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UDK 510.225 ON COFINITARY GROUPSB. Kastermans, Y. ZhangAbstratA o�nitary group is a subgroup of the symmetri group on the natural numbers in whih allnon-identity members have �nitely many �xed points. In this paper we desribe some questionsabout these groups that interest us as well as questions on related ardinal invariants andisomorphism types.Key words: o�nitary groups, ardinal invariants, isomorphism types.IntrodutionThis paper is a review of some talks we have given on various oasions. We hopepeople reading this will beome more interested in these questions and help with theirresolution. We begin by de�ning the main notions of this paper.De�nition 1.(i) We write Sym(N) for the symmetri group of the natural numbers; the grouponsisting of all bijetions from the natural numbers to the natural numbers, with theoperation being omposition.(ii) An element g ∈ Sym(N) is o�nitary if and only if it either has �nitely many�xed points or is the identity.(iii) A group G ≤ Sym(N) is o�nitary or a o�nitary group if and only if all of itselements are o�nitary.(iv) A group G ≤ Sym(N) is a maximal o�nitary group (mg) if and only if it isa o�nitary group and is not properly ontained in another o�nitary group.One of the soures of interest in these groups is their onnetion with almost disjointfamilies. If we have a olletion A of in�nite objets, we all elements x, y ∈ A almostdisjoint if and only if x∩ y is �nite. We all the family almost disjoint if and only if alldistint x, y ∈ A are almost disjoint. The family is maximal almost disjoint if and onlyif it is almost disjoint and not properly ontained in another almost disjoint family.If we apply the de�nitions in the last paragraph with A = P(N) , then we get theusual notion of (maximal) almost disjoint family (see, e.g., Kunen [1℄).Next we apply these de�nitions with A = Sym(N) . Here we use the onvention that
f ∈ Sym(N) is identi�ed with its graph, graph(f) , whih is a subset of the ountableset N×N . With this we get the notion of a (maximal) almost disjoint family of permu-tations. Requiring the group struture on top of this, one obtains the notion of maximalo�nitary group as in De�nition 1. We see this by onsidering the equivalenes:

(f−1 ◦ g)(n) = n ⇔ g(n) = f(n) ⇔ (n, g(n)) ∈ g ∩ f,where f, g ∈ Sym(N) . From this equivalene you see that f−1 ◦ g has �nitely many�xed points if and only if g ∩ f is �nite.Note that the existene of maximal o�nitary groups follows diretly from Zorn'sLemma: the union of an inreasing sequene of o�nitary groups is a o�nitary group(being o�nitary is a loal property).Some other basi results on these groups.



160 B. KASTERMANS, Y. ZHANGTheorem 1 (Adeleke [2℄, Truss [3℄). A ountable o�nitary group is not maximal.This theorem an be shown using the ideas from Appendix A2 by diagonalization.Theorem 2 (P. Neumann). There exists a o�nitary group of size |R| .P. Neumann showed this by studying o�nitary groups with all their orbits �nite(see, Cameron [4℄ for the proof). The following result shows that these two theoremsdo not determine the ardinality of maximal o�nitary groups in the ontext of thenegation of the ontinuum hypothesis.Theorem 3 (Zhang [5℄). For all κ suh that ℵ0 < κ ≤ 2ω = λ there exists a ...foring G suh that in MG we have that 2ω = λ and there exists a maximal o�nitarygroup of size κ .This reasoning so far leads to two main motivations for work on o�nitary groups:Motivation 1. How similar/di�erent are (maximal) o�nitary groups from (maxi-mal) almost disjoint families?andMotivation 2. What algebrai properties do (maximal) o�nitary groups have?In the remainder of this paper we will work out some of the onrete questions thisleads to. In Setion 1 we look at the desriptive omplexity: we explain and desribewhat is known about the possible omplexities of maximal o�nitary groups. In Setion 2we onsider the related ardinal invariants: we de�ne a ouple of ardinal invariantsrelated to these families and desribe some questions about them. In Setion 3 we lookat isomorphism types: here we explain the very algebrai question of what the possibleisomorphism types of maximal o�nitary groups are. And �nally in Setion 4 we gathersome remaining questions that did not �t in the earlier setions: questions on orbitstrutures and generating sets.1. Conrete exampleWe observed above that settling the existene of maximal o�nitary groups is easy,Zorn's Lemma provides a maximal o�nitary group (in fat any o�nitary group anbe extended to a maximal o�nitary group with the same reasoning). An objet soonstruted is one that is usually extremely non-onstrutive and the result thereforeusually hard to desribe. The following are some well-known examples of this phe-nomenon:
• (Suslin [6℄) No well-ordering of an unountable set of reals is analyti.
• (Sierpinski) No free ultra�lter is measurable or has the property of Baire.
• (Talagrand [7℄) The intersetion of ountably many nonmeasurable �lters is non-measurable.
• (Mathias [8℄) There is no analyti maximal almost disjoint family.The last of these items determines the least possible omplexity of maximal almostdisjoint families when ombined with the following theorem.Theorem 4 (Miller [9℄). The axiom of onstrutibility implies the existene ofa oanalyti maximal almost disjoint family.These ideas and results together with Motivation 1 immediately give rise to thefollowing question.



