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Laser Sicherheitshinweise 

Hiermit erklärt die Firma LD Didactic GmbH,  
dass es sich bei dem angebotenen Lasersystem um einen Aufbau handelt, der sowohl in 

Komponenten als auch im fertigen Aufbau einem Laser der Klasse 3A, 3B oder 4 nach DIN EN 60 

825-1 entspricht. Typischerweise ist die Pumpdiode eine Nd:YAG Laser Klasse 4, ein HeNe Laser mit 

Auskoppler Klasse 3A, aber ein HeNe mit zwei hochreflektierenden Spiegeln nur Klasse 1. Bitte die 

Anleitung oder Aufkleber beachten. 

Aus Haftungsgründen dürfen diese Geräte oder Gerätesammlungen nicht an Privatleute verkauft 

werden. Der Einsatz von Lasern oberhalb Klasse 2 an allgemeinbildendenden Schulen ist in 

Deutschland nicht gestattet.  

Gewerbliche Abnehmer, Schulen und Universitäten werden hiermit darauf hingewiesen, dass aus dem 

missbräuchlichen Betrieb der Geräte ein Verletzungsrisiko, speziell für die Augen, resultiert.  

Dem Benutzer obliegt insbesondere:  
- Die relevanten Unfallverhütungsvorschriften zu beachten, zur Zeit beispielsweise BGV B2 und BGI 

832  

- die OstrV zu beachten „Verordnung zum Schutz der Beschäftigten vor Gefährdungen durch 

künstliche optische Strahlung“ 
- Der Betrieb der Geräte muss rechtzeitig beim Gewerbeaufsichtsamt und der Berufsgenossenschaft 

angezeigt werden.  
- Der Betreiber muss schriftlich einen Laserschutzbeauftragten benennen, der für die Einhaltung der 

Schutzmaßnahmen verantwortlich ist.  
- Die Geräte sind nur für den Betreib in umschlossenen Räumen vorgesehen, deren Wände die 

Ausbreitung des Laserstrahls begrenzen.  
- Der Laserbereich ist deutlich und dauerhaft zu kennzeichnen.  
- Ab Laserklasse 4 ist eine Laser-Warnleuchte am Raumzugang notwendig.  

- Die Geräte sind zur Lehre und Ausbildung in Berufsschulen, Universitäten oder ähnlichen 

Einrichtungen gedacht.  
- Die Geräte nur innerhalb der in den Anleitungen vorgegebenen Betriebsbedingungen betreiben.  
- Die Geräte nur von entsprechend unterwiesenen Mitarbeitern und Studierenden benutzen lassen. 

Bei Handhabung des Gerätes durch Studenten müssen diese von entsprechend geschultem Personal 

überwacht werden.  

 



 

Als praktische Ratschläge:  
- Vor dem Einschalten auf Beschädigungen prüfen  

- Nicht in den Strahl blicken  
- Den Laserstrahl so führen, dass sich keine Personen, Kinder oder Tiere ungewollt im Strahlbereich 

befinden können  
- Den Laserstrahl nicht auf reflektierende Flächen oder in den freien Raum richten  
- Nicht mit reflektierenden Gegenständen im Laserstrahl arbeiten  
- Armbanduhr, Schmuck und andere reflektierende Gegenstände ablegen.  
- Beim Einsetzen optischer Bauteile den Laserstrahl an der Quelle abschalten oder geeignet 

abdecken, bis die Bauteile positioniert sind  
- Teilweise wird mit unsichtbaren Laserstrahlen gearbeitet, deren Verlauf nicht sichtbar ist.  
- Falls nötig, Laserschutzbrillen oder Laserjustierbrillen benutzen.  

Die Firma LD Didactic GmbH haftet nicht für eine missbräuchliche Verwendung der Geräte durch den 

Kunden.  
Der Kunde verpflichtet sich hiermit die Geräte nur entsprechend der rechtlichen Grenzen einzusetzen 

und insbesondere den Laserstrahl nicht im Straßenverkehr oder Luftraum zu verwenden oder in 

anderer Form auf Personen und Tiere zu richten.  

Der Kunde bestätigt, das er befugt ist, diesen Laser zu erwerben und zu verwenden. 



 
Laser Safety Notes 

LD Didactic GmbH informs the customer this is laser equipment of either class 3A, 3B or 4 according 

to IEC 60 825. Typically a Nd:YAG Pump Diode is class 4, a HeNe with output coupler class 3A, but a 

HeNe with two high reflecting is mirrors only class 1. Please see manual or attached labels for the 

exact specification of the laser.  
Special safety precautions are necessary. Please check with local regulations. Typically the use 

requires a safety sign and a warning lamp that is on when the laser is activated and it might also be 

necessary to do and document a risk assessment. 

Due to product liability, the laser must not be sold to individual persons. Companies, higher schools  

and universities might use it, but are notified that misuse of the laser poses a health risk, especially for 

the eyes. 

The intended use of this equipment is for lessons, education and research in higher schools, 

universities or similar institutions.  

Do not operate the devices outside parameters specified in the manual.  

People using the laser must be properly trained and students must be supervised. 

As a general guidance, the user is advised to:  
- Check the laser for damages before use 

- Not to look into the beam  
- Take necessary measures that no people or animals can accidentally enter the beam area  
- do not direct the beam on reflecting surfaces or into public areas  
- do not work close to the light path with reflecting tools  
- take off all jewelry and wristwatches when working with the laser to avoid reflections  
- While placing or removing optical parts in the light path, switch off the laser or cover its exit  
- Some of the experiments use invisible laser beams, but still might hurt the eye  
- use laser protection glasses or laser adjustment glasses where necessary  
- supervise students by trained personnel when they work with the laser system  
- use the laser system only as described in the instruction manuals  

Customer acknowledges the receipt of this information.  

