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Laser Sicherheitshinweise 

Hiermit erklärt die Firma LD Didactic GmbH,  
dass es sich bei dem angebotenen Lasersystem um einen Aufbau handelt, der sowohl in 

Komponenten als auch im fertigen Aufbau einem Laser der Klasse 3A, 3B oder 4 nach DIN EN 60 

825-1 entspricht. Typischerweise ist die Pumpdiode eine Nd:YAG Laser Klasse 4, ein HeNe Laser mit 

Auskoppler Klasse 3A, aber ein HeNe mit zwei hochreflektierenden Spiegeln nur Klasse 1. Bitte die 

Anleitung oder Aufkleber beachten. 

Aus Haftungsgründen dürfen diese Geräte oder Gerätesammlungen nicht an Privatleute verkauft 

werden. Der Einsatz von Lasern oberhalb Klasse 2 an allgemeinbildendenden Schulen ist in 

Deutschland nicht gestattet.  

Gewerbliche Abnehmer, Schulen und Universitäten werden hiermit darauf hingewiesen, dass aus dem 

missbräuchlichen Betrieb der Geräte ein Verletzungsrisiko, speziell für die Augen, resultiert.  

Dem Benutzer obliegt insbesondere:  
- Die relevanten Unfallverhütungsvorschriften zu beachten, zur Zeit beispielsweise BGV B2 und BGI 

832  

- die OstrV zu beachten „Verordnung zum Schutz der Beschäftigten vor Gefährdungen durch 

künstliche optische Strahlung“ 
- Der Betrieb der Geräte muss rechtzeitig beim Gewerbeaufsichtsamt und der Berufsgenossenschaft 

angezeigt werden.  
- Der Betreiber muss schriftlich einen Laserschutzbeauftragten benennen, der für die Einhaltung der 

Schutzmaßnahmen verantwortlich ist.  
- Die Geräte sind nur für den Betreib in umschlossenen Räumen vorgesehen, deren Wände die 

Ausbreitung des Laserstrahls begrenzen.  
- Der Laserbereich ist deutlich und dauerhaft zu kennzeichnen.  
- Ab Laserklasse 4 ist eine Laser-Warnleuchte am Raumzugang notwendig.  

- Die Geräte sind zur Lehre und Ausbildung in Berufsschulen, Universitäten oder ähnlichen 

Einrichtungen gedacht.  
- Die Geräte nur innerhalb der in den Anleitungen vorgegebenen Betriebsbedingungen betreiben.  
- Die Geräte nur von entsprechend unterwiesenen Mitarbeitern und Studierenden benutzen lassen. 

Bei Handhabung des Gerätes durch Studenten müssen diese von entsprechend geschultem Personal 

überwacht werden.  

 



 

Als praktische Ratschläge:  
- Vor dem Einschalten auf Beschädigungen prüfen  

- Nicht in den Strahl blicken  
- Den Laserstrahl so führen, dass sich keine Personen, Kinder oder Tiere ungewollt im Strahlbereich 

befinden können  
- Den Laserstrahl nicht auf reflektierende Flächen oder in den freien Raum richten  
- Nicht mit reflektierenden Gegenständen im Laserstrahl arbeiten  
- Armbanduhr, Schmuck und andere reflektierende Gegenstände ablegen.  
- Beim Einsetzen optischer Bauteile den Laserstrahl an der Quelle abschalten oder geeignet 

abdecken, bis die Bauteile positioniert sind  
- Teilweise wird mit unsichtbaren Laserstrahlen gearbeitet, deren Verlauf nicht sichtbar ist.  
- Falls nötig, Laserschutzbrillen oder Laserjustierbrillen benutzen.  

Die Firma LD Didactic GmbH haftet nicht für eine missbräuchliche Verwendung der Geräte durch den 

Kunden.  
Der Kunde verpflichtet sich hiermit die Geräte nur entsprechend der rechtlichen Grenzen einzusetzen 

und insbesondere den Laserstrahl nicht im Straßenverkehr oder Luftraum zu verwenden oder in 

anderer Form auf Personen und Tiere zu richten.  

Der Kunde bestätigt, das er befugt ist, diesen Laser zu erwerben und zu verwenden. 



 
Laser Safety Notes 

LD Didactic GmbH informs the customer this is laser equipment of either class 3A, 3B or 4 according 

to IEC 60 825. Typically a Nd:YAG Pump Diode is class 4, a HeNe with output coupler class 3A, but a 

HeNe with two high reflecting is mirrors only class 1. Please see manual or attached labels for the 

exact specification of the laser.  
Special safety precautions are necessary. Please check with local regulations. Typically the use 

requires a safety sign and a warning lamp that is on when the laser is activated and it might also be 

necessary to do and document a risk assessment. 

Due to product liability, the laser must not be sold to individual persons. Companies, higher schools  

and universities might use it, but are notified that misuse of the laser poses a health risk, especially for 

the eyes. 

The intended use of this equipment is for lessons, education and research in higher schools, 

universities or similar institutions.  

Do not operate the devices outside parameters specified in the manual.  

People using the laser must be properly trained and students must be supervised. 

As a general guidance, the user is advised to:  
- Check the laser for damages before use 

- Not to look into the beam  
- Take necessary measures that no people or animals can accidentally enter the beam area  
- do not direct the beam on reflecting surfaces or into public areas  
- do not work close to the light path with reflecting tools  
- take off all jewelry and wristwatches when working with the laser to avoid reflections  
- While placing or removing optical parts in the light path, switch off the laser or cover its exit  
- Some of the experiments use invisible laser beams, but still might hurt the eye  
- use laser protection glasses or laser adjustment glasses where necessary  
- supervise students by trained personnel when they work with the laser system  
- use the laser system only as described in the instruction manuals  

Customer acknowledges the receipt of this information.  

The customer indemnifies LD Didactic from liability for any damages that occur because of misuse of 

the laser.  

The customer confirms that he will obey all local regulations and is allowed by law to buy and use the 

laser system.  
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Maxwell’s	equations

1.0	 Introduction
One	essential	desire	of	human	beings	is	to	use	information	
faster	than	others	for	their	own	benefit.	In	his	publication	
„Die	 Quasioptik	 der	 Ultrakurzwellenleiter“	 H.Buchholz	
expressed	in	1939	the	idea	to	guide	light	signals	along	light	
conducting	material	and	to	use	them	for	data	transmission.	
But	 only	with	 the	 development	 of	 the	 semiconductor	 la-
ser	 in	 1962,	 Buchholz’	 idea	 was	materialising	 by	 using	
just	 these	 lasers	and	fibres	as	 light	 transmitting	medium.	
Suddenly,	 simple	and	powerful	 light	 sources	 for	 the	gen-
eration	and	modulation	of	light	were	available.	Today	the	
transmission	of	signals	using	 laser	diodes	and	fibres	has	
become	an	indispensable	technology	and	the	on-going	de-
velopment	in	this	area	is	one	of	the	most	important	within	
this	 century.	Following	 the	 achievements	of	 communica-
tion	 technology	 the	development	of	fibre	optical	 sensors	
began	 in	 1977.	 Here	 the	 laser	 gyroscope	 for	 navigation	
has	to	be	emphasised	in	particular.	This	new	technology	
is	based	on	well	known	fundamentals	in	a	way	that	no	new	
understanding	has	to	be	created.	Still,	there	is	a	challenge	
with	respect	 to	 the	technical	realisation	keeping	in	mind	
that	the	light	has	to	be	guided	within	fibres	of	5	mm	diam-
eter	only.	Appropriate	fibres	had	to	be	developed	and	me-
chanical	components	of	high	precision	had	to	be	disposed	
for	coupling	the	light	to	the	conductor	(fibre)	and	for	the	
installation	of	 the	fibres.	Further	goals	 are	 the	 reduction	
of	transmission	losses,	optical	amplification	within	the	fi-
bre	as	 replacement	of	 the	electronic	amplifiers	 and	 laser	
diodes	of	 small	 band	width	 to	 increase	 the	 transmission	
speed	of	signals.

2.0	Basics
There	 is	 hardly	 any	 book	 in	 optics	 which	 does	 not	 con-
tain	the	experiment	of	Colladan	(1861)	on	total	reflection	
of	light.	Most	of	us	may	have	enjoyed	it	during	the	basic	
physics	course.

Guiding of light
Fig. 1:  Colladan’s (1861) experiment for the demonstration 
of the total reflection of light

An	intense	light	beam	is	introduced	into	the	axis	of	an	out	
flowing	water	jet.	Because	of	repeated	total	reflections	the	
light	cannot	leave	the	jet	and	it	is	forced	to	follow	the	wa-
ter	jet.	It	is	expected	that	the	jet	remains	completely	dark-
ened	unless	the	surface	contains	small	disturbances.	This	
leads	to	a	certain	loss	of	light	and	it	appears	illuminated	all	
along	its	way.	Effects	of	light	created	in	this	way	are	also	
known	as	„Fontaines	lumineuses“.	They	generally	please	
the	onlookers	of	water	games.	This	historical	experiment	
already	shows	the	physical	phenomena	which	are	basic	in	
fibre	optics.	The	difference	of	this	light	conductor	to	mod-
ern	fibres	is	the	dimension	which	for	a	fibre	is	in	the	order	
of	magnitude	of	 the	wavelength	of	 light.	If	we	designate	
the	diameter	of	a	light	guide	with	d	we	can	state:

„Fontaines	lumineuses“ d	>>	l
Multimode	fibres d	>	l
Monomode	fibres d	≈	l

For	the	fibres	manufactured	nowadays	this	leads	to	further	
effects	which	can	not	be	described	exclusively	by	total	re-
flection.	Their	understanding	is	of	special	importance	for	
optical	 communication	 technology.	 In	 the	 following	 we	
will	 deduce	 these	 effects	 based	 on	Maxwell’s	 equations.	
To	work	with	fibre	optics	it	is	not	compulsory	to	know	this	
formalism.	 It	 is	 sufficient	 to	 familiarise	oneself	with	 the	
results.	When	we	derive	these	formulae	within	the	context	
of	 this	manual	we	 do	 it	 because	 it	 has	 never	 been	 done	
before	in	a	comprehensive	way	within	the	ordinary	teach-
ing	manuals	with	some	exceptions	[1]	or	it	has	been	insuf-
ficiently	dealt	with	vis	a	vis	the	multitude	of	various	light	
conductors.	

2.1	Maxwell’s	equations
We	begin	with	Maxwell’s	 equations	which	 are	 the	 basis	
for	the	description	of	all	electromagnetic	phenomena.	The	
equations	 are	 presented	 in	 two	 ways.	 First	 we	 describe	
the	 state	 of	 the	vacuum	by	 introducing	 the	 electric	field	

strength	 E


	 and	 the	magnetic	field	 strength H


.	This	de-
scription	 surely	 gives	 a	 sense	 whenever	 the	 light	 beam	
propagates	within	free	space.	The	situation	will	be	differ-
ent	when	the	light	beam	propagates	in	matter.	In	this	case	
the	properties	of	matter	have	to	be	respected.	Contrary	to	
vacuum,	matter	can	have	electric	and	magnetic	properties.	

These	are	the	current	density j


,	the	displacement	 D


	and	

the	magnetic	induction B


.

Maxwell’s Equations:

0 	and	 0EH E H
t

∂ε ε σ
∂

∇ × = ⋅ ⋅ + ⋅ ∇⋅ =


  

or	

DH j
t

∂
∂

∇ × = +





(	2.1.1	)
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0
4	and	HE E

t
∂ πµ µ ρ
∂ ε

∇ × = − ⋅ ⋅ ∇⋅ = ⋅


 

or	

BE
t

∂
∂

∇ × = −




(	2.1.2	)

, ,
x y z

∂ ∂ ∂
∂ ∂ ∂

 
∇ =    , rot∇× ≡ 	, div∇⋅ ≡ 	

e0		is	the	dielectric	constant	of	the	free	space.	It	represents	
the	 ratio	of	unit	 charge	 (As)	 to	unit	field	 strength	
(V/m)	and	amounts	to	8.859	10-12	As/Vm.	

e	 is	 the	dielectric	constant	of	matter.	 It	characterises	 the	
degree	of	extension	of	an	electric	dipole	acted	on	

by	an	external	electric	field E


.	The	dielectric	con-
stant	 e	 and	 the	 susceptibility	c	 are	 linked	 by	 the	

following	relation:
0

0

1 ( )ε χ ε
ε

= ⋅ +
.	The	product	

0 E Dε ε⋅ ⋅ =
 

	 is	 therefore	 called	 „dielectric	 dis-
placement“	or	displacement.

s	 is	 the	 electric	 conductivity	 of	 matter	 .The	 product	
E jσ ⋅ =




represents	the	electric	current	density

m0		is	the	absolute	permeability	of	the	free	space.	It	gives	
the	context	between	the	unit	of	an	induced	voltage	
(V)	due	to	the	presence	of	a	magnetic	field	H	of	unit	
Am/s.	It	amounts	to	1.256	10-6	Vs/Am.

m		is	like	e	a	constant	of	the	matter	under	consideration.	It	
describes	 the	degree	of	displacement	of	magnetic	
dipoles	 under	 the	 action	 of	 an	 external	magnetic	

field H


.	 The	 product	 of	 permeability	m	 and	mag-

netic	field	strength	H


	is	called	magnetic	induction	

0B Hµ µ= ⋅ ⋅
 

	.
r	 	 is	 the	charge	density.	 It	 is	 the	source	which	generates	

electric	fields.	The	operation	∇ or	div	provides	the	
source	strength	and	 is	a	measure	for	 the	 intensity	
of	the	generated	electric	field.	The	charge	carrier	is	
the	electron	which	has	the	property	of	a	monopole.	
On	the	contrary	there	are	no	magnetic	monopoles	

but	only	dipoles.	Therefore	 H∇⋅


	is	always	zero.

Within	 the	 frame	of	 further	 considerations	we	will	 refer	
to	fibres	 as	 light	 conductors	which	 are	made	of	 glass	 or	
similar	matter.	They	have	no	electric	conductivity	(e.	g.	s	

=	0),	no	free	charge	carriers	( 0E∇ =


)	and	no	magnetic	
dipoles	(	m	=	1).	Therefore	the	Maxwell	equations	adapted	
to	our	problem	are	as	follows:

0

0

		and	 0

		and	 0

EH H
t

HE E
t

∂ε ε
∂

∂µ
∂

∇ × = ⋅ ⋅ ∇⋅ =

∇ × = − ⋅ ∇⋅ =



 



 

(	2.1.3	)	

(	2.1.4	)

2.2	Wave	Equation
Using	 the	 above	 equations	 the	 goal	 of	 the	 following	 cal-
culations	will	be	to	get	an	appropriate	set	of	equations	de-
scribing	the	propagation	of	light	in	glass	or	similar	matter.	
After	this	step	we	will	introduce	the	boundary	conditions	
which	have	to	be	implemented	due	to	the	use	of	fibre	glass.	
Let’s	do	 the	first	 step	first.	Let’s	 eliminate	 the	magnetic	

field	strength	 H


	to	get	an	equation	which	only	contains	

the	electric	field	strength E


.	By	forming	the	time	deriva-
tion	of	(	2.1.3)	and	executing	the	operation	∇ × on	(	2.1.4)	
we	get:

2

0 2

0

0

( 	 ) 0

H E
t t

HE
t

∂ ∂ε ε
∂ ∂

∂µ
∂

∇ × − ⋅ ⋅ =

∇ × ∇ × + ⋅∇ × =








By	substitution	we	get:
2

0 0 2( ) 0EE
t

∂µ ε ε
∂

∇ × ∇ × + ⋅ ⋅ =




(	2.2.1	)

The	following	vector	identity	is	always	valid:

( 	 ) ( )E E E∇ × ∇ × = −∇⋅∇ + ∇ ∇⋅
  

,

where	 ∇⋅∇ = ∆ 	 is	 the	abbreviation	for	 the	Laplace	op-
erator

2 2 2

2 2 2x y z
∂ ∂ ∂

∂ ∂ ∂
∆ = + +

Let’s	use	the	identity	for	(	2.2.1	)	we	get:

2

0 0 2 0EE
t

∂µ ε ε
∂

∆ − ⋅ ⋅ ⋅ =




(	2.2.2	)

Using	for	the	velocity	of	light	in	vacuum	the	relation

0 0

1c
ε µ

=
⋅

and	Maxwell’s	 relation	 n ε µ= ⋅ 	 (	 n	 is	 the	 refractive	
index	),	we	get	with	m	=	1	as	a	result	the	wave	equation	for	

the	electric	field	 E


	in	glass:

2 2

2 2 0n EE
c t

∂
∂

∆ − ⋅ =




.
(	2.2.3	)

In	the	same	way	we	get	the	wave	equation	for	the	magnetic	
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field	 H


2 2

2 2 0n HH
c t

∂
∂

∆ − ⋅ =




(	2.2.4	)

The	 first	 step	 of	 our	 considerations	 has	 been	 completed.	
Both	 equations	 contain	 a	 term	which	 describes	 the	 spa-
tial	dependence	(Laplace	operator)	and	a	term	which	con-
tains	the	time	dependence.	Both	equations	seem	to	be	very	
„theoretical“	 but	 their	 practical	 value	 will	 soon	 become	
evident.	Now	we	have	to	clarify	how	the	wave	equations	
will	 look	like	when	the	light	wave	hits	a	boundary.	This	
situation	is	given	whenever	two	media	of	different	refrac-
tive	index	are	in	mutual	contact.	After	having	performed	
this	step	we	will	be	in	a	position	to	derive	all	laws	of	optics	
from	Maxwell’s	 equations.	 Let’s	 return	 to	 the	 boundary	
problem.	This	can	be	solved	in	different	ways.	We	will	go	
to	the	simple	but	safe	way	and	request	the	validity	of	the	
law	of	conservation	of	energy.	This	means	that	the	energy	
which	arrives	per	unit	time	at	one	side	of	the	boundary	has	
to	leave	it	at	the	other	side	in	the	same	unit	of	time	since	
there	can	not	be	any	loss	nor	accumulation	of	energy	at	the	
boundary.	Up	to	now	we	have	not	yet	determine	the	energy	
of	an	electromagnetic	field.	This	will	be	done	next	for	any	
medium.	The	power	available	per	unit	volume	dW	consists	
of	two	parts	as	will	be	shown	now.	The	power	is	generated	

by	a	current	density	 j


at	a	field	strength E


.	We	have:
W j Eδ = ⋅




.

