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Аннотация. Обсуждаются результаты и возможности исследования ионосферы и нейтральной 
атмосферы на основе создания искусственных периодических неоднородностей (ИПН) ионосферной 
плазмы под воздействием мощного КВ радиоизлучения нагревного стенда СУРА. Приводятся примеры 
реализации метода ИПН на других нагревных стендах.  
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электронная концентрация, вертикальная скорость, температура, турбулентность, внутренние 
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PERSPECTIVES OF THE LOWER IONOSPHERE RESEARCH BY API 
TECHNIQUE USING HEATING FACILITIES 

N.V. Bakhmetieva, G.I. Grigoriev, E.E. Kalinina, I.N. Zhemyakov, A.A. Lisov
Abstract. The results and possibilities of the studies of the ionosphere and neutral atmosphere based on the 
creation of artificial periodic irregularities (APIs) of ionospheric plasma under the impact of the powerful HF 
radio emission from the SURA heating facility are discussed. Examples of the implementation of the API 
technique on other heating facilities are given.  
Keywords: ionosphere, plasma, heating facility, artificial periodic irregularities, electron density, temperature, 
turbulence, internal gravity waves. 

Введение 
Число публикаций по тематике модификации верхней ионосферы давно перевалило за 

тысячу. В то же время количество исследований воздействия на нижнюю ионосферу 
существенно меньше. В первую очередь, это обусловлено трудностями экспериментальных 
исследований нижней ионосферы, сложной фотохимией и динамикой этой области высот. С 
другой стороны, свойства нижней ионосферы (высоты 50–150 км) являются определяющими 
для распространения радиоволн почти всех диапазонов, поскольку именно она вносят основной 
вклад в затухание радиоволн. В своих исследованиях мы учитываем, что основой «нагревных» 
методов исследований ионосферы служат знания о ее характеристиках в естественном, 
невозмущенном состоянии: ионизации, температуре, плотности, давлении, горизонтальной и 
вертикальной компонентах скорости плазмы, ионном составе и других параметрах.  

Метод исследования ионосферы Земли на основе создания искусственных периодических 
неоднородностей ионосферной плазмы (ИПН) при возмущении ее мощным КВ 
радиоизлучением разработан в НИРФИ ННГУ. Впервые явление резонансного (брэгговского) 
рассеяния пробных радиоволн на ИПН наблюдалось в 1975 г. на нагревном стенде «Зименки», 
а в настоящее время его исследование активно развивается на базе стенда СУРА [1–7]. 
Впоследствии метод был реализован на других нагревных стендах [8–17]. Он основан на 
возмущении ионосферы мощным КВ радиоизлучением и создании ИПН в поле стоячей волны, 
образующейся при отражении от ионосферы мощной радиоволны, излучаемой в зенит 
синфазно работающими передатчиками стенда. Механизмы образования неоднородностей 
различны в разных областях ионосферы. Неоднородности рассеивают пробные радиоволны, и 
при выполнении условия брэгговского рассеяния приемная установка принимает сигнал с 
высоким соотношением сигнал/шум в результате синфазного сложения волн, рассеянных 
каждой неоднородностью [2, 7]. 

Анализ высотно-временных вариаций амплитуды и времени релаксации сигнала, 
рассеянного ИПН, на основе разработанных способов позволяет получать совокупность 
динамических характеристик атмосферы на ионосферных высотах – параметры атмосферных 
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волн и атмосферной турбулентности, определять уровень турбопаузы, определять ширину и
глубину межслоевой E-F впадины в зависимости от гелиогеофизических условий и др. В этом
плане метод ИПН диагностики практически не имеет конкуренции по совокупности
определяемых в эксперименте параметров ионосферы и ее нейтральной компоненты.  

Основные результаты исследований нижней ионосферы методом создания ИПН
В итоге многолетних экспериментов с использованием стенда СУРА как источника

контролируемого возмущения в ионосфере методом резонансного рассеяния радиоволн на
ИПН в разных природных условиях получены сведения о пространственно-временных
характеристиках искусственного возмущения нижней ионосферы, уникальные данные о
параметрах и динамике плазмы и нейтральной компоненты регулярной ионосферы – 
температуре, электронной концентрации, скорости вертикального движения плазмы, 
параметрах спорадического слоя Е, включая его ионный состав, с высоким пространственно-
временным разрешением [2, 7]. На рис. 1 приведены примеры высотно-временных
зависимостей амплитуды сигнала, рассеянного ИПН, полученные сотрудниками НИРФИ
ННГУ при проведении экспериментов по единой методике квазинепрерывного нагрева на
стендах HAARP, Arecibo и СУРА [13, 15, 16]. В целом регистрации рассеянных сигналов при
существенно разной мощности нагревных средств аналогичны и характеризуют быстрые
процессы, происходящие в ионосфере. Они дают возможность экспериментально определить
интервалы высот, в которых происходит смена механизмов образования ИПН в D, E, F-
областях и межслоевой E-F впадине [7].   

