing the commutative diagrams

TG
Tδ //

ϕ

��

TGG
ϕG // GTG

Gϕ
��

GT
δT // GGT,

TG
Tε //

ϕ

��

T

GT.

εT

==

(2) If T = (T, δ′, ε′) is a comonad, then the lifting T̂ : AG → AG of T with nat-
ural transformation ϕ : TG → GT is a comonad if and only if we have the
commutative diagrams

TG
δ′G //

ϕ

��

TTG
Tϕ // TGT

ϕT
��

GT
Gδ′ // GTT,

TG
ε′G //

ϕ

��

G

GT.
Gε′

==

(3) For a comonad T=(T, δ′, ε′), a natural transformation ϕ :TG → GT induces a
canonical comonad structure on TG if and only if the diagrams in (1) and (2)
are commutative.

Proof. (1) is a special case of 10.5 and the diagram shows that ϕA is aG-comodule
morphism for any A ∈ Obj(A).

(2) The diagrams are derived from the conditions that δ′G(A) and ε′G(A) must be

G-comodule morphisms for all A ∈ Obj(A). This is seen by arguments dual to those
of the proof of 11.3.

(3) This goes back to Barr [2, Theorem 2.2]. tu

Similar to the composition for monads, a canonical comonad structure on TG need
not imply that T and G are comonads.

11.7. Definition. Given two comonads G = (G, δ, ε) and T = (T, δ′, ε′) on a category
A, a natural transformation ϕ : TG→ GT is said to be comonad distributive provided
the diagrams in 11.6(1) and (2) are commutative.

11.8. Tensor product of coalgebras. Given two R-coalgebras C, D, and an R-
linear map

ϕ : C ⊗R D → D ⊗R C,

the tensor product C ⊗R D can be made into a coalgebra by putting

∆ = (IC ⊗ ϕ⊗ ID) ◦ (∆C ⊗∆D).
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If C and D are coassociative, the functors −⊗R C and −⊗R D are comonads on the
category of R-modules. Then the coproduct defined on C ⊗R D is coassociative and
counital if and only if − ⊗R C ⊗R D is a comonad for the R-modules, that is, ϕ has
to induce commutativity of the corresponding diagrams in 11.6. For this special case
the conditions are formulated in Caenepeel, Ion, Militaru and Zhu [16, Theorem 3.4]
and also in [15, 2.14].

Similar to the case of algebras (see ??), for a prebraiding τ on RM andR-coalgebras
C,D, the natural morphism

−⊗R τC,D : −⊗R C ⊗R D → −⊗R D ⊗R C

is comonad distributive (the diagrams in 11.6 commute) and thus induces a coasso-
ciative coproduct on C ⊗R D.

In particular the twist map tw : C⊗RD → D⊗RC satisfies the conditions imposed
yielding the standard coproduct on C ⊗R D.

11.9. Liftings as comonads. In 11.6(2), conditions are given for the lifting of
a comonad to be a comonad. Dual to the case of monads one may ask how the
lifted functor T̂ of a comonad G = (G, δ, ε) becomes a comonad without T being
a comonad. This can be handled similar to the constructions considered in 11.4. In
particular, based on a natural transformation ϕ : TG→ GT satisfying 11.6(1), natural
transformations ν̄ : TG → TT and ε : T → I are needed satisfying appropriate
conditions.

In this section we consider relationships between monads and comonads.

11.10. Lifting of monads for comonads. Let G = (G, δ, ε) be a comonad and
T : A→ A any functor on the category A.

(1) The liftings T̂ : AG → AG of T are in bijective correspondence with the natural
transformations ϕ : TG→ GT inducing the commutative diagrams

TG
Tδ //

ϕ

��

TGG
ϕG // GTG

Gϕ
��

GT
δT // GGT,

TG
Tε //

ϕ

��

T

GT.
εT

==

(2) If T = (T, µ, η) is a monad, then the lifting T̂ : AG → AG of T with associated
natural transformation ϕ : TG → GT is a monad if and only if we have the
commutative diagrams

TTG
µG //

Tϕ
��

TG

ϕ

��
TGT

ϕT // GTT
Gµ // GT,

G
ηG //

Gη !!

TG

ϕ

��
GT.

Proof. (1) follows from 10.5 and the diagrams are induced by the requirement
that the ϕA are G-comodule morphisms for all A ∈ Obj(A).
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(2) These diagrams are consequences of the condition that µA and ηA are G-
comodule morphisms but they can also be read as condition for ϕA being a T -module
morphism for any A ∈ Obj(A). tu

11.11. Lifting of comonads for monads. Let F = (F, µ, η) be a monad and
T : A→ A any functor on the category A .

(1) The liftings T : AF → AF of T are in bijective correspondence with the natural
transformations λ : FT → TF inducing the commutative diagrams

FFT
µT //

Fλ
��

FT

λ
��

FTF
λF // TFF

Tµ // TF,

T
ηT //

Tη !!