We	calculate	 j E⋅




	using	the	vector	identity

( ) ( ) ( )E H H E E H∇⋅ × = ⋅ ∇ × − ⋅ ∇ ×
     

as	well	as	(	2.1.1	)	and	(	2.1.2	)	we	get:

( ) B DW E H H E
t t

∂ ∂δ
∂ ∂

= −∇⋅ × − ⋅ − ⋅
 

   

with		 0 0	and	B H D Eµ µ ε ε= ⋅ ⋅ = ⋅ ⋅


  

2 21 1
2 20 0( ) ( )W E H H E

t
∂δ µµ ε ε
∂

= −∇⋅ × − ⋅ + ⋅ ⋅
   

It	 is	 evident	 that	 the	 second	 term	 in	 the	 above	 equation	
contains	 the	 stored	 electromagnetic	 energy	 per	 unit	 vol-
ume	Wem

2 2
0 0

1 1
2 2emW H Eµµ εε= ⋅ + ⋅

 

The	first	term	contains	the	energy	flux	density	vector

S E H= ×
  

also	 known	 as	 Poynting	 vector.	 The	 conservation	 of	 en-
ergy	can	now	simply	be	expressed	as	follows:

emWW S j E
t

∂∂
∂

− = ∇⋅ + = − ⋅
 



We	required	that	the	energy	flux	in	medium	1	flowing	to	
the	boundary	is	equal	to	the	energy	flux	in	medium	2	flow-
ing	 away	 from	 the	 boundary.	Let’s	 choose	 as	 normal	 to	
the	boundary	the	direction	of	the	z-axis	of	the	coordinate	

system.	The	following	must	be	true:

1 2
z zS S=
 

1 1 2 2( ) ( )z zE H E H× = ×
   

By	evaluation	of	the	vector	products	we	get:

1 1 1 1 2 2 2 2
x y x y x y x yE H H E E H H E⋅ − ⋅ = ⋅ − ⋅

.	

Since	 the	 continuity	 of	 the	 energy	flux	must	 be	 assured	
for	any	type	of	electromagnetic	field	we	have	additionally:

1 2
x xE E= 1 2

x xH H=
1 2
y yE E= 1 2

y yH H=

1 2
tg tgE E= 1 2

tg tgH H=

This	set	of	vector	components	can	also	be	expressed	in	the	
following	way:

2 1( ) 0	and	 0E N E E H∇ × = × − = ∇ × =
    

(	2.2.5	)

N


is	 the	 unit	 vector	 and	 vertically	 oriented	 	 to	 the	
boundary.	Substituting	 (	2.2.5	 )	 into	 (	2.1.1	 )	or	 (	2.1.2	 )

it	can	be	shown	that	the	components	of	 0D Eεε= ⋅
 

	and	

0B Hµµ= ⋅
 

	in	the	direction	of	the	normal	 N


	are	con-

tinuous,	but	 E


	and	 H


are	discontinuous	in	the	direction	
of	 the	normal.	Let’s	summarise	 the	results	regarding	the	
behaviour	of	a	field	at	a	boundary:

1 2
tg tgE E= 1 2

norm normD D=

1 2
tg tgH H= 1 2

norm normB B=

By	means	of	the	equations	(	2.1.1	),	(	2.1.2	)	and	the	above	
continuity	conditions	we	are	now	in	a	position	to	describe	
any	situation	at	a	boundary.

2.3	Fibres	as	light	wave	conductors
Glass	fibres	as	wave	conductors	have	a	circular	cross	sec-
tion.	They	consist	of	a	core	of	refractive	index	nk.	The	core	
is	surrounded	by	a	glass	cladding	of	refractive	index	nm	
slightly	 lower	 than	 nk.	Generally	 the	 refractive	 index	 of	
the	core	as	well	as	the	refractive	index	of	the	cladding	are	
considered	homogeneously	distributed.	Between	core	and	
cladding	there	is	the	boundary	as	described	in	the	previous	
chapter.	The	final	direction	of	the	beam	is	defined	by	the	
angle	θe	under	which	the	beam	enters	the	fibre.	Unintended	
but	not	always	avoidable	radiation	and	cladding	waves	are	
generated	 in	 this	way.	For	 reasons	of	mechanical	protec-
tion	and	absorption	of	the	radiation	waves	the	fibre	is	sur-
rounded	by	a	protective	layer.
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Θ
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Fig. 2:  Step index fibre

Fig.	2	reveals	some	basic	facts	which	can	be	seen	without	
having	solved	Maxwell’s	equations.	Taking	off	from	geo-
metrical	considerations	we	can	state	that	there	must	be	a	
limiting	angle	Qc	for	 total	 reflection	at	 the	boundary	be-
tween	cladding	and	core.

cos( ) m
c

k

n
n

Θ = (	2.3.1	)

For	 the	angle	of	 incidence	of	 the	fibre	we	use	 the	 law	of	
refraction:

0

sin( )
sin( )

ec k

c

n
n

Θ
=

Θ
and	receive:

0

arcsin( sin )k
ec c

n
n

Θ = ⋅ Θ
.

Using	equation	(	2.3.1	)	and	with	no	=	1	for	air	we	finally	
get:

2 2arcsin( )ec k mn nΘ = −
The	limiting	angle	Qec	represents	half	the	opening	angle	of	
a	cone.	All	beams	entering	within	this	cone	will	be	guided	
in	the	core	by	total	reflection.	As	usual	in	optics	here,	too,	
we	can	define	a	numerical	aperture	A:

2 2sin ec k mA n n= Θ = − (	2.3.2	)

Depending	under	which	angle	the	beams	enter	the	cylindri-
cal	core	through	the	cone	they	propagate	helical	like.	This	
becomes	 evident	 if	 we	 project	 the	 beam	 displacements	
onto	the	XY-plane	of	the	fibre.	The	direction	along	the	fi-
bre	is	considered	as	the	direction	of	the	z-axis.	A	periodi-
cal	pattern	is	recognised.	It	can	be	interpreted	as	standing	
waves	in	the	XY-plane.	In	this	context	the	standing	waves	
are	called	oscillating	modes	or	simply	modes.	Since	these	
modes	are	built	up	in	the	XY-plane,	e.g.	perpendicularly	to	
the	z-axis,	they	are	also	called	transversal	modes.	Modes	
built	up	along	the	z-axis	are	called	longitudinal	modes.	For	
a	deeper	understanding	of	the	mode	generation	and	their	
properties	we	are	now	going	 to	 solve	 the	Maxwell	 equa-
tions	with	respect	of	the	fibre	boundary	conditions.

A

B

Fig. 3:  Helix (A) and Meridional beam (B)

First	we	are	only	interested	in	the	core	waves.	In	this	re-
gard	the	cladding	can	be	considered	an	infinitely	extended	
medium	of	 refractive	 index	nm	 .	Because	of	 the	cylindri-
cal	 symmetry	 of	 the	 fibre	 the	Cartesian	 coordinates	 are	
replaced	by	cylindrical	coordinates.

X

Y

Z

r

φ

2a

nknm

Fig. 4:  Introduction of cylindrical coordinates

2.4	Wave	Equation	for	Glass	Fibres
Let’s	solve	the	wave	equations	which	we	quote	once	again:

2 2

2 2 0n EE
c t

∂
∂

∆ − ⋅ =




.
(	2.4.1	)

2 2

2 2 0n HH
c t

∂
∂

∆ − ⋅ =




(	2.4.2	)

Up	 to	 now	 there	was	 no	need	 to	make	 any	 assumptions	

for	 E


	and H


.	This	will	be	done	now.	We	presume	 that	
the	wave	will	propagate	in	the	z-direction	of	the	fibre	as	
shown	 in	Fig.	3.	 It	 can	propagate	 in	zigzag	or	 any	other	
way.	 Therefore	 we	 introduce	 the	 general	 coefficient	 of	
propagation	b	which	will	be	determined	in	the	course	of	
further	calculations.
Statement:

ˆ ˆ( , , , ) ( )i t i t i z
r r rE r z t E e E e eω ω βφ ∗ − − ⋅= ⋅ + ⋅ ⋅

ˆ ˆ( , , , ) ( )i t i t i zE r z t E e E e eω ω β
φ φ φφ ∗ − − ⋅= ⋅ + ⋅ ⋅

ˆ ˆ( , , , ) ( )i t i t i z
z z zE r z t E e E e eω ω βφ ∗ − − ⋅= ⋅ + ⋅ ⋅ (	2.4.3	)

ˆ ˆ ( , , )			i=r	,	 ,	zi iE E r zφ φ= 	
are	 complex	 functions	depending	only	on	 the	 local	 posi-
tion.	They	are	also	called	„phasors“.	The	*	 indicates	 the	
complex	conjugate	value,	i.	g.	replacement	of	i	by	-i.	First	
we	solve	the	wave	equation	for	the	z-component	Ez(r,f,z,t)	

of	 E


	and H


.	Then	we	use	the	Maxwell	equations	to	get	
the	Er-	and	Ef-	components.	Using	the	wave	number	k,	the	
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wave	length	l,	the	frequency	n	and	the	angular	frequency	
w,

2k π
λ

=
and	 2ω π ν= ⋅ 	with	

cν
λ

=

the	wave	equations		and	(	2.4.1	)	and	(	2.4.2	)	change	as	
follows:

2 2( ) 0zk n E∆ + ⋅ = (	2.4.4	)

2 2( ) 0zk n H∆ + ⋅ = (	2.4.5	)

We	 now	 use	 the	 Laplace	 operator	 in	 cylindrical	 coordi-
nates:

2 2

2 2 2

1 1( )cyl r
r r r r z

∂ ∂ ∂ ∂
∂ ∂ ∂φ ∂

∆ = ⋅ ⋅ + ⋅ +
,

which	we	change	for	our	purposes	in	the	following	way:

,cyl r zφ∆ = ∆ + ∆
The	transversal	and	the	longitudinal	part	of	the	differential	
equations	are	 separated	by	 introduction	of	 the	 following	
product:

( , ) ( )z z zE E r E zφ= ⋅
In	this	way	we	get	from	(	2.4.4	):

2 2( ) ( , ) ( ) 0cyl z zk n E r E zφ∆ + ⋅ ⋅ ⋅ = (	2.4.6	)

With	the	relation

( ( , ) ( )) ( , )
( , ) ( )

z z z z

z z

E r E z E E r
E r E z

φ φ
φ

∆ ⋅ = ⋅ ∆
+ ⋅ ∆

and	with	equation	(	2.4.1	)we	have:
2 2 2

,( ) ( ) ( , ) 0z r zE z k n E rφ β φ⋅ ∆ − + =
For	simplification	let’s	write:

2 2 2 2
rnk n k β= −

Since	Ez(z)	may	have	values	different	from	zero	we	must	
request:

2
,( ) ( , ) 0r rn zk E rφ φ∆ + ⋅ = (	2.4.7	)

To	solve	the	differential	equation	(	2.4.7	)	we	use	again	for	
Ez(r,f)	a	statement	of	the	type

Ez(r) Ez(f)
Since	the	fibre	shows	a	rotational	symmetry	with	respect	
to	f	a	useful	solution	in	the	sense	of	physics	can	only	be	
obtained	if	we	request Ez(f) = Ez(f+2p).	This	leads	us	to	
the	following	statement:

2( ) i p
zE e π φφ ⋅ ⋅ ⋅ ⋅= ,

with	p	as	an	integer.	By	substitution	into	equation	(2.4.7)	
we	get:

2
, ( ( ) ( )) ( ) ( ) 0r z z rn z zE r E k E r Eφ φ φ∆ ⋅ + ⋅ ⋅ =

( ),

2

2

( ( ) ( )) ( )

( ) ( )

r z z z r z

z z

E r E E E r

pE r E
r

φ φ φ

φ

∆ ⋅ = ⋅ ∆

− ⋅ ⋅

and	

2
2

2( ) ( ) ( ) 0z r rn z
pE k E r
r

φ
 

⋅ ∆ − + ⋅ = 
 

Since	Ez(f)	 is	 not	 always	 zero,	 the	bracket	must	be	 zero.	
After	multiplication	with	r2

2 2 2 2( ) ( ) 0r rn zr p r k E r⋅ ∆ − + ⋅ ⋅ =
and	evaluation	of	the	Laplace	operator	which	only	acts	on	
the	radial	components	we	finally	get:

2
2 2 2 2

2 ( ) 0rn zr r r k p E r
r r

∂ ∂
∂ ∂

 
⋅ + ⋅ + ⋅ − ⋅ =   .

Let’s	follow	our	habits	and	substitute	r	krn	=x	and	Er	=	y.	
The	result	will	be:

2
2 2 2

2x x (x ) 0
x x
y y p y∂ ∂

∂ ∂
⋅ + ⋅ + − ⋅ = (	2.4.8	)

2.5	Solving	the	Wave	Equation	with	
Bessel	Functions

This	 is	 the	 differential	 equation	 for	 cylindrical	 func-
tions.	Only	 for	 special	 values	of	 p	 it	 can	be	 represented	
by	 elementary	 functions.	This	 differential	 equation	 kept	
Mr.	 Bessel	 (1784-1895),	 Mr.	 Neumann	 (1798-1895)	 and	
Mr.	Hankel	(1814-1899)	restless	till	they	found	a	solution.	
Anyhow,	it	was	not	found	in	connection	with	fibre	optics.	
For	the	reader	who	worked	on	microwaves	it	is	clearly	vis-
ible	 that	 this	 equation	 is	 also	 used	 to	 solve	 problems	 of	
wave	propagation	within	electric	waveguides.	The	differ-
ence	with	respect	 to	waveguides	is	 that	we	consider	non-
conductive	 instead	 of	 conductive	matter.	A	 total	 of	 four	
solutions	is	known	for	equation	(	2.4.8	).	Generally	these	
solutions	 are	 called	 cylindrical	 functions.	 Three	 basic	
types	 of	 cylindrical	 functions	 exist.	 The	 first	 type	 pre-
sumes	integer	values	for	p.
1.	Type		 Bessel	-	Function  Jp(x), p integer
Neumann	 found	 the	 second	 type	 of	 cylindrical	 function.	
He	presented	the	solution	for	non-integer	values	of	p.

2.	Type	 Neumann	-	Function	 Nn(x),	n	arbitrary

Finally	 Hankel	 evaluated	 the	 third	 type	 of	 cylindrical	
function.	 He	 introduced	 a	 complex	 (Hankel	 function	 1.	
type)	and	a	complex	conjugated	(Hankel	function	2.	type)	
composition	of	Bessel-	and	Neumann-functions:

3.	Type	
( ) ( )
( ) ( )

(1)

(2)

p p p

p p p

H J x i N x

H J x i N x

= + ⋅

= − ⋅
For	each	of	the	presented	solutions	there	exist	also	modi-
fied	versions.	Here	x	is	substituted	by	ix.	For	the	cladding	
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of	the	fibre	we	need	a	solution	which	is	real.	Therefore	the	
modified	Hankel	function	is	used	here	[	4	].	Since	the	dif-
ferential	equation	(	2.4.8	)	is	homogenous	(	the	right	side	=	
0),	also	linear	combinations	of	the	solutions	fulfil	the	equa-
tion.	Fortunately	the	actual	physical	situation	reduces	the	
number	of	solutions.	The	Neumann	-function	has	the	prop-
erty	that	it	turns	to	infinity	for	x→0	or	r	→	0.	That	means	
that	the	fields	would	be	infinite	in	the	centre	of	the	fibre.	
Since	that	is	not	in	agreement	with	the	reality	this	solution	
has	to	be	disregarded.	The	Bessel-function	has	finite	val-
ues	in	the	centre	of	the	fibre.	For	larger	values	of	x	or	r	the	
Neumann-	and	the	Bessel-function	oscillate	like	the	sine	
or	cosine.	In	so	far	the	Bessel-function	is	a	suitable	solu-
tion	for	the	core.	For	the	cladding	we	need	in	addition	an	
attenuation	of	the	field.	Here	the	modified	Hankel-function	
offers	a	promising	solution.	For	x→0	or	r	→	0	it	turns	to	
infinity	but	we	only	need	it	for	the	range	r	≥	a	(cladding).	
For	the	range	r	≤	a	(core)	we	shall	use	the	Bessel-function.	
For	 solving	 the	 problems	 at	 the	 boundary	 between	 core	
and	cladding	we	shall	use	the	continuity	conditions	of	the	
components	of	E	and	H	for	the	transition	from	core	to	clad-
ding	and	fit	the	Bessel-	and	Hankel-function	for	r	=	a.	Let’s	
find	first	the	solution	for	the	core.	For	any	integer	value	of	
p	the	Bessel-function	is:

( )

2

0

( 1)
( ) ( ) 2

( ) 1 2 3 ..... , 				 0 1

p mmi

p
m

xJ
m p m

m m

+=∞

=

−  = ⋅  ∏ ⋅∏ +
= ⋅ ⋅ ⋅ ⋅ =

∑
∏ ∏

(	2.5.1	)

Argument X of Bessel Function
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Fig. 5:  Fig. 5 : Bessel-function for p=0 and p=1

The	solution	of	(	2.4.7	)	is:
2( , ) ( ) i p

z k E p rnE r C J r k e π φφ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ (	2.5.2	)

2( , ) ( ) i p
z k H p rnH r C J r k e π φφ − ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ (	2.5.3	)

with	the	range:

r	≤	a		 and	
2 2 2 2 2
rn rk kk k k n β= = − .