ON COFINITARY GROUPS 161Question 1. What is the least possible omplexity of a maximal o�nitary group?The result analogous to Miller's result has been obtained for maximal o�nitarygroups. This was done in two steps.Theorem 5 (Gao and Zhang [10℄). The axiom of onstrutibility implies theexistene of a maximal o�nitary group with a oanalyti generating set.They used the method developed by Miller and an interesting and ingenious oding:the key to applying this method is in proving a lemma of the following general form.Lemma 1 (Form of Key Lemma in Miller's method). Given
• a ountable family of the right type A , and
• a ountable objet f .We an onstrut a new element g suh that • A ∪ g is a family of the right type,
• f ≤T g uniformly, and
• if we iterate this onstrution (with some bookkeeping) ℵ1 many times, we geta maximal family of the right type (for this item note that we are in the ontext of theaxiom of onstrutibility).Part of this requires being able to onstrut a maximal family of the right typeunder the ontinuum hypothesis. This is done here by the method of good extensionsas desribed in [10℄ and here summarized in Appendix A.The family is then onstruted by iterating the Key Lemma for ω1 many steps at ev-ery step enoding the onstrution performed so far into the next element. By deodingthis information, we an then from an element deide if it belongs to the family.Doing this for maximal o�nitary groups, you do the enoding into the genera-tors you onstrut. In [10℄, we performed this onstrution with a very nie enoding,obtaining the above result.The di�ulty with o�nitary groups is that adding a generator (whih you onstrut)also fores lots of other elements to be added. These you have less ontrol over; however,these would also need to enode the onstrution up to that point.It an be shown that the Key Lemma fails for o�nitary groups (see Kastermans[11℄); that is, there does not exist a way to �nd g suh that not only it enodes theonstrution up to this point, but also other new elements do. This means that Miller'smethod as it stands does not work. However, the oding requirement an be relaxed,to have non-uniform enoding. Then by using a simple oding, we an perform theonstrution and obtain the following theorem.Theorem 6 (Kastermans [11℄). The axiom of onstrutibility implies the exis-tene of a oanalyti maximal o�nitary group.From the ideas that made us use Motivation 1 we believe that this is the best possibleresult in this diretion. That is, we believe that the result analogous to Mathias resultmentioned above should hold for mg. There are some weak results in this diretion,but really the following question (also on Veli�kovi� problem list) is very open.Question 2. Can there exist Borel maximal o�nitary groups?This is the right question sine Blass (see [10℄) has observed that any analytimaximal o�nitary group is already Borel.2. Cardinal invariantsIn this setion we desribe a question on ardinal invariants related to maximalalmost disjoint families. For a good general overview of results and ideas around ardinal