FT

λ
��

TF.

(2) If T = (T, δ, ε) is a comonad, then the lifting T : AF → AF of T with associated
natural transformation λ : FT → TF is a comonad if and only if we have the
commutative diagrams

FT
Fδ //

λ
��

FTT
λT // TFT

Tλ
��

TF
δF // TTF,

FT
Fε //

λ
��

F

TF.

εF

==

Proof. (1) follows from 10.2 and the diagrams are induced by the requirement
that the λA are F -module morphisms for any A ∈ Obj(A).

(2) These diagrams are consequences of the condition that δA and εA are F -module
morphisms but they can also be interpreted as the condition that λA is a T -comodule
morphism for any A ∈ Obj(A). tu

We observe that in 11.10 and 11.11 essentially the same diagrams arise.

11.12. Mixed distributive laws. Let F = (F, µ, η) be a monad and G = (G, δ, ε)
a comonad on the category A. Then a natural transformation

λ : FG→ GF

is said to be mixed distributive or entwining provided it induces commutative diagrams

FFG
µG //

Fλ
��

FG

λ
��

FGF
λF // GFF

Gµ // GF,

FG
Fδ //

λ
��

FGG
λG // GFG

Gλ
��

GF
δF // GGF,

G
ηG //

Gη !!

FG

λ
��

GF,

FG
Fε //

λ
��

F

GF.

εF

==
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The suggestion to consider distributive laws of mixed type goes back to Beck
[6, page 133] (see Remarks 11.14). The interest in these structures is based on the
following theorem which follows from 11.10 and 11.11.

11.13. Characterisation of entwinings. For a monad F = (F, µ, η) and a comonad
G = (G, δ, ε) on the category A, consider the diagrams

AF
G //

UF
��

AF
UF
��

A G // A,

AG F̂ //

UG

��

AG

UG

��
A F // A.

The following conditions are equivalent:

(a) There is an entwining natural transformation λ : FG→ GF ;

(b) G : AF → AF is a lifting of G and has a comonad structure;

(c) F̂ : AG → AG is a lifting of F and has a monad structure.

11.14. Remarks. The preceding theorem was first formulated 1973 by van Osdol in
[53, Theorem IV.1]. It was extended to V-categories in Wolff [61, Theorem 2.4] and
was rediscovered in 1997 by Turi and Plotkin in the context of operational semantics
in [52, Theorem 7.1]. In the same year the corresponding notion for tensor functors
was considered by Brzeziński and Majid who coined the name entwining structure
for a mixed distributive law for an algebra A and a coalgebra C over a commutative
ring R in [14, Definition 2.1] (see 11.17). The connection between this notions is also
mentioned in Hobst and Pareigis [28].

It was observed by Takeuchi that these structures are closely related to corings
(see [12, Proposition 2], [15, 32.6]). This is a special case of 11.13(b) since the coring
A⊗R C is just a comonad on the category of right A-modules. The comultiplication
is a special case of the constructions considered in the next section. Similarly, by
11.13(c), C ⊗R A can be seen as a monad on the category of right C-comodules.

11.15. Comultiplication induced by units. Let F,G be endofunctors on a cate-
gory A and η : I → F a natural transformation. Then we have natural transformations

ηG : G→ FG, Gη : G→ GF,

and naturality of η implies commutativity of the diagrams

G
ηG //

ηG
��

FG

FηG
��

FG
ηFG // FFG,

G
Gη //

Gη
��

GF

GηF
��

GF
GFη // GFF.

For F = G the diagrams show that both ηF and Fη induce coassociative comultipli-
cations on F .

If there is a coassociative comultiplication δ : G → GG, then we can define a
comultiplication on FG by

δ̄ : FG
Fδ // FGG

FGηG// FGFG,
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which is coassociative by commutativity of the diagram

FG
Fδ //

Fδ
��

FGG
FGηG //

FGδ
��

FGFG

FGFδ
��

FGG
FδG //

FGηG
��

FGGG
FGηGG //

FGGηG
��

FGFGG

FGFGηG
��

FGFG
FδFG // FGGFG

FGηGFG // FGFGFG.

The left top rectangle commutes by coassociativity of δ, the right top rectangle by
naturality of η, the left bottom rectangle by naturality of δ and the right bottom
rectangle again by naturality of η.

For a monad F = (F, µ, η) the comultiplication on FG can also be derived from
general properties of adjoint functors.

Symmetrically, a coassociative comultiplication for GF is defined by

δ̃ : GF
δF // GGF

GηGF// GFGF.