E(r, )φ

φ r

Fig. 6:  Solution of Bessel-function for p=0

Fig.	6	presents	the	solution	for	p=0. Because	of	the	f	de-
pendence	 the	 rotational	 symmetry	 is	 lifted	 for	 solutions	
with	p≠0.	Already	now	we	see	how	the	electric	field	will	
establish	within	the	core.	It	also	gets	clear	that	the	radius	
a	of	the	fibre	will	be	decisive	for	the	order	p	of	the	modes.	
In	the	radial	direction	of	the	fibre	we	observe	a	main	maxi-
mum	at	r = 0	and	further	aside	maxima	or	minima	which	
are	also	called	nodes.	The	number	of	nodes,	which	will	lat-
er	be	characterised	by	the	counter	index	q,	is	determined	
by	the	diameter	of	the	fibre	as	well	as	by	the	solution	of	the	
wave	equation	within	 the	cladding.	After	having	chosen	
a	suitable	cylindrical	function	for	the	solution	within	the	
cladding,	it	has	to	be	ensured	that	it	matches	the	continuity	
conditions	for	the	electric	and	magnetic	field	at	the	bound-
ary	between	core	and	cladding.	This	leads	to	the	complete	
solution.	For	the	waves	within	the	cladding,	r	≥	a	,	we	want	
to	achieve	that	the	radial	field	of	the	core	rapidly	decreases	
in	the	cladding	to	favour	the	guidance	of	waves	within	the	
core.	As	solutions	of	the	differential	equation	we	use	the	
modified	Hankel-function:	but	which	 type?	We	first	 con-
sider	 both	 types.	 The	modified	Hankel-function	will	 be	
designated	by	K:

(1) 2( ) 		,	 1rmirk
p rm rm

rm

K irk e rk
r kπ

≈ ⋅ >>
⋅ ⋅

(2) 2( ) 		,	 1rmirk
p rm rm

rm

K irk e rk
r kπ

−≈ ⋅ >>
⋅ ⋅

(The	detailed	expansion	of	the	modified	Hankel-function	
is	shown	in	chapter	6.1	).	The	physical	situation	which	we	
are	facing	requires	that	the	fields	E	and	H	are	attenuated	
monotonously	in	the	cladding	and	approach	zero	for	r	→	∞.	
This	can	only	be	achieved	by	the	Hankel-function	K(1)	un-
der	the	condition	that	rk	is	purely	imaginary.	In	this	case	
the	exponent	of	the	e-function	becomes	real	and	negative	
which	 is	 necessary	 for	 attenuation.	Let’s	 remember, r	 is	
always	real	but
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2 2 2 2
rm mk k n β= − 	

2 2 2
rm mk k n β= −

,

and	km	is	imaginary	if
2 2 2

mk nβ > (	2.5.4	)

Here	we	 get	 the	 first	 hint	 for	 the	 required	 coefficient	 of	
propagation	b	.	Obviously	the	coefficient	of	propagation	of	
the	core	must	be	greater	than	the	coefficient	of	propagation	
of	the	cladding,	since	we	defined	initially	b	as	coefficient	
of	propagation	of	the	core.	Since	k	is	the	wave	number	of	
the	considered	light	wave	in	vacuum	and	presuming	that	
the	coefficient	of	propagation	of	the	core	is	the	product	of	
the	vacuum	wave	number	k	and	the	refractive	index	nk	we	
can	conclude	that	the	refractive	index	of	the	cladding	must	
be	smaller	than	the	refractive	index	of	the	core.	This	is	the	
first	consequence	which	we	can	extract	from	the	solutions.	
It	is	in	agreement	with	equation	(	2.3.1	).	The	solution	for	
the	cladding	of	the	fibre	is	now:

(1) 2( , ) ( ) i p
z m E p rnE r D K ik r e π φφ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅

(1) 2( , ) ( ) i p
z m H p rnH r D K ik r e π φφ − ⋅ ⋅ ⋅ ⋅= ⋅ ⋅

We	have:

r	≥	a		 and	
2 2 2 2
rn rm mk k k n β= = − .

Argument v of modified Hankel function
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Fig. 7:  Modified Hankel-function with v	=	ikrmr

The	constants	DE,H 	,	CE,H	and	b	have	not	yet	been	defined.	
These	constants	will	be	determined	by	the	continuity	con-
ditions	at	the	boundary	for	r = a	.	To	perform	these	calcula-
tions	we	need	the	fields	Er(r,f,z,t), Hr(r,f,z,t),	and	Ef(r,f,z,t), 
Hf(r,f,z,t).	We	get	them	from	the	Maxwell	equations.

0

0

		and	 0

		and	 0

EH H
t

HE E
t

∂ε ε
∂

∂µ
∂

∇ × = ⋅ ⋅ ∇⋅ =

∇ × = − ⋅ ∇⋅ =



 



 

Let’s	remember	the	rules	for	cylindrical	coordinates:

1( , , )

( , , )

( )1 1( , , )

z
r

r z

r
z

r z
r z

r z
z r

r
r z

r r r r

φ

φ

φ

∂∂φ
∂φ ∂

∂ ∂φ
∂ ∂

∂ ∂φ
∂ ∂

ΨΨ∇ × Ψ = ⋅ −

Ψ Ψ∇ × Ψ = −

⋅Ψ Ψ∇ × Ψ = ⋅ − ⋅







and
( )1 1r zr

r r r z
φ∂∂ ∂

∂ ∂φ ∂
Ψ⋅Ψ Ψ∇⋅Ψ = ⋅ + ⋅ +



,
So	we	will	get	the	following	four	equations:

2
oz z

r
rn

E HiE
k r r

µ ω∂ ∂β
∂ ∂φ

 ⋅
= − ⋅ ⋅ + ⋅ 

 
(	2.5.5	)

2
z z

o
rn

E HiE
k r rφ

∂ ∂β µ ω
∂φ ∂

 
= − ⋅ ⋅ − ⋅ ⋅ 

 
(	2.5.6	)

2
0

2
z z

r
rn

n E HiH
k r r

ω ε ∂ ∂β
∂φ ∂

 ⋅
= ⋅ ⋅ − ⋅ 

 
(	2.5.7	)

2
02

z z

rn

E HiH n
k r rφ

∂ ∂βω ε
∂ ∂φ

 
= − ⋅ ⋅ ⋅ + ⋅ 

 
(	2.5.8	)

Here	we	will	 introduce	 the	 terms	which	are	 common	 in	
fibre	optics	and	which	we	will	use	permanently	in	the	fol-
lowing	calculations.
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Both	 the	equations	 (	2.5.13	)	and	(	2.5.14	)	 represent	 the	
characteristic	equations	for	the	four	constants	CE, CH, DE	
and	DH	and	assure	that	the	continuity	requirements	at	the	
boundary	between	core	and	cladding	are	 fulfilled.	Since	
the	Bessel	functions	can	not	be	represented	analytically	in	
an	easy	way,	a	graphical	method	shown	in	Fig.	8	is	used	
to	find	a	solution.	Each	of	the	left	sides	of	the	equations	(	
2.5.13	)	and	(	2.5.14	)	is	represented	as	a	function	of	u	for	
p=2	.	The	left	side	of	equation	(	2.5.14	)	has	to	be	positive	
since	it	is	required	by	the	right	side	(	since	Xp<0 ).	
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Fig. 8:  Graphical solution of the characteristic equation for 
p=2

Therefore	 only	 positive	 values	 of	 J(u)p-1/Jp(u) have	 been	
represented.	For	equation	(	2.5.13	)	the	negative	values	of	
J(u)p+1/J(u)p	are	used	correspondingly.	The	right	side	of	the	
characteristic	equation	contains	next	to	u	the	parameter

2 2 2v ma n kβ= ⋅ −

and	the	function

(v)
v (v)

p
p

p

K
X

K
′

=
⋅

,	depending	on	v	built	
up	by	the	Hankel	function	(see	appendix	6.1).	The	points	
of	intersection	of	the	right	side	and	left	side	curves	of	the	
characteristic	 equations	 provide	 the	 solutions	 which	 we	
are	looking	for.	The	solution	area	for	positive	values	is	de-
noted	as	the	range	of	HE-waves	the	one	for	negative	val-
ues	as	the	range	of	EH-waves.	This	denomination	has	its	
historical	roots	in	waveguide	technology.	Since	the	Bessel	
functions	 are	 periodical	 there	 are	 several	 points	 of	 solu-
tion.	All	 points	 of	 intersection	 of	 an	 area	 are	 numbered	
continually.

v

X
p
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-5

-4

-3

-2

-1
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Fig. 9:  The function Xp(v) for p=1 and p=2

The	 solutions	 of	 the	 right	 side	 for	 v	= 0 play	 a	 particu-
lar	role.	In	this	case	the	limiting	angle	of	 total	reflection	
is	reached	and	the	wave	propagates	even	in	 the	cladding	
without	attenuation.	Whenever	a	fibre	is	to	guide	the	light	

Transversal	phase	unit 2 2 2
k ku k a a n k β= ⋅ = ⋅ − (	2.5.9	)

Transversal	attenuation	unit 2 2 2v= m mik a a n kβ⋅ = ⋅ −
,

(	2.5.10	)

Fibre	or	frequency	parameter 2 2 2 2vk mV ka n n u= ⋅ − = + (	2.5.11	)

Phase	parameter ( )
2 2 2 2

2 22 2 2

v
v

m

k m

k nB
uk n n

β −
= =

+−
(	2.5.12	)

The	continuity	condition	leads	us	to	four	equations	which	contain	the	four	constants	DE,H ,	CE,H.	Regarding	the	solution	
procedure	all	steps	are	well	represented	in	chapter	6.1.	To	get	solutions	for	the	constants	which	are	unequal	from	zero	
their	coefficient	determinant	has	to	be	zero.	This	leads	to	the	following	characteristic	equations	which	are	at	the	same	
time	the	characteristic	equations	for	the	fibre.

22 2 2 2 2
1 2

2 2 4 2 2 4 2

( ) 1 1 1 1
( ) 2 2 v v

p m k k m m
p p

p k k k

J u n n n n npuX u X p
J u n u n u n u

+
    + −  = + − + + ⋅ +           

EH-Waves (	2.5.13	)

22 2 2 2 2
1 2

2 2 4 2 2 4 2

( ) 1 1 1 1
( ) 2 2 v v

p m k k m m
p p

p k k k

J u n n n n npuX u X p
J u n u n u n u

−
    + −  = − + − + + ⋅ +           

HE-Waves (	2.5.14	)
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within	the	core	we	have	to	have	v>0.	Let’s	remember	that	
2 2 2
ku a n k β= ⋅ −

	and	point	out	that	increasing	values	
of	u	signify	an	increasing	fibre	diameter	a	or	an	increase	
in	the	root	value.	In	both	cases	this	leads	to	an	increasing	
number	of	nodes	in	the	radial	direction.	Let’s	characterise	
the	radial	order	defined	by	the	point	of	intersection	of	the	
left	side	of	the	characteristic	equation	with	the	right	side	
by	the	number	q.	In	consequence	we	can	mark	the	types	of	
waves	of	the	corresponding	solutions	by	HEpq	or	EHpq.	A	
state	characterised	by	a	couple	of	values	p	and	q	is	called	
a	mode	of	the	fibre.	For	each	point	of	intersection	there	is	
one	value	for	the	fibre	or	frequency	parameter	V:

2 2

2 2

v

v

EH
pq pq

HE
pq pq

V u

V u

= +

= +

In	Fig.	8,	for	example,	5	points	of	intersection	at	the	limit-
ing	values	for	v=0	and	p=2	are	indicated.	According	to	the	
notation	rules	they	are	called:

21 22 23 24 25, , , ,HE HE HE HE HEV V V V V
The	HE11	-	wave	plays	a	particular	role.	To	recognise	this	
the	graphical	solution	of	the	characteristic	equation	is	per-
formed	once	again	but	this	time	for	p=1	(Fig.	10).	The	lim-
iting	curve	for	v®0	shows,	that	it	tends	to	®	for	v=0.	So	the	
point	of	intersection	for	q=1	is	at:

11 11 0HE HEV u= =

This	means	that	each	fibre	will	transmit	this	wave	even	if	
the	core	is	extremely	thin	and	the	difference	in	refractive	
index	extremely	 small.	Because	of	 the	 small	 attenuation	
value	 the	 wave	 will	 also	 propagate	 within	 the	 cladding.	
Therefore	the	HE11	-	wave	is	the	fundamental	wave	of	the	
fibre.	It	has	the	smallest	limiting	value	V	of	all	waves.
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Fig. 10:  Graphical solution of the characteristic equation 
for p=1

The	limiting	value	of	the	characteristic	equation	for	p=0	is	
obtained	from	(	2.5.14	).

( )
( )

( )
( ) ( )1 1

0
0 0

v
J u J u

u X
J u J u

− −
= = − ⋅

Since	X0 (v=0)=∞,it	must	be	J0 (u)=0.	The	first	zero-tran-

sition	of	the	Bessel-function	for	p=0	is	2.405.	So	we	get:

01 01 2.405HEV u= =

If	a	fibre	with	this	parameter	is	used	next	to	the	fundamen-
tal	wave	HE11	also	 the	HE01	wave	 is	 transmitted.	But	 the	
latter	one	also	propagates	within	 the	cladding.	From	Fig.	
8	we	see	that	the	first	limiting	value	of	the	HE21	wave	is	at

21 20 2.58EFV u= =

In	so	far	it	is	only	slightly	above	the	HE01	wave.	The	HE0q	
and	EH0q	waves	are	symmetrical	with	respect	to	the	radial	
direction	or	the	axis	because	of	p=0	,	that	means	they	do	
not	depend	on	 the	angle	f	 .	Contrary	 to	all	other	waves	
they	are	no	hybrid	waves	with	electric,	Ez	,	and	magnetic,	
Hz	,	field	components	in	the	direction	of	propagation.	

E(x,y,0)

E
(o
,o
,z
)

H(x,y,0)

H
(0
,0
,z
)

Ez=E(0,0,z) Hz=H(0,0,z)

H=H(x,y,0) E=E(x,y,0)

TM TE TEM Hybrides

E0q H0q EHpq / HEpq

Fig. 11:  Classification of field orientation

They	are	either	purely	„electric“	or	purely	„magnetic“	in	
the	direction	of	propagation.	A	wave	whose	electric	field	
strength	 points	 only	 into	 the	 z-direction	 has	 a	magnetic	
field	 in	 the	 transversal	 direction.	 Instead	 of	 using	 EH0q	
these	waves	are	designated	by	E0q.	Since	the	magnetic	field	
is	transversal	with	respect	to	the	direction	of	propagation	
we	 also	 speak	 about	 TM-waves	 (Transversal	 Magnetic	
waves).	There	are	also	waves	which	only	have	a	magnetic	
field	with	respect	to	the	direction	of	propagation.	In	conse-
quence	they	have	a	transversal	electric	field.	This	all	may	
be	a	bit	confusing	but	is	in	agreement	with	the	basic	expe-
rience	of	current	conducting	wires	which	possess	a	trans-
versal	magnetic	field.	This,	too,	is	reflected	by	Maxwell’s	
equations:

0

0

		

		

EH
t

HE
t

∂ε ε
∂

∂µ
∂

∇ × = ⋅ ⋅

∇ × = − ⋅









In	so	far	it	is	not	a	particular	property	of	light	conducting	
fibres	but	the	consequence	of	the	basic	laws	of	nature.	The	
Fig.	 11	may	 contribute	 to	 further	 illustrations	 of	 hybrid	
waves	particularly.

The	designation	EH	(HE)	is	supposed	to	indicate	that	the	
amplitude	of	the	E(H)-field	is	larger	than	the	amplitude	of	
the	H(E)	field	in	the	direction	of	z.	This	corresponds	to	the	
definitions	 in	electrical	 engineering.	Still,	 in	fibre	optics	
we	will	observe	deviations	from	this	rule.
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If	the	fibre	is	made	in	a	way	that	only	the	funda-
mental	wave	(p=1	and	q=1)	is	guided	within	the	
core	the	fibre	is	called	a	mono	or	single	mode	fi-
bre.	In	all	other	cases	we	speak	about	multi	mode	
fibre.	Depending	on	the	range	of	application	of	the	
fibre	one	uses	one	or	the	other	type	of	fibre.	Let’s	
now	derive	the	„design“-rule	for	a	fibre	from	the	
solutions	allowing	us	to	define	the	conditions	un-
der	which	a	fibre	„accepts“	an	incoming	wave	at	
given	wavelength	and	guides	it	as	a	mono	mode	
fibre.	For	v=0	we	have	the	limiting	case	with	no	
reflection	 at	 the	 cladding.	 This	 means:

2 2 2 2 2 2v= 0m ma n k n kβ β⋅ − = ⇒ = (	2.5.15	)

For	very	weak	guidance	of	the	core	wave	we	must	request
2 2 2

mn kβ >
The	other	 limit	 for	b	 is	 received	by	 requesting	v→∞.	 In	
this	way	we	get	the	highest	possible	attenuation	within	the	
cladding.

( )
2 2 2 2

2 22 2 2

v 1
v

m

k m

k nB
uk n n

β −
= = =

+−

( )2 2 2 2 2 2 2 2
k m m kk n n k n k nβ = − + =

Then	 the	 range	of	values	of	b	 for	weak	and	 strong	guid-
ance	will	be	defined	as	follows:

2 2 2 2
m kn k n kβ< ≤ (	2.5.16	)

If	the	fibre	is	supposed	to	guide	only	the	fundamental	wave	
(	p=1	)	and	the	node	in	radial	direction	is	exactly	on	the	
boundary	between	core	and	cladding	(	q=1	)	,	V	is	not	to	
pass	2.405	since	otherwise	the	wave	HE01	will	be	transmit-
ted.	The	condition	for	the	transmission	of	the	fundamental	
wave	exclusively	is	then:

2 2

0 2.405
20 2.405k m

V

a n nπ
λ

< ≤

< − ≤
(	2.5.17	)

Equation	(	2.5.17	)	represents	an	important	prescription	for	
the	design	of	the	fibre.	It	fixes	the	radius	a	of	the	core	for	
monomode	wave	guidance	if	the	wavelength	l	and	the	re-
fractive	index	for	cladding	and	core	have	been	selected.	If,	
for	example,	the	problem	would	be	to	transmit	the	light	of	
a	Helium-Neon	laser	(wavelength	633	nm,	refractive	index	
of	core	1.5,	refractive	index	of	cladding	1.4)	we	would	get	
the	following	range	for	the	radius	a:

( ) ( )

9

2 2

633 102.405 0.45
2 1.5 1.4

a mµ
π

−⋅< ⋅ =
−

The	result	depends	strongly	on	the	difference	of	the	refrac-
tive	index.	The	smaller	this	difference	the	greater	can	be	
the	radius	a.