Рис. 1. Высотно-временная зависимость амплитуды сигнала, рассеянного ИПН, в
экспериментах НИРФИ ННГУ на стендах HAARP в июне 2014 г. – а),  Arecibo в ноябре

2018 г.– б), СУРА августе 2021 г. и октябре 2023 г.– в) и в июле 2006 г. – г)  

Пример измерения скорости вертикального движения плазмы по фазе рассеянного сигнала
приведен на рис. 2. Налицо глубокие вариации скорости по величине и направлению, которые
обусловлены распространением атмосферных волн и естественной атмосферной
турбулентностью [2, 3, 7]. Получено, что скорости турбулентного и регулярного вертикального
движения близки по порядку величины и достигают нескольких м/с [7].

На основе полученных результатов коллектив ставит перед собой задачу продолжить
исследования искусственно возмущенной области ионосферы, создаваемой мощным КВ
радиоизлучением нагревного стенда СУРА, в том числе экспериментальные и теоретические
исследования по диагностике ионосферы и нейтральной атмосферы методом ИПН. Будет
продолжено исследование регулярной ионосферы, атмосферных волн и турбулентности, 
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спорадического слоя Е и его влияния на образование ИПН в области D. Будут проведены новые 
эксперименты по исследованию параметров ИПН, процессов их развития и релаксации при 
создании неоднородностей радиоволнами обыкновенной и необыкновенной поляризаций. 

 
Рис. 2. Зависимость скорости вертикального движения плазмы от времени на высотах 60 –

125 км (отрицательные значения отвечают движению вверх) 
 

В результате будут получены новые сведения о характеристиках E-F впадины, о структуре 
и динамике возмущенной области, скоростях распространения искусственного возмущения из 
области резонансного взаимодействия мощного излучения с ионосферной плазмой из области F 
на высоты нижней ионосферы, в том числе, о механизмах искусственного возмущения нижней 
ионосферы. Особое внимание уделяется исследованию феномена расслоения области D, 
условий его появления и определению характеристик. Это новый аспект исследования нижней 
ионосферы, доступный применению метода ИПН. 

 
Задачи дальнейших исследований ионосферы и нейтральной атмосферы  

методом ИПН на нагревных стендах 
Актуальность исследований ионосферы методом ИПН обусловлена важностью 

применения получаемых новых знаний об ионосфере и нейтральной атмосфере в прикладных 
задачах. Особенно это касается областей D и E, межслоевой E-F впадины (долины), которая 
может обеспечить волноводное (без отражения от земли) распространение коротких радиоволн, 
в том числе, на дальние расстояния, но практически недоступна традиционным методам. В 
этом плане метод исследования, основанный на создании и резонансном рассеянии радиоволн 
на ИПН дает уникальную возможность получать, а затем и использовать сведения о 
пространственно-временных свойствах и параметрах как невозмущенной ионосферы, так и 
нейтральной компоненты на ионосферных высотах с высоким пространственно-временным 
разрешением в разных широтно-долготных зонах, в том числе, с использованием 
высокоширотных стендов. Новые результаты экспериментальных исследований, полученные 
научным коллективом НИРФИ ННГУ и зарубежными коллегами, показывают, что отклик 
ионосферы на высокочастотный нагрев представляет собой более сложную картину, чем 
представлялось ранее [12, 14, 16, 17]. Например, эпизодически на некоторых высотах 
наблюдалась более длительная релаксация неоднородностей по окончании нагрева, чем 
обусловленная амбиполярной диффузией в Е-области и зависимостью от температуры 
коэффициентов прилипания-отлипания электронов в области D. Это обуславливает важность 
решения задачи моделирования процессов, происходящих при образовании и релаксации 
неоднородностей, что необходимо для дальнейшего увеличения точности применения метода 
при определении параметров ионосферы и нейтральной атмосферы, для более полного 
понимания результатов настоящих экспериментов и разработки оптимальных условий 
проведения экспериментов в будущем [2, 4, 6, 17].  
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