In case a natural transformation ε : G → I is given, we have natural transforma-
tions εF : GF → F and Fε : FG → F allowing to dualise the above constructions.
Then an associative multiplication µ : FF → F induces associative multiplications on
GF and FG.

Now let F = (F, µ, η) be a monad and G = (G, δ, ε) a comonad on A with a natural
transformation λ : FG → GF satisfying λ ◦ ηG = Gη (left triangle in 11.12). Then
we have the commutative diagram

FGG

FηGG %%

FGηG

**
FG

Fδ

::

FηG ##

FFGG
FλG

// FGFG

FFG,
FFδ

99

showing that the coproduct on FG induced by an entwining λ is the same as the one
considered above.

11.16. Mixed bimodules. Given a monad F = (F, µ, η) and a comonad G = (G, δ, ε)
on the category A with an entwining λ : FG→ GF , λ-bimodules or mixed bimodules
are defined as those A ∈ Obj(A) with morphisms

F (A)
h // A

k // G(A)

such that (A, h) is an F-module and (A, k) is a G-comodule satisfying the pentagonal
law

F (A)
h //

F (k)
��

A
k // G(A)

FG(A)
λA // GF (A).

G(h)

OO
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A morphism f : A→ A′ between two λ-bimodules is a bimodule morphism provided
it is both an F -module and a G-comodule morphism.

These notions yield the category of λ-bimodules which we denote by AGF . This

category can also be considered as the category of Ĝ-comodules for the comonad
Ĝ : AF → AF and also as the category of F -modules for the monad F : AG → AG
(e.g. [52, 7.1]). For every F -module A, G(A) is a λ-bimodule and for any G-comodule
A′, F (A′) is a λ-bimodule canonically. In particular, for every A ∈ Obj(A), FG(A)
and GF (A) are λ-bimodules.

As a sample we draw the diagram showing that, for any F -module %A : F (A)→ A,
G(A) is a λ-bimodule with module structure given by the composition GρA ◦ λA :
FG(A)→ G(A):

FG(A)
λA //

FδA

��

GF (A)
G%A //

δF (A) **

G(A)
δA // GG(A)

GGF (A)

GG%A

OO

FGG(A)
λG(A) // GFG(A).

GλA

OO

The triangle is commutative by naturality of δ, the pentagon is commutative by one
of the mixed distributive laws.

11.17. Entwined algebras and coalgebras. Given an R-algebra (A,µ, η) and an
R-coalgebra (C,∆, ε), the functor − ⊗R A is a monad and − ⊗R C is a comonad on
the category of R-modules.

If the functor −⊗R C can be lifted to the A-modules (equivalently −⊗RA can be
lifted to the C-comodules) then there is an R-linear map

ψ : C ⊗R A→ A⊗R C,

and the diagrams in 11.12 yield the conditions for an entwining structure introduced
by Brzeziński and Majid in [14] (see bow-tie diagram in [15, 32.2]):

C ⊗A⊗A I⊗µ //

ψ⊗I
��

C ⊗A

ψ
��

∆⊗I // C ⊗ C ⊗A I⊗ψ // C ⊗A⊗ C

ψ⊗I
��

A⊗ C ⊗A I⊗ψ // A⊗A⊗ C µ⊗I // A⊗ C I⊗∆ // A⊗ C ⊗ C,

C
I⊗η //

η⊗I ##

C ⊗A
ψ
��

ε⊗I // A

A⊗ C.
I⊗ε

;;

A comultiplication on A ⊗R C is defined by the general formalism considered in
11.15 making A⊗R C an A-coring.
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Let M be an R-module with an A-module structure %M : M ⊗R A → M and a
C-comodule structure %M : M → M ⊗R C. Then M is an entwined module if the
diagram

M ⊗A %M //

%M⊗IA
��

M
%M //M ⊗ C

M ⊗ C ⊗A I⊗ψ //M ⊗A⊗ C,

%M⊗I

OO

is commutative (e.g. [15, 32.4]). This means that %M is a comodule morphism when
M ⊗R A is considered as a C-comodule with structure map (IM ⊗ ψ) ◦ (%M ⊗ IA),
and %M is an A-module morphism when M ⊗R C is an A-module with structure map
(%M ⊗ IC) ◦ (IM ⊗ ψ). Observe the interplay between these structures: given an
entwining ψ the diagram imposes conditions on %M or %M . On the other hand, if
these two morphisms are given the problem is to find a suitable ψ.

Notice that A need not be a C-comodule unless it has a group like element. For
more details the reader may consult [15, Section 32].

A braiding on the category of entwined modules induced by a morphism C⊗RC →
A⊗R A is considered by Hobst and Pareigis in [28, Theorem 5.5].