2.6	Weakly	guiding	Fibres
Still,	 because	 of	 technical	 reasons	 it	 is	 not	 possible	 to	
choose	 the	refractive	 index	of	 the	core	much	 larger	 than	
the	refractive	 index	of	 the	cladding.	Since	core	and	clad-
ding	 are	 in	 close	 contact	 glasses	 of	 similar	 temperature	
coefficient	can	only	be	used.	The	consequence	of	 this	 is	
the	 small	 difference	 in	 refractive	 index.	 For	 ordinary	 fi-
bres	it	is

32 10k m

k

n n
n

−−
≈ ⋅

,
where	the	refractive	index	nk	of	the	core	is	equal	to	1.465	
.	If	we	use	these	values	for	the	above	mentioned	example	
we	get:

( ) ( )

9

2 2

633 100 2.405 2.6
2 1.465 1.462

a mµ
π

−⋅< < ⋅ =
−

The	 diameter	 of	 the	 fibre	 should	 be	 chosen	 smaller	
than	 5.2	mm	 to	 get	 the	 desired	monomode	 transmission.	
Reconsidering	this	example	we	see	that	the	difference	in	
refractive	index	is	fairly	small	in	reality.	Therefore	we	can	
write	nm ≈ nk	in	good	approximation.	We	are	going	to	show	
that	these	step	fibres	possess	a	weak	guidance	for	the	core	
waves	and	some	additional	advantageous	properties	which	
we	are	going	to	check.	We	will	calculate	the	characteristic	
equations	 anticipating	 that	nm ≈ nk.	 This	 simplifies	 equa-
tion	(	2.5.13	)	for	EH-waves	and	equation	(	2.5.14	)	for	HE-
waves	as	follows:

1
2

( )
( ) v

p
p

p

J u pu X
J u

−  = − ⋅ +   HE-waves (	2.6.1	)

1
2

( )
( ) v

p
p

p

J u pu X
J u

+  = ⋅ −   EH-waves (	2.6.2	)

Let’s	use	the	identity	(see	chapter	6.1)

1
2v v

p
p

p

K pX
K

= − 



so	we	get:

1 1

( ) (v)
v

( ) (v)
p p

p p

J u K
u

J u K− −

⋅ = ⋅ HE-waves (	2.6.3	)

2 2

1 1

( ) (v)
v

( ) (v)
p p

p p

J u K
u

J u K
+ +

+ +

⋅ = ⋅ EH-waves (	2.6.4	)

Comparing	both	equations	we	can	state	that	they	only	dif-
fer	by	the	index	p.	Equation	(	2.6.4	)	has	an	index	larger	
by	2	than	equation	(	2.6.3	).	This	means	that	all	EH-waves	
with	an	index	p	reduced	by	2	will	have	the	same	form	as	
the	 HE-waves	 of	 index	 p.	 Since	 these	 waves	 are	 the	 ei-
genvalues	 of	 the	 solutions	 of	 the	 characteristic	 equation	
with	the	same	value	they	are	called	„degenerated“	follow-
ing	the	linguistic	habits	of	quantum	mechanics.	Therefore	
they	are	not	distinguishable:

, 2,p q p qHE EH −=

Each	 linear	 combination	of	both	waves	with	 the	 same	p	
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and	q	values	results	in	an	eigenwave	of	the	fibre,	since	for	
perfect	degeneration	the	individual	waves	are	at	the	same	
place	at	any	time.	The	degeneration	is	only	perfect	if	nk	=	
nm.	 In	 reality	 the	difference	 is	 so	 small	 that	we	 can	pre-
sume	a	perfect	degeneration	for	all	practical	applications.	
Therefore	the	combination	of	HEp,q+EHp-2,q	leads	to	an	ei-
genmode	which	can	be	expressed	as	follows:

LPl,q = HEp,q+EHp-2,q
In	that	way	by	superposition	of	the	HE2,q	and	the	E0,q	wave	
the	LP1,q	wave	is	generated.	The	original	properties	of	the	
EH,	HE	modes	are	superimposing	to	create	the	properties	
of	the	LP	modes.	This	is	particularly	true	for	the	polarisa-
tion	of	the	waves.	Since	the	EH	and	HE	modes	are	already	
linearly	polarised	the	LP	modes	are	polarised	as	well.	This	
is	the	reason	for	the	designation	LP	standing	for	linearly 
polarised.	If	we	accept	that	all	EH	and	HE	modes	which	
distinguish	in	the	order	number	p	by	2	are	superimposing	
to	form	the	same	LP	mode	then	each	LPl,q	for	l>0	appears	
in	4	variations.

HE2,q + H0q ⇒ LP1,q
H0,q + HE2,q ⇒ LP1,q
HE2,q + E0,q ⇒ LP1,q
H0,q + EH2,q ⇒ LP1,q

Each	two	of	these	variations	are	mutually	perpendicularly	
polarised.

Fig. 12:  The four variations of the LP11 mode. The arrows 
are pointing into the direction of the electric field strength 
which coincides with the direction of polarisation.

A	particularity	among	the	LP	modes	is	the	LP0q	mode.	It	
ought	to	result	out	of	a	HE1,q	and	a	EH-1,q	mode.	But	this	
one	does	not	exist	so	that	the	LP0q	mode	only	consists	of	
the	HE11	mode.	Contrary	to	fibres	with	nk>nm	the	transver-
sal	field	part	is	dominant	with	respect	to	the	longitudinal	
field	part.	That	way	the	HE11	mode	becomes	independent	
of	f	and	rotation	symmetrically	within	the	weak	conduct-
ing	fibre.	It	is	designated	by	LP01.	The	LP01	wave	is	the	fun-
damental	wave	of	the	weak	conducting	fibre	and	has	two	
orthogonal	directions	of	polarisation	like	all	HE1,q	or	LP0,q	
waves.	 If	we	 succeed	 in	 realising	 a	 less	 favourable	 coef-

ficient	 of	 propagation	 for	 one	 direction,	 transmission	 in	
only	one	direction	of	polarisation	will	occur.	This	can	be	
achieved	by	elliptical	 shaped	fibres	or	anisotropic	 refrac-
tive	 index	of	 the	core.	Meanwhile	such	fibres	exist	They	
are	called	„	polarisation	preserving	“.	If	linearly	polarised	
light	 of	 a	 laser	 is	 coupled	 into	 such	 a	 fibre	 its	 direction	
of	polarisation	 at	 the	 exit	 is	 the	 same	as	 at	 the	 entrance.	
Fortunately	we	are	now	diving	more	and	more	into	prac-
tice.	Technically	speaking	the	weak	conducting	fibre	trans-
mitting	only	the	fundamental	wave	is	the	most	important	
one.	 It	 is	 of	 special	 importance	 in	 communication	 tech-
nology	because	of	 the	 small	 transit	 time	distortion.	 It	 is	
similar	in	laser	technology	where	the	coherence	properties	
of	the	laser	light	have	to	be	transmitted	all	along	the	fibre.	
Of	importance	are	also	multimode	fibres	for	a	large	range	
of	 application	 in	 communication	 and	 control	 technology	
whenever	 the	 signals	 are	 to	 be	 transmitted	 at	 reduced	
speed	and	over	distances	which	are	not	too	large.	Before	
the	transit	time	distortions	are	discussed	in	detail	we	want	
to	define	the	range	which	permits	a	weak	conducting	fibre	
just	to	guide	the	fundamental	wave.	For	the	LP01	wave	the	
upper	value	of	 the	fibre	parameter	 is	 the	same	as	for	 the	
HE11	wave	since	it	is	built	up	of	it.	Due	to	the	numerical	
evaluation	of	the	characteristic	equation	the	lowest	value	
is	zero,	but	values	<1.5	can	not	be	taken	into	consideration	
since	the	transversal	attenuation	would	become	too	small	
and	the	wave	would	hardly	be	guided	within	the	core.

01

2 2

1.5 2.405
21.5 2.405
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k m

V

a n nπ
λ

< ≤

< − ≤

This	range	differs	only	slightly	from	the	fibre	range	of	rela-
tively	high	refractive	index	difference	for	 the	HE11	wave.	
But	the	LP01	or	HE11	fundamental	wave	has	the	desired	ro-
tation	symmetrical	intensity	distribution	within	the	weak	
conducting	fibre.

LP01

Fig. 13:  Intensity distribution of the LP01 wave

2.7	Coupling	of	light
We	are	facing	the	problem	to	couple	a	beam	of	light	to	a	
fibre,	respectively	to	introduce	it	into	a	fibre,	the	diameter	
of	which	is	in	the	order	of	magnitude	of	4-10	mm	and	in	
so	far	comparable	to	the	wavelength	of	light.	To	get	a	suf-
ficient	high	excitation	of	the	fundamental	mode	of	the	fibre,	
the	beam	of	the	light	source	has	to	be	focused	to	a	diameter	
of	this	order	of	magnitude.	Under	these	circumstances	the	
laws	of	geometrical	optics	fail	because	they	anticipate	par-
allel	light	beams	or	plane	light	waves	which	in	reality	exist	
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only	in	approximation.

f

Fig. 14:  Focusing two beams in geometrical optics

Real	parallel	light	beams	do	not	exist	in	reality	and	plane	
wave	fronts	exist	only	at	a	particular	point.	The	reason	for	
the	failure	of	geometrical	optics	is	the	fact	that	it	has	been	
defined	 at	 a	 time	where	 the	wave	character	 of	 light	was	
still	 as	unknown	as	 the	possibility	 to	describe	 its	behav-
iour	by	Maxwell’s	equations.	To	describe	the	propagation	
of	light	we	use	the	wave	equation

2 2

2 2 0n EE
c t

∂
∂

∆ − ⋅ =




Solving	 this	 equation	 for	 the	fibre	we	 anticipated	waves	
propagating	within	the	fibre	as	a	cylindrical	body

( , , )E E r zφ=
 

with	
2 2 2r x y= +

Without	 boundary	 light	 would	 propagate	 as	 a	 spherical	
wave	in	all	directions	of	the	space.

( )E E r=
 

with	
2 2 2 2r x y z= + +

When	we	consider	the	technically	most	important	case	of	
spherical	waves	propagating	in	the	direction	of	z	within	a	
small	solid	angle	we	arrive	at	the	following	statement	for	
the	electrical	field:

( , )E E r z=
 

with	
2 2 2 2r x y z= + +

In	 this	 case	 the	 solution	 of	 the	 wave	 equation	 provides	
fields	which	have	a	Gaussian	intensity	distribution	over	the	
cross-section.	Therefore	 they	are	called	Gaussian	beams.	
Similar	 to	 the	 solutions	of	 the	fibre	 the	Gaussian	beams	
exist	in	different	modes	depending	on	the	actual	boundary	
conditions.	 Such	 beams,	 especially	 the	 Gaussian	 funda-
mental	mode	(TEM00)	are	generated	with	preference	by	la-
sers.	But	the	light	of	any	light	source	can	be	considered	as	
the	superposition	of	many	such	Gaussian	modes.	Still,	the	
intensity	of	a	particular	mode	is	small	with	respect	to	the	
total	intensity	of	the	light	source.	The	situation	is	different	
for	the	laser.	Here	the	total	light	power	can	be	concentrated	
in	the	fundamental	mode.	This	is	the	most	outstanding	dif-
ference	with	respect	to	ordinary	light	sources	next	to	the	
monochromasy	of	laser	radiation.	Gaussian	beams	behave	
differently	from	geometrical	beams.
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Fig. 15:  Beam diameter of a Gaussian beam as fundamental 
mode TEM00 and function of z.

A	Gaussian	beam	always	has	a	waist.	The	beam	radius	w	
results	out	of	the	wave	equation	as	follows:

( )
2

0 1
R

zw z w
z

 
= ⋅ +   

w0	 is	 the	smallest	beam	radius	at	 the	waist	and	zr	 is	 the	
Rayleigh	length

2
0Rz w π

λ
=

In	Fig.:	15	the	course	of	the	beam	diameter	as	a	function	
of	z	is	represented.	The	beam	propagates	within	the	direc-
tion	of	z.	At	the	position	z = z0	the	beam	has	the	smallest	
radius.	The	beam	radius	increases	linearly	with	increasing	
distance.	 Since	Gaussian	 beams	 are	 spherical	waves	we	
can	attribute	a	radius	of	curvature	of	the	wave	field	to	each	
point	z.	The	radius	of	curvature	R	can	be	calculated	using	
the	following	relation:

( )
2
rzR z z
z

= +

This	context	is	reflected	by	Fig.	16.	At	z = zr	the	radius	of	
curvature	has	a	minimum	.	Then	R	increases	with	1/z	if	z	
tends	to	z = 0	.	For	z=0	the	radius	of	curvature	is	infinite.	
Here	 the	wave	front	 is	plane.	Above	the	Rayleigh	length	
zr	the	radius	of	curvature	increases	linearly.	This	is	a	very	
essential	 statement.	Due	 to	 this	 statement	 there	 exists	 a	
parallel	 beam	only	 in	one	point	 of	 the	 light	wave,	 to	be	
precise	only	in	its	focus.	Within	the	range

r rz z z− ≤ ≤

a	beam	can	be	considered	as	parallel	or	collimated	in	good	
approximation.	 In	 Fig.	 17	 the	 Rayleigh	 range	 has	 been	
marked	 as	well	 as	 the	 divergence	Q	 in	 the	 distant	 field,	
that	means	 for	 z>>z0	 .	 The	 graphical	 representations	 do	
not	well	 inform	about	 the	extremely	small	divergence	of	
laser	beams	another	outstanding	property	of	lasers.
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Fig. 16:  Course of the radius of curvature of the wave front 
as a function of the distance from the waist at z=0
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Fig. 17:  Rayleigh range zR and divergence Q for the far field 
z>>zR

The	reason	for	this	is	that	the	ration	of	the	beam	diameter	
with	respect	to	z	has	not	been	normalised.	Let’s	consider,	
for	example,	a	HeNe-Laser	(632	nm)	with	a	beam	radius	
of	wo=1mm	at	the	exit	of	the	laser.	For	the	Rayleigh	range	
2	zr	we	get:

2 6
0 9

3.142 2 2 10 9,9
623 10Rz w mπ

λ
−

−⋅ = = ⋅ =
⋅

To	get	a	maximum	of	power	into	the	fibre	a	coupling	optic	
of	focal	distance	f	 is	required	assuring	the	coupling	of	a	
Gaussian	beam	into	a	weak	guiding	step	index	fibre	in	the	
LP01	fundamental	mode.

2W0
2W

Θ

2a

f f

Fig. 18:  For the calculation of the coupling optic

The	radius	at	the	waist	is

0
2 2 2
0

w fw
w z

θ
θ

⋅ ⋅ ⋅
=

+ ⋅

The	position	of	the	waist	is:
2

2
2 0

z fy
wz
θ

⋅=
 +   

Example:	The	beam	of	a	HeNe	laser	of	0.5	mm	diameter	
and	of	1.5	mrad	divergence	is	to	focus	by	means	of	a	lens.	
The	focal	distance	is	50	mm	and	the	lens	is	at	a	distance	of	
2	m	from	the	laser.	We	find:

( )

3 3

26 6

0,5 10 0,05 1,5 10 12,6
0,25 10 2,25 10 2 0,05

w mµ
− −

− −

⋅ ⋅ ⋅ ⋅= =
⋅ + ⋅ ⋅ −

( )

( )

6

2
2

2 0,05 2,5 10
1,25

0,52 0,05
1,5

y mµ
−− ⋅ ⋅

= =
 − +   

For	this	example	the	position	y	of	the	waist	coincides	with	
the	 focus	 in	 good	 approximation	 and	 the	 radius	 of	 the	
waist	is	here	12.6	mm.	To	get	the	fibre	under	consideration	
adapted	in	an	optimal	way	the	focal	distance	f	has	to	be	
chosen	in	a	way	that	the	radius	of	the	beam	is	equal	to	the	
radius	of	the	core.	When	laser	diodes	are	used	the	prepara-
tion	of	the	beam	becomes	more	complicated.

2.8	Laser	diodes
The	laser	diodes	are	a	special	class	of	lasers.	They	differ	
from	„conventional“	lasers	in	two	points:

1.	 For	 the	 classical	 lasers	 the	 laser-active	 atoms	 (mol-
ecules	or	ions)	are	independent	of	one	another	and	only	
the	same	energy	levels	are	used	for	 the	 laser	process.	
This	means	in	principle	that	in	order	to	produce	a	popu-
lation	 inversion	an	 infinite	number	of	atoms	can	con-
tribute	(Boltzmann	statistics).

2.	 This	is	not	the	case	with	semiconductor	lasers.	Here	a	
defined	energy	level	can	only	be	occupied	by	two	ac-
tive	particles	 (electrons,	Pauli	principle).	But	 in	semi-
conductors,	the	wave	functions	of	the	individual	atoms	
overlap	to	form	a	common	energy	band	and	the	extent	
to	which	the	level	is	occupied	follows	the	Fermi	Dirac	
statistics.	When	considering	the	laser	process,	the	tran-
sition	between	the	distribution	of	population	in	two	en-
ergy	bands	instead	of	two	energy	levels	must	be	taken	
into	account	as	for	conventional	lasers.

Laser	diodes	do	not	have	any	inherently	defined	emission	
wavelength,	because	there	are	no	two	discrete	energy	lev-
els	 that	 are	 responsible	 for	 the	 laser	 process	 as	with	 tra-
ditional	 lasers,	 but	 rather	 an	 energy	 distribution	 of	 elec-
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trons	 in	 energy	 bands.	The	 second	 important	 difference	
concerns	the	propagation	of	 the	laser	 light	within	the	pn	
zone.	The	spatial	intensity	distribution	of	the	laser	beam	
is	defined	by	the	laser	medium	and	not	by	the	resonator	as	
for	normal	lasers.	The	goal	of	this	experiment	is	also	the	
understanding	and	checking	of	the	basic	facts.	Therefore	
the	 difference	 between	 a	 laser	with	 two	 discrete	 energy	
levels	and	 the	semiconductor	 laser	with	 the	 typical	band	
structure	will	be	discussed	in	the	following.

2.8.1	The	energy	band	model
Atoms	or	molecules	at	large	distance	(compared	to	the	spa-
tial	 dimensions)	 to	 their	 neighbours	 do	 not	 notice	mutu-
ally	their	existence.	They	can	be	considered	as	independ-
ent	particles.	Their	energy	levels	are	not	influenced	by	the	
neighbouring	particles.
The	 behaviour	 will	 be	 different	 when	 the	 atoms	 are	 ap-
proached	as	it	is	the	case	within	a	solid	body.	Depending	
on	the	type	of	atoms	and	their	mutual	 interaction	the	en-
ergy	states	of	the	electrons	can	change	in	a	way	that	they	
even	can	abandon	„their“	nucleus	and	move	nearly	freely	
within	the	atomic	structure.	They	are	not	completely	free,	
otherwise	they	could	leave	the	atomic	structure.	
How	the	„free“	electrons	behave	and	how	they	are	organ-
ised	 will	 be	 the	 subject	 of	 the	 following	 considerations.	
From	the	fundamentals	of	electrostatics	we	know	that	un-
equal	charges	attract.	Therefore	it	is	easy	to	imagine	that	
an	atomic	structure	is	formed	by	electrostatic	forces.
In	 the	 following	we	will	 call	 it	 „crystal“.	However,	 this	
model	will	fail	latest	when	we	try	to	justify	the	existence	
of	solid	Argon	just	by	freezing	it	sufficiently.	Since	there	is	
obviously	some	sort	of	binding	within	the	crystal	structure	
in	spite	of	the	fact	that	inert	gases	are	neutral	there	must	
be	additional	forces	which	are	responsible	for	this	binding.
To	understand	these	forces	we	must	call	on	quantum	me-
chanics	for	help.	At	the	beginning	this	may	be	at	bit	diffi-
cult	but	it	simplifies	the	later	understanding.	The	Hamilton	
operator	and	Schroedinger’s	equation	are	supposed	to	be	
known.	But	the	acceptance	of	the	result	of	the	following	
expertise	 on	 exchange	 interaction,	 exchange	 energy	 and	
tunnel	 effect	 for	 the	 formation	 of	 energy	 bands	will	 be	
sufficient	 for	 further	 understanding	 provided	 quantum	
mechanics	is	considered	as	the	background	of	all.