162 B. KASTERMANS, Y. ZHANGinvariants see [12℄. Here we fous on ardinal invariants related to di�erent types ofmaximal almost disjoint families. These invariants are usually written as a with somesubsript. We give the de�nitions next.De�nition 2.(i) a is the least ardinality of a maximal almost disjoint family.(ii) ap is the least ardinality of a maximal almost disjoint family of permutations.(iii) ag is the least ardinality of a maximal o�nitary group.We think the most interesting question about these ardinal invariants is thefollowing.Question 3. [14℄ What is the relationship between ap and ag ?Other than the obvious (they an be equal), nothing is known. We mention someresults related to this that are known.Related to this Zhang in [15, 16℄ has shown that it is onsistent that there existsa maximal o�nitary group G ontained in a maximal almost disjoint family of permu-tations P where |G| < |P | , but that in the model for Theorem 5 ap and ag do notdi�er.The onsisteny of a < ag was established in [17℄ and in [18℄, and the onsistenyof a < ap in [19℄. There is an obvious question to be answered.Question 4. Can we prove the onsisteny of ap , ag < a?J. Brendle one made a onjeture that it should be provable from ZFC that
a ≤ ap , ag .A di�erent question on these invariants is whether they an be singular. Brendleproves in [20℄ using the method of template foring that a an be singular. We believe,but have not yet worked through the details, that the same result an be obtained for
ag by adjusting the method to work with groups.3. Isomorphism typesThis is the most immediate question following from Motivation 2. Say two groupshave the same isomorphism type if and only if they are isomorphi. Write T (G) for theisomorphism type of the group G . Then the question is the following.Question 5. What is the olletion {T (G) | G is a maximal o�nitary group}?One restrition we know follows from the fat that a o�nitary group with all orbits�nite is not maximal (this follows from the fat that a maximal o�nitary group annothave in�nitely many orbits). From this we see that any maximal o�nitary group hasan in�nite orbit, whih (as Andreas Blass observed) quikly implies that a maximalo�nitary group annot be Abelian. Suppose G is an Abelian o�nitary group withan in�nite orbit O , k ∈ O , and gn ∈ G , n ∈ N suh that O = {gn(k) | n ∈ N} . Then
g ∈ G has g ↾ O ompletely determined by where it maps k , sine if l ∈ O , then
l = gn(k) for some n , therefore g(k) = g(gn(k)) = gn(g(k)) . From this you see thatif g, h ∈ G have g(k) = h(k) , then g ↾ O = h ↾ O whih (sine G is o�nitary) means
g = h . That is, we have shown G = {gn | n ∈ N} . Then G is not maximal sine nomaximal o�nitary group is ountable.This, together with the obvious restritions on ardinality, is the only restritionknown.Using the method of good extensions, the resulting groups have a lot of freeness inthem. At every step in the onstrution, all the newly onstruted elements are free



ON COFINITARY GROUPS 163over the earlier part of the group. In the notation of the appendix (starting on page163) we have that Gα+1
∼= Gα ∗ H for some group H .On the positive side we know that Martin's axiom implies that there exists a loally�nite maximal o�nitary group (loally �nite means that any �nite subset generatesa �nite subgroup). In this proof we do not extend �nite partial funtions, but �nitegroup ations. The loally �nite isomorphism type is not determined a priori, but isdetermined, mostly outside of our ontrol, during the onstrution (see [13℄).4. MisellanyFollowing from Motivation 2, we are also interested in the orbit struture of maximalo�nitary groups. Sine a o�nitary group is a subset of Sym(N) , any suh group hasa natural ation on the natural numbers: (f, n) 7→ f(n) . The question then beomesthe following.Question 6. What are the possible orbit strutures of maximal o�nitary groups?Above we already mentioned part of the answer: a maximal o�nitary group annothave in�nitely many orbits. We have shown though that fromMartin's Axiom a maximalo�nitary group an be onstruted with any �nite number of �nite orbits and any non-zero �nite number of in�nite orbits. The orbit struture of the diagonal ations has notyet been determined (here by a diagonal ation we mean an ation on Nk for some kde�ned by (f, (n1, . . . , nk)) 7→ (fn1, . . . , fnk) .Note that this relates to the question of isomorphism types, and the desriptiveomplexity of maximal o�nitary groups, sine if the answer is that all diagonal ationshave only �nitely many orbits, then these groups are oligomorphi. This in turn meansthat if they are losed they are the automorphism group of a ℵ0 -ategorial struture.Above we mentioned the result of Gao and Zhang that under the axiom of on-strutibility there exists a maximal o�nitary group with a oanalyti generating set,and our result that then there exists a oanalyti maximal o�nitary group. We do notknow that these results are in fat di�erent results; it is oneivable that every max-imal o�nitary group with a oanalyti generating set is already oanalyti. The onlyapproximation to showing that they are di�erent is our positive answer to the follow-ing question by Verhik: does there exist a omputable set of generators that generatea o�nitary group whose isomorphism type is not omputable? See [13℄ for this result.This is still far removed from the question about oanalyti generating sets and groups.A Constrution from CH and MAIn this setion we desribe some of the ombinatoris involved in establishing theresults mentioned above; this is just to give some of the �avor. We �rst establish somenotation.If G ≤ H and g ∈ H , we write 〈G, g〉 for the subgroup of H generated by the set