11.18. Galois comodules. Let C be a coring over a ring A and P ∈ MC with
S := EndGP . Then there is an adjoint pair of functors

−⊗S P : MS →MC , HomC(P,−) : MC →MS ,

with counit ev : HomC(P,−)⊗S P → IMC , and, by ??, there is a functorial morphism

evC : HomA(P,−)⊗S P → −⊗A C.

P is called a Galois comodule provided evC is an isomorphism. For further details
about these comodules we refer to [58].

11.19. Bialgebras and Hopf modules. Consider an R-module B which is both
an R-algebra µ : B ⊗R B → B, η : R → B, and an R-coalgebra ∆ : B → B ⊗R B,
ε : B → R. Define a linear map ψ by commutativity of the diagram

B ⊗B ψ //

I⊗∆
��

B ⊗B

B ⊗B ⊗B tw⊗I // B ⊗B ⊗B

I⊗µ

OO

which produces

ψ : B ⊗R B → B ⊗R B, a⊗ b 7→ (1⊗ a)∆(b).

To make B a bialgebra, µ and η must be coalgebra maps (equivalently, ∆ and ε are
to be algebra maps) with respect to the obvious product and coproduct on B ⊗R B
(induced by tw). This can be expressed by commutativity of the set of diagrams



72 Bibliography

B ⊗B µ //

∆⊗I
��

B
∆ // B ⊗B

B ⊗B ⊗B I⊗ψ // B ⊗B ⊗B,

µ⊗I

OO R
η //

η

��

B

η⊗I
��

B
∆ // B ⊗B,

B ⊗B ε⊗I //

µ

��

R⊗B

I⊗ε
��

B
ε // R,

R
η //

=   

B

ε
��
R.

These show that ε is a monad morphism and η is a comonad morphism, and µ is
a right B-comodule morphism when B ⊗R B is considered as right B-comodule by
(I ⊗ ψ) ◦ (∆ ⊗ I). They also imply that every R-module M is a B-module and
B-comodule trivially by I ⊗ ε : M ⊗R B →M and I ⊗ η : M →M ⊗R B.

If the above conditions hold then it is easily checked that the given ψ is an entwin-
ing and B is called a (ψ-)bialgebra. Similarly, for any entwining ψ′ : B⊗RB → B⊗RB
one may define ψ′-bialgebras. Certainly, the twist tw is an entwining but B is only a
tw-bialgebra provided ∆ is trivial, that is, ∆(b) = b⊗ 1 for any b ∈ B.

An R-module M which is both a B-module %M : M⊗RB →M and a B-comodule
%M : M →M ⊗R B is called a (ψ-)B-bimodule or a B-Hopf module if the diagram

M ⊗B %M //

%M⊗I
��

M
%M //M ⊗B

M ⊗B ⊗B I⊗ψ //M ⊗B ⊗B,

%M⊗I

OO

is commutative. In this case B is a right B-bimodule and we have the commutative
diagram

M ⊗B %M //

%M⊗∆
��

M
%M //M ⊗B

M ⊗B ⊗B ⊗B I⊗tw⊗I //M ⊗B ⊗B ⊗B

%M⊗µ

OO

which holds in particular for M = B.
Here we have derived our constructions from the twist tw but the same pattern

can be followed starting with a (pre-)braiding on RM (or on a monoidal category, e.g.
[46]).
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[1] Adámek, J. and Rosický, J., Locally presentable and accessible categories, Cam-
bridge University Press, 1994.

[2] Barr, M., Composite cotriples and derived functors, [in:] Seminar on Triples
and Categorical Homology Theory, B. Eckmann (ed.), Springer Lecture Notes in
Mathematics 80 (1969), 336-356.

[3] Barr, M. and Beck, J., Homology and standard constructions, [in:] Seminar on
Triples and Categorical Homology Theory, B. Eckmann (ed.), Springer Lecture
Notes in Mathematics 80 (1969), 245-335.

[4] Barr, M. and Wells, C., Toposes, Triples and Theories, Reprints in Theory and
Applications of Categories, No. 12 (2005), 1–288. (This is an updated version of
Grundl. der math. Wiss. 278, Springer-Verlag, (1983)).

[5] Beck, J. Triples, Algebras and Cohomology, PhD Thesis, Columbia University
(1967); Reprints in Theory and Applications of Categories, No. 2 (2003), 1-59.

[6] Beck, J., Distributive laws, [in:] Seminar on Triples and Categorical Homology
Theory, B. Eckmann (ed.), Springer LNM 80 (1969), 119-140.
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modules for monads, 29
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natural transformation, 12
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rings, 16
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tensor product, 7
tensor product and direct sums, 7
tensor product and linear maps, 20
tensor product of R-rings, 41
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unit of an adjunction, 14
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