2.8.2	Binding	of	the	hydrogen	molecule

r ab

Nucleus A Nucleus B

Electron 1 Electron 2

r a1

r a2

r b2r b1

r 12

Fig. 19:  Interaction of two hydrogen molecules
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(	2.8.1	)

The	following	Schroedinger	equation	has	to	be	solved:	

( )2
1 2 28 0m E U

h
π∆Ψ + ∆Ψ + ⋅ − ⋅Ψ =

For	 two	hydrogen	atoms	without	 interaction	 the	 total	en-
ergy	will	be

( )0 0 01 (2) 2E E E E= + =
Correspondingly	the	eigenfunction	y	is	the	product	of	the	
eigenfunctions	of	the	individual	electrons	belonging	to	the	
nuclei	a	and	b.

( ) ( )12 1 2a bΨ = Ψ ⋅Ψ

Since	we	can	not	distinguish	between	the	individual	elec-
trons	also	 the	 following	 linear	combinations	are	valid	ei-
genfunctions:

( ) ( ) ( ) ( )1 2 2 1anti a b a bΨ = Ψ ⋅Ψ + Ψ ⋅Ψ

( ) ( ) ( ) ( )1 2 2 1sym a b a bΨ = Ψ ⋅Ψ − Ψ ⋅Ψ

At	the	same	time	Pauli’s	principle	has	to	be	respected,	that	
means	the	eigenfunction	yant	contains	additionally	the	anti	
parallel	spins	(	↓↑	+	↓↓	)	and	the	function	ysym	the	parallel	
spins	(	↓↓ -	↑↑	).	The	electron	distribution	described	by	
the	 linear	combinations	depends	also	on	 the	distance	de-
pendent	mutual	electrostatic	disturbance.	As	disturbance	
we	have	to	consider	the	terms

2

1 2

1 1 1

b a ab

U e
r r r

 
∆ = − ⋅ + −  

which	are	the	reason	for	the	mutual	interaction.	To	get	the	
complete	solution	we	have	to	add	a	„disturbance“-term	to	
the	undisturbed	eigenfunctions	ya	and	ys	,	as	well	as	to	the	
undisturbed	energy.	Then	Schroedinger’s	equation	will	no	
more	be	homogenous	but	inhomogeneous	because	of	the	
additional	„disturbance“-term.	As	solution	(	see	[ 5 ]	)	we	
get:

2 2
02symE E e C e A= + ⋅ + ⋅

2 2
02antiE E e C e A= + ⋅ − ⋅

We	see	 that	 a	 term	with	 the	constant	C	 representing	 the	
Coulomb	part	and	a	term	with	the	constant	A	representing	
the	interaction	are	added	to	the	undisturbed	energy.	The	
exchange	energy	is	based	on	the	fact	that	electron	1	is	lo-
calised	near	to	nucleus	A	at	a	particular	instant	and	near	to	
nucleus	B	at	another	instant.	The	sign	of	A	can	be	positive	
or	negative.	The	energy	difference	between	 the	 two	pos-
sible	energies	is	just

22sym antiE E E e A∆ = − = ⋅ ⋅
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A	detailed	calculation	[ 5 ]	results	in	the	following	relation	
for	C:

( ) ( )2 2 3

2 1 12

1 1 1 1 1 2a b
ab a b

C d r
r r r r

 
= − − + ⋅Ψ ⋅Ψ  ∫

and	for	A:

( ) ( ) ( ) ( ) 3

2 1 12

1 1 1 1 1 2 2 1a b a b
ab a b

A d r
r r r r

 
= − − + Ψ Ψ Ψ Ψ  ∫

Under	respect	of	the	fact	that	ya2(1)	and	yb2(2),	integrated	
over	the	whole	space	represent	probability	densities	which,	
multiplied	 by	 the	 elementary	 charge	 e,	 provide	 the	 total	
charge	density	r	of	the	electrons	1	or	2	near	the	nuclei	A	or	
B,	the	constant	C	can	also	be	written	as:

2 22
2 3 31 2

1 2
1 2
2

3 31 2
1 2

12

ab b b

e eee C d r d r
r r r

e d r d r
r

ρ ρ

ρ ρ

= − −

+

∫ ∫

∫∫

We	 see	 that	 C	 results	 out	 of	 the	 attracting	 or	 repulsing	
Coulomb	forces.	The	exchange	integral	A	looks	very	much	
like	the	Coulomb	integral.	But	the	electron	densities	y2a(1)	
resp.	y2b(2)	have	been	replaced	by	the	mixed	terms	ya(1)	
yb(2)	and	ya(2)	yb(1)	which	are	the	result	of	the	electron	
exchange.	Here	we	can	summarise	as	follows:	If	atoms	are	
mutually	approached	the	states	of	the	undisturbed	energy	
levels	split	into	energetically	different	states.	The	number	
of	 newly	 created	 energy	 states	 are	 corresponding	 to	 the	
number	of	exchangeable	electrons.	(Fig.	20).

Distance of Nuclei
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Fig. 20:  Potential energy due to interaction of two hydrogen 
atoms

One	of	the	curves	shows	a	minimum	for	a	particular	dis-
tance	of	the	atoms.	No	doubt,	without	being	forced	the	at-
oms	will	 approach	 till	 they	have	acquired	 the	minimum	
of	potential	energy.	This	 is	also	 the	 reason	for	hydrogen	
to	occur	always	as	molecular	hydrogen	H2	under	normal	
conditions.	 The	 second	 curve	 does	 not	 have	 such	 a	 dis-
tinct	property.	The	curves	distinguish	in	so	far	as	for	the	
binding	case	the	spins	of	the	electrons	are	anti	parallel.	For	
the	non-binding	case	they	are	parallel.	It	is	easy	to	imag-
ine	that	an	increase	of	the	number	of	atoms	also	increases	
the	number	of	exchangeable	electrons	and	in	consequence	

also	the	number	of	newly	generated	energy	levels.	Finally	
the	number	of	energy	levels	is	so	high	and	so	dense	that	we	
can	speak	about	an	energy	band.
Here	it	is	interesting	to	compare	the	action	of	the	electrons	
with	the	behaviour	of	ambassadors.

The	electrons	in	the	most	outside	shell	will	learn	first	about	
the	 approach	 of	 an	 unknown	 atom.	 The	 eigenfunctions	
will	overlap	in	a	way	that	makes	sense.	One	electron	will	
leave	 the	 nucleus	 tentatively	 to	 enter	 an	 orbit	 of	 the	 ap-
proaching	atom.	It	may	execute	a	few	rotations	and	then	
return	to	its	original	nucleus.

If	everything	is	O.K.	and	the	spins	of	the	other	electrons	
have	 adapted	 appropriate	 orientations	 new	visits	 are	per-
formed.	Due	to	the	visits	of	these	„curious“	electrons	the	
nuclei	 can	continue	 their	 approach.	This	procedure	goes	
on	 till	 the	nuclei	have	 reached	 their	minimum	of	 accept-
able	distance.	Meanwhile	it	can	no	more	be	distinguished	
which	electron	was	part	of	which	nucleus.

If	there	is	a	great	number	of	nuclei	which	have	approached	
in	this	way	there	will	also	be	a	great	number	of	electrons	
which	are	weakly	bound	 to	 the	nuclei.	Still,	 there	 is	one	
iron-rule	 for	 the	 electrons:	my	 energy	 level	 can	 only	 be	
shared	 by	 one	 electron	 with	 opposite	 spin	 (Pauli	 princi-
ple).	Serious	physicists	may	now	warn	to	assume	that	there	
may	 be	 eventually	male	 and	 female	 electrons.	 But	 who	
knows.....
Let’s	return	to	incorruptible	physics.

Up	to	now	we	presumed	that	the	atom	only	has	one	elec-
tron.	With	 regard	 to	 the	 semiconductors	 to	be	discussed	
later	 this	will	 not	 be	 the	 case.	Discussing	 the	properties	
of	solid	bodies	it	is	sufficient	to	consider	the	valence	elec-
trons	that	means	the	most	outside	located	electrons	only	as	
it	has	been	done	for	separated	atoms.	The	inner	electrons	
bound	closely	to	the	nucleus	participate	with	a	rather	small	
probability	in	the	exchange	processes.	Analogously	to	the	
valence	electrons	of	 the	 atoms	 there	 is	 the	valence	band	
in	solid	bodies.	Its	population	by	electrons	defines	essen-
tially	the	properties	of	the	solid	body.	If	the	valence	band	
is	 not	 completely	 occupied	 it	will	 be	 responsible	 for	 the	
conductivity	of	electrons.	A	valence	band	not	completely	
occupied	is	called

conduction	band.

If	it	is	completely	occupied	the	next	not	completely	occu-
pied	band	will	be	called	conduction	band.
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Fig. 21:  Band formation by several electrons. The most out-
side electrons are responsible for the equilibrium distance r0

In	the	following	section	the	question	is	to	be	answered	how	
the	density	of	states	of	a	band	of	electrons	looks	like	and	
on	which	quantities	it	depends.	Before	doing	that	and	for	
reasons	of	completeness	another	attempt	is	made	to	deter-
mine	the	electron	distribution	within	a	solid	body.

2.8.3	Periodic	potentials
Although	quantum	mechanics	is	fairly	powerful,	up	to	now	
one	has	not	succeeded	to	calculate	the	energy	eigenvalues	
of	complex	atoms	and	molecules.	One	generally	relies	on	
skilful	 statements	 for	 the	energy	potentials	 to	which	 the	
electrons	 are	 submitted.	 The	 statement	 of	 periodical	 po-
tentials	has	been	found	to	be	especially	powerful.	A	clear	
presentation	is	found	in	[ 5 ]	and	[ 8 ].	We	follow	the	outlin-
ing	by	statistical	considerations.

2.8.4	Fermi	distribution
In	Fig.	 21	we	have	 shown	 that	 the	 energy	bands	 are	 the	
result	of	 the	mutual	 interaction	of	 the	atoms.	Each	band	
has	a	particular	width	DE,	the	magnitude	of	which	is	de-
termined	by	the	exchange	energy	and	not	by	the	number	
N	of	the	interacting	atoms.	Furthermore	we	know	that	the	
number	of	energy	 levels	within	a	band	 is	determined	by	
the	 number	 of	 interacting	 electrons.	 The	 Pauli	 principle	
states	that	such	a	level	can	only	be	occupied	by	two	elec-
trons.	In	this	case	the	spins	of	the	electrons	are	anti-paral-
lel.	Within	a	band	the	electrons	are	free	to	move	and	they	
have	a	kinetic	energy	of

21 v
2

E m=
or	

2

2
pE
m

=

The	mass	of	the	electron	is	m,	v	the	velocity	and	p	the	im-
pulse.	The	constant	potential	energy	will	not	be	taken	into	
consideration.	Furthermore	we	will	set	the	energy	of	the	
lower	band	edge	 to	zero.	The	maximum	energy	Emax	of	
an	electron	within	a	band	can	not	pass	the	value	DE	since	
otherwise	the	electron	would	leave	the	band	and	no	longer	
be	a	part	of	it.	Consequently	we	can	write:

2
max max

1
2

E E p
m

= ∆ =
.

We	 still	 have	 to	 find	 out	 how	many	 electrons	 of	 energy	
E	≤	Emax	exist	and	within	a	second	step	we	wish	to	know	
how	many	 electrons	 exist	 in	 the	 energy	 interval	 dE.	 To	
reach	this	goal	we	will	use	a	trick	already	applied	in	deriv-
ing	the	number	of	modes	in	a	cavity	resonator.(see	XP-02	
Emission	&	Absorption).	But	here	we	will	consider	elec-
trons	instead	of	photons.	The	course	of	considerations	will	
be	the	same	since	we	can	attribute	to	each	electron	a	wave	
with	wave	vector	k.	For	the	impulse	p	we	write:

p k= ⋅






Only	such	electron	energies	are	permitted	within	a	volume	
the	wave	functions	of	which	are	zero	at	 the	walls.	To	ex-
press	it	in	a	more	simple	way:	an	integer	multiple	of	half	
the	wavelength	l	of	the	associated	standing	wave	must	fit,	
for	instance,	into	the	length	L	of	a	cube:

2x xL n λ=
	and	

2
xk π

λ
=

For	the	electron	energy	of	the	cube	we	get:
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Let’s	remember	the	equation	of	a	sphere
2 2 2 2R x y z= + +

and	compare	it	with	the	equation	for	E.	We	recognise	an	
analogous	equation	of	the	following	type:

( )
2

2 2 2
22 x y z

mLE n n n
h

= + +

or	with

2 2

2
kE
m

= 

	we	get		

2
2 2 2 2

2 x y z
kL n n n
π

= + +

The	radius	of	this	sphere	is	Lk/p	and	n1,	n2,	n3	are	the	x	y	
z	 coordinates.	As	 n	 is	 an	 integer	 and	 positive	 they	 only	
generate	one	eighth	of	a	complete	sphere	set	up	by	a	spatial	
lattice	with	 lattice	 constant	 1.	Permissible	 are	only	 such	

wave	vectors k


,	the	components	of	which	are	coinciding	
with	 the	n	values	or,	 to	express	 it	differently,	each	point	
of	intersection	of	the	lattice	represents	a	valid	solution	for	
the	wave	vector	k	of	a	stationary	wave.	The	answer	to	the	
initially	raised	question	regarding	the	number	of	electrons	
for	a	particular	length	L	of	a	potential	box	results	now	out	
of	the	counting	of	the	number	of	points	of	intersection.	Fig.	
22.
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Fig. 22:  Calculation of the electron density

This	work	can	also	be	done	analytically.	 If	one	uses	 the	
formula	for	the	volume	of	a	sphere	Vsphere	=	4/3	p	R

3	one	
gets	for	one	eighth	of	a	sphere	with	a	radius	for	an	upper	
limit	of	energy	at	Emax:

( )
3

max
1 4
8 3

kN E Lπ
π

 = ⋅ ⋅   

with	

2 2

2
kE
m

= 

	or	

2
2

2

4 2k mE
h
π=

	one	gets:

( ) ( )3/23

8 2
3

N E V mE
h
π= ⋅

Here	V	is	the	volume	of	the	box.	An	additional	factor	of	
2	accounts	for	the	fact	that	two	electrons	are	admitted	in	
each	state	if	their	spins	are	anti-parallel.	Let’s	divide	N(E)	
by	the	volume	V	to	get	the	electron	density
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The	electron	density	per	unit	energy	dn(E)/dE	is	found	by	
differentiation:

( ) ( )3/23
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h
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Fig. 23:  Number of electrons per unit volume V and energy 
interval dE as a function of the energy E.

The	situation	in	Fig.	23	shows	that	the	band	has	not	been	
completely	filled	up	since	the	Fermi	energy	is	smaller	than	
the	maximal	possible	 energy.	This	means	 that	 this	band	
is	a	conduction	band.	If	the	Fermi	energy	would	be	equal	

to	the	maximal	energy	we	would	have	a	valence	band.	A	
transfer	of	 this	knowledge	to	 the	energy	level	scheme	of	
Fig.	21	and	a	selection	of	 the	2s	band	would	provide	 the	
picture	of	Fig.	24.

Up	to	this	point	we	anticipated	that	the	temperature	of	the	
solid	body	would	be	0	K.	For	temperatures	deviating	from	
this	temperature	we	still	have	to	respect	thermodynamic	
aspects	 namely	 additional	 energy	 because	 of	 heat	 intro-
duced	from	outside.
Fermi	and	Dirac	described	this	situation	using	statistical	
methods.	[ 7 ].	The	electrons	were	treated	as	particles	of	a	
gas:	equal	and	indistinguishable.	Furthermore	it	was	pre-
sumed	that	the	particles	obey	the	exclusiveness	principle	
which	means	that	any	two	particles	can	not	be	in	the	same	
dynamic	state	and	that	the	wave	function	of	the	whole	sys-
tem	is	anti-symmetrical.	

E maxE max

E Fermi

Fig. 24:  Distribution of free electrons over the energy states 
within a conduction band

Particles	which	satisfy	these	requirements	are	also	called	
Fermions.	Correspondingly	all	particles	which	have	a	spin	
of	 1/2	 are	Fermions	 and	obey	 the	Fermi	Dirac	 statistics.	
Electrons	 are	 such	 particles.	 Under	 respect	 of	 these	 as-
sumptions	both	physicists	got	 the	 following	equation	 for	
the	particle	density	of	 the	electrons	within	an	energy	 in-
terval	dE:

( ) ( )3/23
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Fig. 25:  Number of electrons per unit volume and energy in-
terval dE as a function of the energy E, but for a temperature 
T > 0
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The	above	equation	is	illustrated	by	Fig.	25.	As	shown	in	
Fig.	 24	 by	 introduction	 of	 thermal	 energy	 the	 „highest“	
electrons	 can	 populate	 the	 states	which	 are	 above	 them.	
Based	on	these	facts	we	are	well	equipped	to	understand	
the	behaviour	of	solid	bodies.	We	are	going	to	concentrate	
now	on	our	special	interest	on	the	semiconductors	which	
will	be	presented	in	the	next	chapter	with	the	help	of	the	
previously	performed	considerations.

2.8.5	Semiconductors
Before	starting	the	description	of	the	semiconductor	with	
regard	to	its	behaviour	as	„lasing“	medium	we	still	have	to	
study	the	„holes“.	