{G, g} . F (x) denotes the free group on the generator x . If G and H are groups, wewrite G ∗H for their free produt. We write WG for G ∗F (x) , whih an be identi�edwith the set of redued words in x and elements of G , that is, expressions of the form
g0x

k0g1x
k1 · · ·xklgl+1,where gi ∈ G for i ≤ l + 1 , gi 6= id for 1 ≤ i ≤ l , and ki ∈ Z \ {0} .

p : A ⇀ B is the notation for a partial funtion from A to B (as usual, p : A → Bis the notation for a total funtion).



164 B. KASTERMANS, Y. ZHANGA1. Really easy from CH . First observe that with CH we do not need todo a ompliated onstrution. Enumerate Sym(N) by 〈fα+1 | α ∈ ω1〉 , and do thefollowing indutive onstrution of a sequene of o�nitary groups 〈Gα | α ∈ ω1∪{ω1}〉 :
• G0 = {id} ,
• Gα+1 =

{

〈Gα, fα+1〉 if 〈Gα, fα+1〉 is o�nitary;
Gα otherwise.

• Gλ =
⋃

α<λ

Gα , if λ is a limit ordinal.Then the group G = Gω1
is a maximal o�nitary group: (1) it is o�nitary sineit is the union of an inreasing sequene of o�nitary groups. (2) it is maximal: suppose,towards a ontradition, that there is a o�nitary group H of whih G is a propersubgroup. Choose g ∈ H \ G , note that g = fα+1 for some α ∈ ω1 . Note that 〈G, g〉is o�nitary. From this we see that 〈Gα, g〉 = 〈Gα, fα+1〉 is also o�nitary. But then bythe indutive onstrution fα+1 ∈ Gα+1 ≤ G whih is a ontradition with g ∈ H \G .This onstrution is of very little use in answering questions like the ones in thispaper sine the group is really out of our ontrol. CH gives us an enumeration, and thisarbitrary enumeration determines whih elements are in and out. The same methodlearly works using AC , then, however, it is easier to use Zorn's Lemma.This is why in the next paragraph we desribe a more ompliated onstrution.This onstrution and the ideas therein an be tweaked to be useful to many of theabove (that is, many of the obtained results above use these ideas).A2. Good extensions. The above easy onstrution from CH learly does nothelp us to prove a lemma of the form of Lemma 1. The enumeration that is axiomatiallyobtained from CH determines whih elements are in the group. In terms of de�nabilityof the resulting group this is as bad as onstruting it using AC .Gao and Zhang [10℄ desribe a more onrete onstrution �tting with Lemma 1.Given a ountable o�nitary group G and an element f ∈ Sym(N) , we want to onstrutan element g ∈ Sym(N) suh that 〈G, g〉 is o�nitary, and 〈G, g, f〉 is either equal to

〈G, g〉 or is not o�nitary. The �rst ase applies if f ∈ G , so suppose that is not thease. Then it su�es to onstrut the element g suh that 〈G, g〉 is o�nitary and f ∩gis in�nite but not equal to g .De�nition 3. Let p, q : N ⇀ N be �nite partial injetive funtions, and w ∈ WG .Then q is a good extension of p with respet to w if and only if p ⊆ q , and for every
n ∈ N suh that w(q)(n) = n there exist l ∈ N , and u, z ∈ WG suh that

• w = u−1zu without anellation,
• z(p)(l) = l , and
• u(q)(n) = l .Note that if w(p)(n) = n we an hoose z = w and u = id .With these de�nitions the following lemmas an be proved (see [10℄).Lemma 2. Let G ≤ Sym(N) , p : N ⇀ N �nite and injetive, f ∈ Sym(N) \G with

〈G, f〉 o�nitary, and w ∈ WG . Then
• (Domain Extension Lemma) For eah n ∈ N \ dom(p) , for all but �nitely many

k ∈ N , the extension p ∪ {(n, k)} is a good extension of p with respet to w .
• (Range Extension Lemma) For eah k ∈ N \ ran(p) , for all but �nitely many

n ∈ N , the extension p ∪ {(n, k)} is a good extension of p with respet to w .
• (Hitting f Lemma) For all but �nitely many n ∈ N , the extension p∪{(n, f(n))}is a good extension of p with respet to w .With these lemmas we an do the onstrution by iterating the following lemma.



ON COFINITARY GROUPS 165Lemma 3. Let G ≤ Sym(N) be ountable, f ∈ Sym(N) \ G suh that 〈G, f〉o�nitary. Then we an onstrut a g ∈ Sym(N) suh that 〈G, g〉 is o�nitary, 〈G, g〉 ∼=
∼= G ∗ F (x) and f ∩ g is in�nite.We enumerate WG as E = 〈wn | n ∈ N〉 . This lemma is then proved by iterating theDomain/Range and Hitting f lemmas with enough bookkeeping to ensure the resultis a permutation and Hitting f is used in�nitely often, and taking good extensionswith referene to larger initial segments of the enumeration E . Sine Hitting f is usedin�nitely often, the resulting g satisfying f ∩ g is in�nite. Beause of this either g = for 〈G, g, f〉 is not o�nitary (sine f−1g has in�nitely many �xed points, but is not theidentity). We see that 〈G, g〉 ∼= G ∗ F (x) sine for every w ∈ WG from some point weare only taking good extensions with referene to it and all of its subwords. Then all�xed points that will appear in w(g) are already present in root.We an use these same ideas on onstrutions from MA . Given a group G we de�nethe partial order PG :

• 〈p, F 〉 ∈ PG if p : N ⇀ N �nite, and G ⊆ WG �nite.
• 〈p1, F1〉 ≤ 〈p0, F0〉 if and only if p0 ⊆ p1 , F0 ⊆ F1 , and p1 is a good extension of

p0 with referene to all w ∈ F0 .This partial order is ... sine all elements with the same �rst element are om-patible. The Domain, Range, and Hitting f Lemmas give the denseness of the sets
{〈p, F 〉 | n ∈ dom(p)} , {〈p, F 〉 | n ∈ ran(p)} , and {〈p, F | |p ∩ f | ≥ n} . Finally theobvious denseness of {〈p, F 〉 | w ∈ F} for w ∈ WG replaes the initial segments of theenumeration above.The seond author's researh is partially supported by NSFC grant No. 10971237.�åçþìåÁ. Êàñòåðìàíñ, É. ×æàí. Ê âîïðîñó î êî�èíèòàðíûõ ãðóïïàõ.Êî�èíèòàðíàÿ ãðóïïà ïðåäñòàâëÿåò ñîáîé ïîäãðóïïó ñèììåòðè÷åñêîé ãðóïïû íà ìíî-æåñòâå íàòóðàëüíûõ ÷èñåë, â êîòîðîé âñå íååäèíè÷íûå ýëåìåíòû èìåþò áåñêîíå÷íî ìíî-ãî íåïîäâèæíûõ òî÷åê. Â äàííîé ðàáîòå ìû ðàññìàòðèâàåì íåêîòîðûå èíòåðåñóþùèå íàñâîïðîñû, êàñàþùèåñÿ òàêèõ ãðóïï, à òàêæå ñâÿçàííûõ ñ íèìè êàðäèíàëüíûõ èíâàðèàíòîâè òèïîâ èçîìîð�èçìà.Êëþ÷åâûå ñëîâà: êî�èíèòàðíûå ãðóïïû, êàðäèíàëüíûå èíâàðèàíòû, òèïû èçîìîð-�èçìà.
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