States	of	a	band	which	are	not	occupied	by	electrons	are	
called	„holes“.	Whenever	an	electron	leaves	its	state	it	cre-
ates	a	hole.	The	electron	destroys	a	hole	whenever	it	occu-
pies	a	new	state.	The	whole	process	can	be	interpreted	in	
that	way	that	the	hole	and	the	electron	exchange	their	posi-
tion	Fig.	26.	Also	the	holes	have	their	own	dynamic	behav-
iour	and	can	be	considered	as	particles	like	the	electrons.
It	 is	 interesting	 to	 note	 that	 the	 holes	 do	 have	 the	 exact	
opposite	properties	of	the	electrons.	Since	the	temporary	
course	of	the	holes’	migration	is	the	same	as	for	the	elec-
tron	they	have	also	the	same	mass	except	that	the	mass	of	
the	hole	has	 the	opposite	sign.	Furthermore	 its	charge	 is	
positive.
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Fig. 26:  Electron and hole transition

Once	 the	 existence	 of	 the	 holes	 has	 been	 accepted	 they	
also	 have	 to	 have	 a	 	 population	 density.	 It	will	 be	 intro-
duced	in	the	following.
For	this	reason	we	complete	Fig.	24,	as	shown	in	Fig.	27.	It	
is	easy	to	understand	that	on	one	side	the	holes	are	prefer-
ably	at	the	upper	band	edge	and	on	the	other	side	their	pop-
ulation	density	results	out	of	the	difference	of	the	popula-
tion	density	minus	the	population	density	of	the	electrons.
Fig.	28	shows	the	population	density	of	the	electrons.	Fig.	
29	shows	the	difference	and	in	so	far	the	population	den-
sity	of	the	holes.	Attention	has	to	be	paid	to	the	fact	that	
the	abscissa	 represents	 the	energy	scale	of	 the	band	and	
not	the	energy	of	the	holes.

E Fermi

E max

T = 0

E Fermi

E max

T > 0

Fig. 27:  Distribution of the holes and the electrons within 
an energy band

To	prepare	the	discussion	of	optical	transitions	in	semicon-
ductors	it	gives	a	sense	to	modify	the	diagrams.
Until	 now	 the	abscissa	was	used	as	 energy	 scale	 for	 the	
diagrams	 of	 the	 state	 and	 population	 densities.	 For	 the	
presentation	 of	 optical	 transitions	 it	 is	more	 practical	 to	
use	the	ordinate	as	energy	scale.
To	get	use	to	it	Fig.	28	has	been	represented	in	the	modified	
way	in	Fig.	30.	The	shown	population	density	refers	to	an	
energy	scale	for	which	the	lower	edge	of	the	valence	band	
has	been	set	arbitrarily	to	zero.	
The	represented	situation	refers	to	a	semiconductor	where	
the	 distance	between	 conduction	 and	valence	band	 is	 in	
the	order	of	magnitude	of	 thermal	energy	(kT).	Here	 the	
Fermi	energy	lies	in	the	forbidden	zone.
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Fig. 28:  Population density of the electrons
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Fig. 29:  Population density of the holes

Because	of	the	thermal	energy	some	electrons	have	left	the	
valence	band	and	created	holes.	For	the	following	consid-
erations	it	is	sufficient	to	learn	something	about	the	popu-
lation	densities	of	the	electrons	in	the	conduction	band	as	
well	 as	 about	 the	 holes	 in	 the	 valence	 band.	As	will	 be	
shown	later	there	are	optical	transitions	from	the	conduc-
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tion	band	to	the	valence	band	provided	they	are	allowed.	
Near	the	lower	band	edge	of	the	conduction	band	the	state	
densities	are	admitted	 to	be	parabolic	[ 4 ].	The	same	is	
true	 for	 the	holes	at	 the	upper	edge	of	 the	valence	band.	
Fig.	31.	The	densities	of	 states	 inform	about	 the	number	
of	states	which	are	disposed	for	population	and	the	spec-
tral	 distribution	 reflects	 how	 the	 electrons	 and	holes	 are	
distributing	over	these	states.	Next	to	the	band	edges	the	
spectral	distribution	fits	to	a	Boltzmann	distribution.
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Fig. 30:  Population density on the energy scale

If	we	succeed	to	populate	the	conduction	band	with	elec-
trons	and	to	have	a	valence	band	which	is	not	completely	
occupied	by	electrons	 (Fig.	14)	electrons	may	pass	 from	
the	conduction	band	to	the	valence	band.	That	way	a	pho-
ton	 is	 generated.	 By	 absorption	 of	 a	 photon	 the	 inverse	
process	is	also	possible.
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Fig. 31:  Densities of states and spectral distributions

The	following	illustration	Fig.	32	shows	the	situation	of	a	
population	inversion	in	a	semiconductor.	Attention	must	be	
drawn	to	the	fact	that,	until	now,	we	only	discussed	a	semi-
conductor	consisting	of	one	type	of	atoms.	Consequently	
the	situation	shown	in	Fig.	32	is,	at	 least	for	this	type	of	
direct	semiconductor,	only	fictitious.	It	can	only	be	created	
for	very	short	 intervals	of	 time	and	can	 therefore	not	be	
taken	 into	consideration	 for	 the	 realisation	of	a	 semicon-
ductor	laser.	By	doping	the	basic	semiconductor	material	
we	 can	 create	 band	 structures	 with	 different	 properties.	
A	very	simple	example	may	be	 the	semiconductor	diode	
where	the	basic	material,	germanium	or	silicon,	is	convert-
ed	into	p	or	n	conducting	material	using	suitable	donators	

and	acceptors.	By	the	connection	of	 the	doped	materials	
a	barrier	(also	called	active	zone)	is	formed.	It	will	be	re-
sponsible	for	the	properties	of	the	element.
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Fig. 32:  Population inversion in a semiconductor for T > 0

Silicon	 is	 mainly	 used	 for	 highly	 integrated	 electronic	
circuits	while	ZnS	is	chosen	as	fluorescent	semiconductor	
for	TV	screens.	As	light	emitting	diodes	and	laser	diodes	
so	called	mixed	 semiconductors	 like	AlGaAs	are	 in	use.	
Mixed	semiconductors	can	be	obtained	whenever	within	
the	semiconductors	of	valence	three	or	five	individual	at-
oms	are	replaced	by	others	of	the	same	group	of	the	peri-
odical	system.	The	most	important	mixed	semiconductor	
is	aluminium	gallium	arsenide	(AlGaAs),	where	a	portion	
of	the	gallium	atoms	has	been	replaced	by	aluminium	at-
oms.	This	type	of	semiconductor	can	only	be	produced	by	
a	fall	out	as	thin	crystal	layer,	the	so	called	epitaxy	layer,	
on	 host	 crystals.	 To	 perform	 this	 stress	 free	 it	 is	 impor-
tant	 that	 the	 lattice	 structure	 of	 the	 host	 crystal	 (lattice	
matching)	coincides	fairly	well	with	the	lattices	structure	
of	AlGaAs.	This	is	the	case	for	GaAs	substrate	crystals	of	
any	concentration	regarding	the	Al	and	Ga	atoms	within	
the	epitaxy	layer.	In	that	way	the	combination	of	AlGaAs	
epitaxy	 layers	and	GaAs	substrates	offers	an	 ideal	possi-
bility	to	influence	the	position	of	the	band	edges	and	the	
properties	of	the	transitions	by	variation	of	the	portions	of	
Ga	or	Al.	

2.8.6	Semiconductor	laser
As	simple	as	it	may	seem,	it	took	about	20	years	until	peo-
ple	had	acquired	the	necessary	technology	of	coating	un-
der	extremely	pure	conditions.

It	all	began	in	1962	with	the	first	laser	diode,	just	two	years	
after	Maiman	had	demonstrated	the	first	functional	ruby	
laser.	In	the	course	of	1962	three	different	groups	reported	
more	or	less	simultaneously	the	realisation	of	GaAs	diodes

	 1.		 R.	N.	Hall		 General	Electric
	 2.		 M.	I.	Nathan		 IBM
	 3.		 T.	M.	Quist		 MIT

The	first	laser	was	basically	made	of	highly	doped	GaAs	
(Fig.	33).	A	threshold	current	of	100	kA/cm2	was	needed	



Page 23

Laser	diodes

Dr. Walter Luhs - November 1999, revised July 2003 / April 2010 / February 2012

since	 the	GaAs	material	of	 those	days	was	not	by	far	as	
good	as	it	is	today	regarding	the	losses	within	the	crystal.	
Because	of	 thermal	conditions	 the	 laser	could	only	work	
at	70	0K	and	in	the	pulsed	mode.	In	the	course	of	the	fol-
lowing	years	the	threshold	could	be	lowered	to	60	kA/cm2	
by	 improving	 the	 crystals	 but	 only	 the	 use	 of	 a	 hetero-
transition	(Bell	Labs.	and	RCA-Labs.)	brought	the	„break-
through“	in	1968.	The	threshold	could	be	lowered	to	8	kA/
cm2	and	working	in	the	pulse	mode	at	room	temperature	
was	possible	Fig.	34.

n - GaAs

p - GaAs
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Current
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Fig. 33:  Simple laser diode around 1962, working at 70 K 
and with 100 kA/cm2 in the pulse mode.
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Fig. 34:  Simple-hetero structured laser around 1968, work-
ing at 8 kA/cm2 in pulse mode at room temperature.

In	this	concept	a	layer	of	p	conducting	GaAlAs	is	brought	
on	 the	p	 layer	of	 the	pn	 transition	of	GaAs.	The	slightly	
higher	 band	 gap	 of	GaAlAs	 compared	 to	GaAs	 ensures	
that	a	potential	barrier	is	created	between	both	materials	in	
a	way	that	charge	carriers	accumulate	here	and	the	forma-
tion	of	inversion	is	increased	respectively	the	laser	thresh-
old	is	remarkably	lowered	to	8	kA/cm2	.
The	next	step	in	development	was	the	attachment	of	a	sim-
ilar	layer	on	the	n-side	of	the	crystal.	That	way	the	thresh-
old	could	be	lowered	once	again	in	1970.	Now	it	amounted	
to	 about	 1	 kA/cm2.	Until	 today	 nearly	 all	 commercially	
sold	 laser	diodes	are	built	up	on	 the	double	hetero	struc-
ture	principle.	(Fig.	36	and	Fig.	37).

n - AlGaAs n - GaAs p - AlGaAs

Fig. 35:  Energy band diagram of a N n P - double hetero 
structure.

AuZn contact
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p-AlGaAs

GaAs active zone
n-GaAs substrate

AuGe contact n-AlGaAs

p-AlGaAs

n-AlGaAs

Fig. 36:  „Buried“ hetero structure. The active zone has been 
buried between some layers which ensure an optimal beam 
guidance in the zone.

2.8.7	Resonator	and	beam	guidance
As	already	mentioned	at	the	beginning	the	diode	laser	dif-
fers	 from	 the	 „classical“	 lasers	 in	 the	 dimensions	 of	 the	
resonator	 and	 in	 the	 propagation	 of	 the	 beam.	 For	 the	
diode	 lasers	 the	 active	material	 represents	 the	 resonator	
at	 the	 same	 time.	Furthermore	 the	 ratio	of	 the	 resonator	
length	(	300	mm	)	to	the	wavelength	(820	nm)	is:

L / l = 366 ,

For	a	HeNe-Laser	(	l	=	632	nm	)	with	a	typical	resonator	
length	of	20	cm	 this	 ratio	 is	3	108.	Considering	addition-
ally	the	lateral	dimensions	of	the	resonator	we	get	a	ratio	
of	12.5	for	the	diode	lasers	with	a	typical	width	of	10	mm	
for	the	active	zone.	With	capillary	diameters	of	the	He-Ne	
tubes	of	about	1	mm	one	gets	a	value	of	1582.	This	already	
indicates	 that	 the	beam	characteristics	of	 the	 laser	diode	
will	distinguish	significantly	from	„classical“	lasers.

2.8.8	Divergence	and	intensity	distribu-
tion
Not	only	the	beam	guidance	but	also	the	size	of	the	laser	
mirrors	influences	the	beam	geometry.	Generally	for	con-
ventional	lasers	the	mirrors	are	very	large	compared	with	
the	beam	diameter.	The	laser	mirror	(	crystal	gap	area	of	
the	active	zone)	of	the	laser	diodes	has	a	size	of	about	10	
mm	x	2	mm,	through	which	the	laser	beam	has	„to	squeeze“	
itself.	Diffraction	effects	will	be	the	consequence	and	lead	
to	elliptical	beam	profiles.	(Fig.	37).
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Fig. 37:  Elliptical beam profile of a diffraction limited laser 
diode in the far field (some meters).

The	 polarisation	 is	 parallel	 to	 the	 “junction	 plane”,	 that	
is	 the	plane	which	 is	passed	by	 the	 injection	current	per-
pendicularly.	 The	 divergence	 angles	 q^	 and	 qll	 differ	 by	
about	10-30°	depending	on	the	type	of	laser	diode.	If	the	
beams	are	extended	geometrically	into	the	active	medium	
the	horizontal	beams	will	have	another	apparent	point	of	
origin	as	the	vertical	beams.	The	difference	between	the	
points	of	origin	is	called	astigmatic	difference	Fig.	38.	It	
amounts	to	about	10	mm	for	the	so	called	index	guided	di-
odes.	For	the	so	called	gain	guided	diodes	these	values	are	
appreciably	higher.	Modern	diodes	are	mostly	index	guid-
ed	diodes.	This	means	that	the	laser	beam	is	forced	not	to	
leave	the	resonator	laterally	by	attaching	lateral	layers	of	
higher	refractive	index	to	the	active	zone	(Fig.	36).	At	the	
gain	guided	diodes	 the	 current	 is	 forced	 to	pass	 along	a	
small	path	(about	2-3	mm	width).
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Fig. 38:  Astigmatic difference de

In	 this	 way	 the	 direction	 of	 the	 amplification	 (which	 is	
proportional	 to	 the	 current	 flux)	 and	 the	 laser	 radiation	
are	determined.	At	the	gain	guided	diodes	the	formation	
of	 curved	 wave	 fronts	 within	 the	 resonator	 is	 disadvan-
tageous	 since	 they	 simulate	 spherical	 mirrors.	 In	 this	
case	higher	injection	currents	provoke	transversal	modes	
which	will	not	appear	in	index	guided	diodes	because	of	
the	plane	wave	fronts.	Laser	diodes	with	intensity	profiles	
following	a	Gauss	curve	and	a	beam	profile	which	is	only	
limited	by	diffraction	are	called	diffraction limited lasers	
(	DFL	).	They	represent	the	most	„civilised“	diode	lasers.	
For	the	time	being	they	are	only	available	for	powers	up	to	
200	mW.	High	power	diode	lasers	as	used,	for	example,	to	
pump	Nd	YAG	lasers	partially	have	very	fissured	nearly	
rectangular	intensity	profiles.

2.8.9	Polarisation
It	 is	understandable	that	 the	laser	radiation	of	the	diodes	
has	a	distinct	direction	of	polarisation,	since	the	height	of	
the	exit	window	is	4	times	and	the	width	12.5	times	larger	

than	the	wavelength.	Because	of	the	fraction	of	spontane-
ous	emission	the	light	of	the	laser	diode	also	contains	com-
ponents	 oscillating	 in	 the	 vertical	 direction	The	 ratio	 of	
polarisation,	P^	to	Pll	,	depends	on	the	output	power	since	
for	higher	 laser	power	 the	 ratio	of	 spontaneous	 to	 stimu-
lated	emission	is	changing	(Fig.	42).

2.8.10	Spectral	properties
Another	property	of	the	diode	laser	is	 the	dependence	of	
its	wavelength	on	the	temperature	(about	0.25	nm/°K)	and	
on	 the	 injection	current	 (about	0.05	nm/mA).	Users	who	
need	a	well	defined	wavelength	have	to	adjust	temperature	
and	injection	current	in	a	way	that	the	wavelength	remains	
constant.	By	changing	the	temperature	the	wavelength	of	
the	laser	radiation	can	be	altered.
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Fig. 39:  Emission wavelength as a function of the crystal 
temperature of the laser diode and hysteresis.

The	 wavelength	 increases	 with	 increasing	 temperature.	
The	 reason	 for	 this	 is	 that	 the	 refractive	 index	 and	 the	
length	of	 the	 active	 zone	 ,	 respectively	 the	 resonator,	 in-
crease	with	increasing	temperature.	Beyond	a	certain	tem-
perature	the	mode	does	not	fit	anymore	into	the	resonator	
and	another	mode	which	faces	more	favourable	conditions	
will	start	to	oscillate.	
As	 the	 distance	 between	 two	 successive	 modes	 is	 very	
large	for	the	extremely	short	resonator	(	typical	300	mm),	
the	 jump	 is	 about	0.3	nanometer.	Lowering	 the	 tempera-
ture	gets	the	laser	jumping	back	in	his	wavelength.	After	
this	 the	 laser	 must	 not	 be	 necessarily	 in	 the	 departing	
mode.	Applications	anticipating	 the	 tuning	ability	of	 the	
laser	diode	should	therefore	be	performed	within	a	jump-
free	range	of	the	characteristic	line	(Fig.	39).
A	 similar	 behaviour	 is	 observed	 for	 the	 variation	 of	 the	
injection	current	and	in	consequence	for	the	laser	output	
power.	Here	the	change	in	wavelength	is	mainly	the	result	
of	an	increase	in	the	refractive	index	which	again	is	influ-
enced	by	the	higher	charge	density	in	the	active	zone.		A	
higher	 output	 power	 provokes	 also	 a	 higher	 loss	 of	 heat	
and	 an	 increase	 in	 temperature	 of	 the	 active	 zone.	 The	
strong	dependence	of	the	current	and	the	output	power	on	
the	temperature	are	typical	for	a	semiconductor	(Fig.	40).	
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Fig. 40:  Laser power versus injection current with the tem-
perature T as parameter

The	wavelength	of	the	laser	diode	depends	on	the	tempera-
ture	T	and	the	injection	current	I	in	the	following	way:
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l(T0, I0)	is	a	known	wavelength	at	T0	and	I0..	Generally	it	is	
sufficient	to	consider	only	the	linear	terms.	For	a	precision	
of	dl/l	 <	 10-6	 the	quadratic	 terms	have	 to	 be	 respected.	
The	 equation	 is	 valid	 within	 a	 jump-free	 range.	 The	 re-

quirement	 ( ), . cT I constλ λ= = 	provides	directly:
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One	gets	a	dependence	as	shown	in	Fig.	41
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Fig. 41:  Injection current as a function of the temperature 
for constant wavelength

2.8.11	Optical	power
In	regard	to	„classical“	lasers	the	light	of	a	diode	laser	con-
tains	 a	 remarkable	 high	 fraction	 of	 non-coherent	 „LED“	

radiation.	For	currents	below	the	laser	threshold	the	spon-
taneous	emission	 is	dominant.	Stimulated	emission	 is	 re-
sponsible	for	the	strong	increase	above	the	laser	threshold.	
The	 threshold	current	can	be	determined	by	 the	point	of	
intersection	of	the	extrapolated	characteristic	lines	of	the	
initial	and	of	the	lasing	working	mode.	The	rounding	off	
of	the	characteristic	line	is	the	result	of	spontaneous	emis-
sion.	It	also	is	the	cause	for	the	oscillation	of	several	modes	
next	 to	 the	 threshold.	At	 higher	 currents	 the	mode	 spec-
trum	becomes	more	and	more	clean.
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Fig. 42:  Output power of the laser diode as a function of the 
injection current
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2.9	Detectors,	properties	and	range	
of	applications

Semiconductor	 pn-transitions	with	 a	 band	 gap	 of	 Eg	 are	
suitable	for	the	detection	of	optical	radiation	if	the	energy	
Ep	of	the	photons	is	equal	or	greater	than	the	band	gap.

p gE Eω= ≥

In	this	case	an	arriving	photon	can	stimulate	an	electron	
to	pass	from	the	valence	band	to	the	conduction	band.	(Fig.	
43).
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Fig. 43:  Absorption of a photon with subsequent transi-
tion of the stimulated electron from the valence band to the 
conduction band

Here	three	types	of	events	are	possible:

A	 An	electron	of	the	valence	band	in	the	p-zone	is	stim-
ulated	 and	 enters	 the	 p-zone	 of	 the	 conduction	 band.	
Because	of	the	external	electric	field	due	to	the	voltage	
V	 it	will	 diffuse	 through	 the	 barrier	 layer	 into	 the	 n-
zone	and	contributes	to	the	external	current	passing	the	
resistor	RL	unless	it	recombines	in	the	p-zone.

B	 If	 an	 electron	 of	 the	 barrier	 layer	 is	 hit	 by	 a	 photon	
the	 hole	 of	 the	 barrier	 layer	 will	 migrate	 into	 the	 p-
zone	and	the	electron	into	the	n-zone.	The	drift	of	both	
charges	through	the	barrier	layer	causes	a	current	im-
pulse.	The	duration	of	the	impulse	depends	on	the	drift	
speed	and	on	the	length	of	the	barrier	layer.

C	 The	case	 is	similar	 to	case	A.	The	hole	migrates	due	
to	the	presence	of	the	external	field	into	the	p-zone	or	
recombines	in	the	n-zone.

Only	electrons	which	are	 in	 the	barrier	 layer	 (case	B)	or	
near	 the	boundary	of	 the	barrier	 layer	 (area	of	diffusion,	
case	A	 and	C)	 contribute	 to	 the	 external	 current	 due	 to	

stimulation	by	photons.	All	others	will	recombine	within	
their	area.	In	the	utmost	case	one	elementary	charge	q	can	
be	 created	 for	 each	 incoming	 photon.	 As	 already	 men-
tioned,	not	every	photon	will	create	in	the	average	a	cur-
rent	impulse.	In	this	context	the	production	rate	G,	leading	
to	an	average	current	<iPh>	is	defined	as	follows:

Phi q G= ⋅

At	a	light	energy	of	P0	a	number	of	

oP
ω photons	will	hit	

the	detector	as	 ω 	is	just	the	energy	of	one	photon.	But	
only	 that	 fraction	 of	 photons	 is	 converted	 into	 current	
pulses	which	is	absorbed	in	the	barrier	layer.	This	fraction	

may	be	called 0Pη⋅ ,	where	h	is	called	quantum	efficiency.	
The	number	of	generated	current	pulses	or	the	production	
rate	will	be

0G Pη
ω

= ⋅


and	the	average	photo	current:

0Ph
qi Pη

ω
⋅= ⋅


Because	 of	 processes	 which	 are	 typical	 for	 semiconduc-
tors	there	is	already	a	current	flowing	even	if	there	are	no	
photons	entering	the	detector.	This	current	is	called		„dark“	
current	and	has	four	reasons:

1.	diffusion	current,	it	 is	created	because	of	statistical	os-
cillations	of	the	charge	carriers	within	the	diffusion	
area

2.	regeneration	or	recombination	current,	it	is	generated	by	
random	generation	and	annihilation	of	holes

3.	surface	currents,	which	are	hardly	avoidable	since	 the	
ideal	insulator	does	not	exist

4.	avalanche	currents	are	flows	of	electrons	which	appear	
at	 high	 electric	 field	 strengths,	 if,	 for	 example,	 a	
high	voltage	is	applied	to	the	photodiode

All	these	effects	contribute	to	the	dark	current	iD	in	a	way	
that	finally	 the	characteristic	 line	of	 the	diode	can	be	ex-
pressed	as	follows:

1
Dq U

kT
s Ph D Phi i e i i i

⋅ 
= − − = −  

This	current	i	passes	the	load	resistor	RL	and	provokes	the	
voltage	drop	Ua	,	which	represents	the	signal.
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Fig. 44:  Characteristic line of a photodiode in the photocon-
ductive mode
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A	good	detector	of	optical	 communication	 technology	 is	
characterised	by	the	fact	that	it	is	very	fast	(	up	to	the	GHz	
range	 )	 and	 that	 it	 has	 a	high	quantum	efficiency	which	
means	 that	 it	 is	 very	 sensitive.	 Depending	 on	 the	wave-
length	range	which	has	to	be	covered	by	the	detector	one	
uses	silicon	or	germanium	semiconductor	material	for	the	
construction	of	the	detectors.

2.9.1	Ge	and	Si	PIN-diodes
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Fig. 45:  Relative sensitivity for Si and Ge photodetector

To	have	absorption	of	a	photon	at	all,	its	energy	has	to	fit	
into	the	band	structure	of	the	material	under	consideration.	
From	the	condition

ph G
hcE h Eω ν
λ

= = = ≥

one	recognises	that	for	large	wavelengths	the	energy	of	the	
photon	may	no	more	be	sufficient	„	to	lift“	the	electron	in	
a	way	that	it	passes	the	band	gap.	For	smaller	wavelengths	
one	has	to	respect	 that	 the	conduction	band	and	also	the	
valence	 band	 have	 upper	 edges	 which	 is	 followed	 by	 a	
band	gap.	Photon	energies	which	pass	 the	upper	 limit	of	
the	conduction	band	can	no	more	be	absorbed.	The	wave-
length	of	 the	applied	light	source	decides	which	detector	
material	is	to	be	used.	For	wavelengths	above	1	mm	up	to	
1.5	mm	Germanium	is	recommended.	Below	these	values	
Silicon	detectors	are	used.	 In	 the	present	experiment	we	
employ	a		laser	diode	of	810	nm	wavelength.	Therefore	a	

silicon	detector	is	used.	To	get	a	high	quantum	efficiency	
not	a	PN	but	a	PIN	detector	has	been	chosen.
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Fig. 46:  Construction of a PIN detector

Contrary	to	a	detector	with	a	simple	pn-layer	this	type	of	
detector	has	an	 intrinsic	conducting	 layer	 inserted	 in	be-
tween	the	p-	and	n-layer.	Therefore	 the	name	PIN-diode.	
The	 reason	 for	 this	 is	 to	 enlarge	 the	barrier	 layer	which	
increases	the	probability	of	absorption	of	a	photon	and	the	
generation	of	a	current	impulse,	e.g.	the	quantum	efficien-
cy.	The	quantum	efficiency	for	such	an	arrangement	is:

( )( )1 1 pddR e e ααη −−= − −

R	is	the	Fresnel	reflection	at	the	Si	or	Ge	surface	
which	is	hit	by	the	photons,	a	is	the	coefficient	
of	absorption,	d	the	thickness	of	the	intrinsic	
zone	and	dp	the	thickness	of	the	p-layer.	By	at-
tachment	of	a	reflex	reducing	layer	on	the	upper	
side	of	the	p-layer	R	can	get	a	value	of	less	than	
1%.	Since	adp	is	anyhow	<<1,	the	thickness	of	
the	intrinsic	layer	should	be	chosen	as	large	as	
possible.	The	consequence	of	this	is	that	the	
drift	time	rises	and	the	limiting	frequency	of	the	
detector	is	reduced.	In	so	far	a	compromise	be-
tween	high	quantum	efficiency	and	high	limiting	
frequency	has	to	be	made.	In	this	experiment	a	
PIN-Si-photo	diode,	type	BPX61	is	used.	It	has	
the	following	characteristic	parameters.
Quantum	efficiency	h	at	850	nm 90	%

Rise	time	 2.2r L jR Cτ = ⋅ 	10%-90%	at	
RL=	50W	and	Ud=10V

1.7	ns

Capacity	Cj	at	Ud	=

0	V 73	pF

1	V 38	pF

10	V 15	pF

dark	current	id	at	Ud	=	10V 2	nA

Photosensitivity	at	Ud	=	5V 70	nA/lx



Page 28

Detectors,	properties	and	range	of	applications

Dr. Walter Luhs - November 1999, revised July 2003 / April 2010 / February 2012

3.0	Index	of	literature
[	1	] K.	J.	Ebeling,	Integrierte	Optoelektronik,	1989

Springer	Verlag,	Berlin
[	2	] H.-G.	Unger,	Optische	Nachrichtentechnik,	Bd.	

1,1993
Hüthig	Buch	Verlag	GmbH,	Heidelberg

[	3	] Jahnke-Emde-Lösch;	 Tables	 of	 higher	 func-
tions,	1966
B.G.	Teubner	Verlagsgesellschaft,	Stuttgart

[	4	] K.J. Ebeling,	Integrierte Optoelektronik,
Springer	Verlag	ISBN	3-540-51300-0,(1989).

[	5	] Alonso-Finn,	Physik III
Inter	 European	 Editions	 B.V.,	 ISBN	 0-201-
00276-0,	(1974).

[	6	] G. Joos,	Lehrbuch der theoretischen Physik
Akademische	Verlagsgesellschaft	m.b.H.	(1959).

[	7	] Stephen Gasiorowicz,	Quantenphysik
R.	Oldenbourg	Verlag	München	Wien	1977,

[	8	] W. Finkelnburg,	 Einführung in die 
Atomphysik
Springer-Verlag	 Berlin	 Heidelberg	 New	 York	
1967



Page 29

Detectors,	properties	and	range	of	applications

Dr. Walter Luhs - November 1999, revised July 2003 / April 2010 / February 2012

4.0	Preparing	the	fibre
Before	using	the	fibre	it	has	to	be	prepared	in	such	a	way	
that	the	input	as	well	as	output	faces	are	perpendicular	as	
well	as	of	best	optical	quality.	This	 is	achieved	by	using	
a	fibre	cleaver	and	breaker.	To	do	so	first	of	all	 the	plas-
tic	coating	has	 to	be	 removed	by	means	of	 the	so	called	
Miller’s	pliers.

Diameter set screw

Fig. 47:  Miller’s pliers (module M)

The	pliers	have	to	be	adjusted	in	such	a	way	that	the	closed	
pliers	do	not	scratch	the	glass	of	the	fibre	by	removing	the	
plastic	cover.	This	is	be	done	by	adjusting	the	diameter	set	
screw.

Ceramic Blade

Stop for plastic cover
Rubber clamp

V groove for fibre

Fig. 48:  Fibre cleaver and breaker (module K)

The	fibre	with	removed	plastic	coating	is	inserted	in	such	
a	way	that	the	remained	plastic	coating	stops	at	the	stopper	
(Fig.	48)	and	the	coating	free	part	inside	the	rubber	clamp.

Press Lever

Insert Fibre

Fig. 49:  First phase

Press	the	lever	as	shown	in	Fig.	49	and	insert	the	fibre.

Release Lever
to fix the fibre

Fig. 50:  Second phase

Release	 the	 lever	 to	fix	 the	fibre	by	means	of	 the	 rubber	
clamp.

briefly press
this lever

gently bend the support

Fig. 51:  Third phase

Gently	 bend	 the	 support	 and	 briefly	 press	 the	 ceramic	
blade	of	the	cutter	lever	onto	the	fibre.	The	fibre	will	break.

Release lever

Fig. 52:  Final phase

Remove	the	ready	fibre	from	the	cleaver.

Attention:	Remove	 the	 rest	of	 the	fibre	and	deposit	 in	 a	
closed	box	or	container	to	avoid	that	these	parts	may	enter	
and	injure	the	human	body.
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5.0	Experiments

5.1	Experimental	set-up
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Fig. 53:  Experimental set-up with fibre

5.2	Description	of	the	modules
This	set-up	has	been	made	with	a	multimode	fibre.	Because	
of	 didactic	 reasons	 a	 bare	 fibre	without	 extra	 protective	
coating	has	been	selected.	The	connection	of	the	fibre	with	
module	D	is	done	in	the	following	way:

1
2

3

Fig. 54:  Mounting the bare fibre to module D

The	cut	and	cleaved	fibre	(1)	is	put	into	the	groove	of		hold-
er	2	and	carefully	fixed	with	the	two	magnets	(3).

1

2

3

Module A :	The	laser	diode	in	its	housing	(1)	is	mounted	
on	a	four	axes	fine	adjustment	holder.	A	Peltier	cooler	

and	a	thermistor	for	measuring	the	laser	diode	temper-
ature	are	incorporated	in	the	housing.	The	laser	diode	
emits	a	maximum	power	of	50	mW	as	laser	of	class	3B.

1

Module B:	A	microscope	objective	collimates	the	laser	di-
ode	radiation.	The	objective	is	screwed	into	the	mount-
ing	plate	that	it	can	easily	be	taken	away	from	the	plate	
holder	and	exchanged	for	another	one.

1

2

3

Module C:	Basically	the	same	arrangement	as	module	B	
but	with	a	fine	adjustment	holder	with	four	axis	XY,	q	
and	f	 and	 an	objective	 (1)	 of	 smaller	 focal	 length	 to	
focus	 the	 collimated	 laser	 diode	 radiation	 in	 such	 a	
way	that	an	effective	coupling	to	 the	fibre	is	ensured.	
Purposely	a	beam	shaping	of	the	laser	diode	radiation	
has	been	omitted	to	simplify	the	entrance	into	the	ex-
periment.
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Module D:	Before	 starting	 the	 experiment	 the	 prepared	
fibre	is	mounted		to	the	module	D.	The	fibre	holder	is	
mounted	on	a	stage	with	linear	displacement	in	the	di-
rection	of	the	beam.

Module F:	 5000	m	multimode	 fibre	 are	 coiled	 up	 on	 a	
drum.	Of	 course	 also	monomode	 fibres	 can	 be	 used,	
which	however	make	alignment	much	more	complex.

module G

rotatable arm

Module E:	The	second	fibre	holder	is	mounted	on	a	hinged	
joined	angle	connector,	but	without	a	linear	stage.	This	
device	allows	the	measurement	of	the	angle	dependent	
output	power	of	the	fibre.

Module G:	 This	module	 consists	 of	 the	 detector	with	 a	
PIN	photodiode	and	is	mounted	on	top	of	the	pivot	arm	
of	the	module	E.	By	turning	the	arm	the	angle	resolved	
intensity	distribution	either	of	the	laser	diode	or	the	fi-
bre	output	can	be	measured.	The	module	is	connected	
to	 the	 signal	 conditioner	box	where	 a	BNC	socket	 is	
provided	to	connect	the	output	either	to	an	oscilloscope	
or	digital	multimeter.	

Module	P	-	ED-0060	Photodetector	signal	conditioning	box
This	device	allows	the	connection	of	the	photodetector	to	an	oscilloscope.	For	
this	purpose	 the	photoelectric	current	which	 is	proportional	 to	 the	number	of	
incident	photons	needs	to	be	converted	into	a	voltage.	This	is	done	by	the	simple	
however	very	effective	by	the	circuit	as	shown	on	the	left.	
The	circuit	is	driven	by	a	9	V	battery	which	lasts	almost	one	year	under	regular	
operation.	The	impedance	of	the	output	can	be	adjusted	from	50	Ω	to	100	kΩ.	
The	“OFF”	position	still	provides	via	an	1	MΩ	shunt	a	signal	with	a	very	high	
sensitivity	which	sometimes	is	useful.
For	 fast	 signals	 the	 lower	 shunt	 resistors	 are	used.	Rise	 times	of	1	ns	 can	be	
measured	in	the	50	and	100	Ω	position.

Module	H	Digital	Laser	Diode	and	Peltier’s	Element	Controller	ED-020
This	fully	digital	operating	device	controls	the	injection	current	as	well	as	the	
temperature	of	the	diode	laser	head.	All	parameters	can	be	set	and	displayed	by	
means	of	a	one	knob	interaction.	A	specific	menu	item	is	selected	by	turning	the	
knob.	Pressing	the	knob	acts	as	enter	key.
The	diode	 laser	 head	 is	 connected	via	 a	multi-pin	 connector	 to	 the	device.	A	
BNC	jacket	provides	a	synchronisation	signal	of	the	modulation	frequency	when	
the	diode	laser	is	electronically	switched	on	and	off.	The	ED-0020	device	pro-
vides	an	integrated	USB	interface	which	enables	full	remote	control	by	an	op-
tional	computer	or	laptop.
Specifications:
Injection	current	 1000	mA	maximum,	selectable	in	steps	of	10	mA
Temperature	 	15	-	40	°	C	in	steps	of	1°
Modulation	 10	to	1000	Hz	in	steps	of	10	Hz
Operating	Voltage	 12	VDC,	by	means	of	an	extra	wall	plug	power	supply
Inputs	 Diode	laser	connection
Outputs	 Modulation	signal	as	TTL	trigger	signal	via	BNC	jacket



Page 32

Description	of	the	modules

Dr. Walter Luhs - November 1999, revised July 2003 / April 2010 / February 2012

12 V connector
pin 2.5 mm

7-pin diode laser
connector

Modulator signal

USB connector

The	connectors	are	located	on	the	left	side	of	the	ED-020.	A	simple	wall	plug	
power	supply	with	an	output	of	12	VDC	is	attached.
The	diode	laser	connection	requires	a	7	pin	connector	and	is	suited	for	the	DIMO	
0.5	W	laser	head	with	integrated	Peltier’s	element	and	NTC	temperature	sensor.	
However,	also	other	 laser	heads	may	be	connected,	please	feel	 free	 to	ask	for	
our	support.	A	BNC	jack	is	provided	to	deliver	a	monitor	signal	for	the	internal	
modulator.	This	signal	can	be	used	as	trigger.	The	USB	connector	is	provided	for	
future	expansions	to	control	the	unit	by	external	software.

Laser	ON	/	OFF
Turning	the	central	knob	highlights	sequentially	the	selected	item.	To	switch	the	
laser	on,	turn	the	knob	until	the	“Laser”	menu	is	highlighted	as	shown	in	the	fig-
ure	on	the	left	side.	Pressing	the	central	knob	shortly	(less	one	second)	switches	
the	laser	on	or	off.	If		a	previous	value	of	the	current	has	been	set	and	the	laser	is	
switched	of,	the	processor	provides	a	soft	shut	down	of	the	laser	diode.

Injection	current
Select	the	“Current”	menu	and	press	the	central	knob	down	for	2	seconds	until	
the	“Current”	item	starts	to	blink.	By	turning	the	knob	the	current	is	selected	
which	is	set	to	the	laser	diode	from	the	processor	with	soft	steps	of	10	mA	in	
100	ms.	This	assures	a	safe	and	lifetime	extending	operation	for	the	laser	diode.	
Pressing	again	the	central	knob	leaves	and	closes	the	current	menu.

Temperature
Select	the	“Temp.”	menu	and	press	the	central	knob	down	for	2	seconds	until	the	
“Temp.”	item	starts	to	blink.	The	temperature	set	point	is	selected	by	turning	the	
knob.	To	enter	the	value	the	central	knob	must	be	pressed	as	long	as	the	menu	
item	“Temp.”	stops	blinking.	The	temperature	can	be	set	in	a	range	from	15°	up	
to	35	°C.	In	highlighted	mode	the	value	of	the	temperature	is	the	temperature	set	
point.	In	non	highlighted	mode	the	actual	temperature	is	displayed.	It	may	take	
a	while	before	the	system	reaches	the	stable	temperature.

Modulator
The	injection	current	can	be	switched	periodically	on	and	off.	In	this	mode	the	
output	power	of	the	laser	diode	is	modulated	as	well.	This	is	of	interest,	when	
time	dependant	measurements	shall	be	carried	out.	The	modulation	frequency	
can	be	set	from	0	to	1000	Hz.	The	duty	cycle	is	fixed	to	50%.	
A	monitor	signal	of	this	modulation	signal	is	present	as	TTL	signal	at	the	BNC	
jack	as	shown	in	the	illustration	of	the	left	page.
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5.3	Properties	of	the	laser	diode	used
TIME

CH1 CH2

GA N

5.3.1	Spatial	intensity	distribution
By	means	of	the	above	shown	set-up	the	intensity	distribution	of	the	laser	diode	is	measured.	For	this	reason	the	laser	
diode	module	is	set	quite	near	to	the	rotation	joint	so	that	the	unavoidable	distance	L	from	the	axis	of	the	rotation	joint	
is	a	minimum.	To	measure	the	intensity	distribution	as	a	function	of	the	angle	with	reference	to	another	axis	of	the	laser	
diode,	the	latter	one	can	be	rotated	in	its	holder.	The	lateral	screw	(M3-screw)	is	released	at	the	holder	for	this	reason	
and	the	laser	diode	is	turned	into	the	desired	position.	It	gives	a	sense	to	measure	the	intensity	distribution	once	in	direc-
tion	of	the	greatest	divergence	and	under	900	with	respect	to	this	direction.	To	eliminate	the	influence	of	environmental	
light	from	the	detector	the	laser	diode	should	be	modulated.	Therefore	the	modulation	is	selected	to	the	„on“	position.	
By	means	of	the	control	button	when	the	modulation	frequency	is	selected	a	value	for	it	which	is	not	too	high	will	be	
selected	in	a	way	that	proper	rectangular	signals	can	be	observed.	The	output	of	the	photo	diode	signal	conditioner	is	
connected	to	an	oscilloscope.	This	is	switched	to	the	„AC“	mode.	Our	object	of	observation	is	exclusively	the	amplitude.	
In	that	way	all	environmental	disturbances	can	be	eliminated.	With	the	same	set-up,	but	the	detector	under	00	to	the	
laser	diode,	the	output	power	is	measured	as	a	function	of	the	injection	current	and	the	temperature	of	the	laser	diode.	
Attention	has	to	be	paid	to	the	fact	that	the	detector	does	not	approach	saturation,	which	can	be	assured	by	choosing	the	
distance	to	the	laser	diode	in	an	appropriate	manner.	If	a	monochromator	is	available	(can	be	ordered	separately),	the	
dependence	of	the	wavelength	on	the	temperature	and	on	the	injection	current	can	be	measured	in	addition.
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5.4	Measurements	with	the	fibre
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T ME

CH1 CH2
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Fig. 55:  Alignment of  the diode laser

Before	we	take	off	with	the	measurements	we	have	to	de-
fine	 the	optical	 axis	of	 the	 set-up.	This	 is	 done	with	 the	
help	 of	 an	 oscilloscope.	 Again	 the	 injection	 current	 is	
modulated	so	that	we	can	see	rectangular	pulses	on	the	os-
cilloscope.	The	collimator	(module	B)	is	brought	at	such	a	
position	to	the	laser	diode	that	a	nearly	parallel	laser	beam	
is	formed.	By	means	of	the	fine	pitch	adjustment	screws	of	

module	A	the	laser	beam	is	then	centred	on	the	detector.	
This	can	be	checked	by	looking	for	the	maximum	signal	
on	 the	 oscilloscope.	 Precaution	 has	 to	 be	 taken	 that	 the	
detector	 does	 not	 reach	 saturation.	 Eventually	 the	 injec-
tion	current	has	to	be	reduced	by	a	suitable	amount.	The	
next	step	is	to	bring	the	coupling	optics	(module	C)	into	
the	set-up.

ME

H1 H2

N

A
B C

D
EF

G

TIME

CH1 CH2

GAIN

Fig. 56:  Insert of Module C 

The	distance	of	module	C	 to	B	 is	more	or	 less	 arbitrary	
since	the	laser	beam	is	nearly	parallel.	50	mm	are	recom-
mended.	Now	the	fibre	adjustment	holder	(module	D,	with-
out	fibre)	is	put	on	the	rail	at	a	distance	of	about	10	mm	
from	module	(C).	The	fibre	 is	 then	carefully	mounted	 to	
the	fibre	adjustment	holder	and	fixed.	The	 laser	diode	 is	
switched	 to	maximum	 injection	 current	 and	 the	 internal	
modulation	is	„on“.	The	detector	(G)	is	fixed	to	the	holder	
plate	vis	a	vis	of	the	fibre	exit.	If	the	amplifier	of	the	con-
trol	unit	and	the	oscilloscope	are	set	to	highest	amplifica-
tion	one	already	detects	modulated	laser	light	at	the	exit	of	
the	fibre.	Now	the	fibre	has	to	be	adjusted.	While	observ-
ing	the	amplitude	on	the	oscilloscope	one	turns	gently	the	
adjustment	screws	of	the	adjustment	holder	(E).	If	there	is	
no	further	increase	in	the	amplitude	the	distance	between	

fibre	and	coupling	optics	will	be	changed	by	acting	on	the	
linear	displacement	of	 the	 translation	stage	of	module	D.	
In	the	new	position	the	fine	adjustment	screws	of	(E)	are	
readjusted.	Since	the	amplitude	increases	continuously	the	
amplification	of	the	oscilloscope	has	to	be	reduced	accord-
ingly.	 At	 a	 certain	 state	 of	 adjustment	 the	 injection	 cur-
rent	has	to	be	reduced	since	meanwhile	so	much	power	is	
coupled	to	the	fibre	that	the	detector	approaches	saturation.	
By	means	of	the	IR	conversion	card	one	can	now	observe	
the	outgoing	radiation	if	the	room	is	sufficiently	darkened.	
The	previous	adjustment	steps	are	repeated	until	no	more	
power	 increase	 is	 observed.	 The	 set-up	 is	 now	well	 pre-
pared	for	the	following	measurements.
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5.4.1	Numerical	aperture
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The	pivot	arm	carrying	the	is	used	to	measure	the	angle	
reolved	intensity	distribution.	The	smallest	distance	is	pre-
determined	by	the	rotation	joint.	The	power	is	measured	
for	different	angles.	Here,	too,	we	use	modulated	light	to	
eliminate	the	influence	of	environmental	disturbances.

In	determining	the	numerical	aperture	we	will	meet	some	
physical	 effects	 which	 make	 the	 interpretation	 of	 the	
measured	 values	 a	 bit	 difficult.	 We	 are	 speaking	 about	
the	cladding	waves	which	leave	the	fibre	together	with	the	
core	waves	simulating	an	aperture	which	is	just	too	high.	
At	larger	distances	of	the	detector	this	influence	is	remark-
ably	reduced.	The	picture	shown	in	the	left	was	taken	with	
a	simple	black	and	white	CCD	camera	during	a	measure-
ment.	It	is	clearly	to	see	that	next	to	the	central	LP01-mode	
a	rather	appreciable	intensity	leaves	the	fibre	via	the	clad-
ding.	It	is	this	intensity	which	eventually	may	simulate	a	
too	high	numerical	aperture.	With	the	help	of	this	simple	
but	impressive	technology	these	problems	can	be	bypassed.	
For	completeness	reasons	it	must	be	mentioned	that	these	
cladding	modes	can	also	be	eliminated	by	using	a	„mode	
stripper“.	This	can	be	achieved	by	removing	the	protective	
coating	of	the	fibre	near	the	end	of	the	fibre	and	bending	
it	over	an	arc	of	about	7	cm	within	a	 liquid	which	has	a	
similar	refractive	 index	as	 the	cladding.	 (for	example	oil	
of	paraffin).	By	this	method	the	cladding	modes	are	going	
to	leave	the	fibre	before	they	can	falsify	the	measurements.
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5.4.2	Transit	time	effects
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Another	very	 interesting	experiment	 is	 the	measurement	
of	the	transit	time	of	light	through	the	fibre.	The	set-up	is	
modified	so	that	the	detector	is	again	next	to	the	end	of	the	
fibre	in	holder	E.	
The	detector	 is	connected	 to	 the	signal	conditioning	box	
(module	P)	and	the	shunt	is	set	to	50	W	to	reduce	the	rise	
time	of	the	photodiode	to	the	nano	second	range.	The	out	
put	of	the	signal	conditioning	box	is	connected	to	the	first	
channel	 of	 the	 oscilloscope.	 The	 second	 channel	 is	 con-
nected	to	the	monitor	exit	of	the	modulation	output	at	the	
control	unit	ED-0020	(module	H).	For	an	appropriate	set	
of	the	time	base	one	gets	curve	A.

1 0 %0

5 0 %

CB

A

T1
T2

The	fibre	is	now	eliminated	from	the	set-up	by	taking	off	
the	mounted	connections	from	the	holders.	(Attention!	Put	
the	fibre	ends	at	a	safe	place)

Curve	B	 is	 represented	 and	 the	 time	difference	T1	 at	 50	
%	of	the	rise	time	is	measured.	The	time	T1	represents	all	
transit	time	delays	of	the	system	without	fibre.	Then	the	fi-
bre	is	reinserted	and	adjusted	to	maximum	power.	Next	we	
are	going	to	find	curve	C	and	time	T2.	The	time	T2	contains	

the	transit	time	delays	of	the	system	and	the	transit	time	of	
the	light	through	the	fibre.	The	order	of	magnitude	of	the	
transit	time	through	the	fibre	can	be	estimated	as	follows:

8

100 1.45 0.5
3 10Light eff

L n s
c

τ µ= ⋅ = ⋅ ≈
⋅

The	above	value	is	obtained	for	a	length	of	the	fibre	of	100	
metres	only.
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6.0	Mathematical	Appendix

6.1	The	modified	Hankel-function
The	Hankel-function	itself	results	in	complex	values.	By	rotation	of	the	coordinate	system	by	90	degree	the	values	of	
the	Hankel-function	needed	for	the	description	of	the	physical	situation	become	real.	That	means	the	imaginary	axis	has	
been	rotated	into	the	real	axis.
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For	the	used	abbreviation	Xp		we	get	by	using	the	differentiation	and	recurrence	formula:
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and	generalised:	

( )
( )

1
2

v
v v v

p
p

p

K pX
K

±= − ±



Page 38

Calculation	of	the	constants	CE,CH,DE	and	DH	using	the	continuity	condition

Dr. Walter Luhs - November 1999, revised July 2003 / April 2010 / February 2012

For	v << 1	the	following	relations	are	valid:
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6.2	Calculation	of	the	constants	CE,CH,DE	and	DH	using	the	continuity	
condition

The	solutions	of	the	wave	equation	are	substituted	into	the	equations	(	2.5.6	),	(	2.5.7	)	and	(	2.5.8	).
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We	now	use	the	definition	for	u	and	v	:
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The	continuity	relation	for	the	radial	field	components:
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The	complete	continuity	relation	written	in	matrix	form:
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For	further	simplification	we	write:
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The	determinant	is	expanded	and	set	to	zero
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and	finally	we	get	:
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Re-substitution	leads	to:
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Collecting	terms:
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Rewriting:

22 22 2 2 2 2 2 2 2

2 4 2 4 2 2 2 2 2 2 2 2
0 0

u v 0
v v v u v

p p p pk m m k

p p p p

J K J Kn n n n p
J u K J K u u a

β
µ ε ω

′ ′ ′ ′    ++ + + − =     
Carrying	out	the	differentiation	with	respect	to	r and	redefinition:
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we	get:

( )
22 2 2 22 2 2 2 2 2

2 2
2 4 2 4 2 2 2 2 2 2

0 0

( ) (v) ( ) (v) u v 0
v v u v

k p m p k p m pk m
m k

p p p p

k J u k K k J u ik Kn n pn n
J u K J u K a

β
µ ε ω

′ ′ ′ ′  +− + + − =  

( )
22 2 2 2 2 2

2 2 2 2
2 2 2 2 2 2 2

0 0

( ) (v) ( ) (v) u v 0
v v u v

p p p p
k m m k

p p p p

J u K J u K pn n n n
u J K uJ K

β
µ ε ω

′ ′ ′ ′  ++ + + − =  

By	using	the	abbreviation	for:
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we	get:	
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With	rewriting	the	square	root:
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we	finally	get	
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Let’s	rewrite	Yp	again	as	Jp	and	let’s	use	the	derivation	of	the	Bessel-function	with	respect	to	its	argument:
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,
so	we	get:
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Using	for	the	coefficient	of	propagation	b	the	relation	(	2.5.12	),
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we	get	the	solution
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(	7.2.1	)
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7.0	Laser	safety

7.1	 Laser	safety	remarks
The	 experimental	 set-up	 contains	 a	 laser	 which	 is	 only	
suitable	for	laboratory	applications.
With	the	individual	modules	in	the	assembled	state,	laser	
radiation	(semiconductor	laser)	can	be	produced	at	830	nm	
with	a	maximum	power	of	200	mW.

The	complete	assembled	laser	is	therefore	a	product	which	
exhibits	the	power	characteristics	of	a	Class	3B	laser.	

Laser radiation
Power max. 50 mW 808 nm

Class 3B

The	user	must	observe	the	laser	safety	regulations,	e.g.	

DIN	VDE	0837	or	IEC	0837.

In	these	guidelines	of	February	1986	the	following	points	
are	listed	for	the	operation	of	laser	equipment	in	laborato-
ries	and	places	of	work.

Laser	equipment	in	laboratories	and	places	of	work

Class	3B	laser	equipment

Class	3B	lasers	are	potentially	hazardous,	because	a	direct	
beam	or	a	beam	reflected	by	a	mirror	can	enter	the	unpro-
tected	eye	(direct	viewing	into	 the	beam).	The	following	
precautions	should	be	made	to	prevent	direct	viewing	into	
the	beam	and	 to	avoid	uncontrolled	 reflections	 from	mir-
rors:
a.)	The	laser	should	only	be	operated	in	a	supervised	laser	
area

b.)	Special	care	should	be	taken	to	avoid	unintentional	re-
flections	from	mirrors

c.)	Where	possible	 the	 laser	beam	should	 terminate	on	a	

material	which	scatters	the	light	diffusely	after	the	beam	
has	passed	along	its	intended	path.	The	colour	and	reflec-
tion	properties	of	the	material	should	enable	the	beam	to	
be	diffused,	so	keeping	the	hazards	due	to	reflection	as	low	
as	possible.

Note:	Conditions	for	safely	observing	a	diffuse	reflection	
of	a	Class	3B	laser	which	emits	in	the	visible	range	are	:
Minimum	distance	of	13	cm	between	screen	and	cornea	
of	the	eye	and	a	maximum	observation	time	of	10s.	Other	
observation	 conditions	 require	 comparison	 of	 the	 radia-
tion	density	of	the	diffused	reflection	with	the	MZB	value.

d.)	Eye	protection	is	necessary	if	 there	is	a	possibility	of	
either	direct	or	reflected	radiation	entering	the	eye	or	dif-
fuse	reflections	can	be	seen	which	do	not	fulfil	the	condi-
tions	in	c.).

e.)	The	entrances	to	supervised	laser	areas	should	be	iden-
tified	with	the	laser	warning	symbol

MZB	means	Maximum	Permissible	Radiation	(Maximal	
zulässige	Bestrahlung)	 and	 it	 is	 defined	 in	 section	13	of	
DIN/VDE	0837.

Special	attention	is	drawn	to	point	12.4	of	DIN	VDE0837:

Laser	equipment	for	demonstration,	display	and	exhibition	
purposes

Only	Class	1	and	Class	2	lasers	should	be	used	for	demon-
strations,	displays	and	exhibitions	in	unsupervised	areas.

Lasers	of	a	higher	class	should	then	only	be	permitted	if	
the	operation	of	the	laser	is	controlled	by	an	experienced	
and	well	trained	operator	and/or	the	spectators	are	protect-
ed	from	radiation	exposure	values	which	does	not	exceed	
the	applicable	MZB	values.

Each	 laser	 system,	which	 is	used	 in	 schools	 for	 training	
etc.	 should	 fulfil	 all	 the	 applicable	 requirements	 placed	
on	class	1	and	class	2	laser	equipment;	also,	it	should	not	
grant	persons	access	to	radiation	which	exceeds	the	appli-
cable	limits	in	Class	1	or	Class	2.
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