The customer indemnifies LD Didactic from liability for any damages that occur because of misuse of 

the laser.  

The customer confirms that he will obey all local regulations and is allowed by law to buy and use the 

laser system.  
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Maxwell’s equations

1.0	 Introduction
One essential desire of human beings is to use information 
faster than others for their own benefit. In his publication 
„Die Quasioptik der Ultrakurzwellenleiter“ H.Buchholz 
expressed in 1939 the idea to guide light signals along light 
conducting material and to use them for data transmission. 
But only with the development of the semiconductor la-
ser in 1962, Buchholz’ idea was materialising by using 
just these lasers and fibres as light transmitting medium. 
Suddenly, simple and powerful light sources for the gen-
eration and modulation of light were available. Today the 
transmission of signals using laser diodes and fibres has 
become an indispensable technology and the on-going de-
velopment in this area is one of the most important within 
this century. Following the achievements of communica-
tion technology the development of fibre optical sensors 
began in 1977. Here the laser gyroscope for navigation 
has to be emphasised in particular. This new technology 
is based on well known fundamentals in a way that no new 
understanding has to be created. Still, there is a challenge 
with respect to the technical realisation keeping in mind 
that the light has to be guided within fibres of 5 mm diam-
eter only. Appropriate fibres had to be developed and me-
chanical components of high precision had to be disposed 
for coupling the light to the conductor (fibre) and for the 
installation of the fibres. Further goals are the reduction 
of transmission losses, optical amplification within the fi-
bre as replacement of the electronic amplifiers and laser 
diodes of small band width to increase the transmission 
speed of signals.

2.0	Basics
There is hardly any book in optics which does not con-
tain the experiment of Colladan (1861) on total reflection 
of light. Most of us may have enjoyed it during the basic 
physics course.

Guiding of light
Fig. 1:  Colladan’s (1861) experiment for the demonstration 
of the total reflection of light

An intense light beam is introduced into the axis of an out 
flowing water jet. Because of repeated total reflections the 
light cannot leave the jet and it is forced to follow the wa-
ter jet. It is expected that the jet remains completely dark-
ened unless the surface contains small disturbances. This 
leads to a certain loss of light and it appears illuminated all 
along its way. Effects of light created in this way are also 
known as „Fontaines lumineuses“. They generally please 
the onlookers of water games. This historical experiment 
already shows the physical phenomena which are basic in 
fibre optics. The difference of this light conductor to mod-
ern fibres is the dimension which for a fibre is in the order 
of magnitude of the wavelength of light. If we designate 
the diameter of a light guide with d we can state:

„Fontaines lumineuses“ d >> l
Multimode fibres d > l
Monomode fibres d ≈ l

For the fibres manufactured nowadays this leads to further 
effects which can not be described exclusively by total re-
flection. Their understanding is of special importance for 
optical communication technology. In the following we 
will deduce these effects based on Maxwell’s equations. 
To work with fibre optics it is not compulsory to know this 
formalism. It is sufficient to familiarise oneself with the 
results. When we derive these formulae within the context 
of this manual we do it because it has never been done 
before in a comprehensive way within the ordinary teach-
ing manuals with some exceptions [1] or it has been insuf-
ficiently dealt with vis a vis the multitude of various light 
conductors. 

2.1	Maxwell’s equations
We begin with Maxwell’s equations which are the basis 
for the description of all electromagnetic phenomena. The 
equations are presented in two ways. First we describe 
the state of the vacuum by introducing the electric field 

strength E


 and the magnetic field strength H


. This de-
scription surely gives a sense whenever the light beam 
propagates within free space. The situation will be differ-
ent when the light beam propagates in matter. In this case 
the properties of matter have to be respected. Contrary to 
vacuum, matter can have electric and magnetic properties. 

These are the current density j


, the displacement D


 and 

the magnetic induction B


.

Maxwell’s Equations:

0 	and	 0EH E H
t

∂ε ε σ
∂

∇ × = ⋅ ⋅ + ⋅ ∇⋅ =


  

or 

DH j
t

∂
∂

∇ × = +





( 2.1.1 )
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0
4	and	HE E

t
∂ πµ µ ρ
∂ ε

∇ × = − ⋅ ⋅ ∇⋅ = ⋅


 

or 

BE
t

∂
∂

∇ × = −




( 2.1.2 )

, ,
x y z

∂ ∂ ∂
∂ ∂ ∂

 
∇ =    , rot∇× ≡  , div∇⋅ ≡  

e0  is the dielectric constant of the free space. It represents 
the ratio of unit charge (As) to unit field strength 
(V/m) and amounts to 8.859 10-12 As/Vm. 

e is the dielectric constant of matter. It characterises the 
degree of extension of an electric dipole acted on 

by an external electric field E


. The dielectric con-
stant e and the susceptibility c are linked by the 

following relation:
0

0

1 ( )ε χ ε
ε

= ⋅ +
. The product 

0 E Dε ε⋅ ⋅ =
 

 is therefore called „dielectric dis-
placement“ or displacement.

s is the electric conductivity of matter .The product 
E jσ ⋅ =




represents the electric current density

m0  is the absolute permeability of the free space. It gives 
the context between the unit of an induced voltage 
(V) due to the presence of a magnetic field H of unit 
Am/s. It amounts to 1.256 10-6 Vs/Am.

m  is like e a constant of the matter under consideration. It 
describes the degree of displacement of magnetic 
dipoles under the action of an external magnetic 

field H


. The product of permeability m and mag-

netic field strength H


 is called magnetic induction 

0B Hµ µ= ⋅ ⋅
 

 .
r   is the charge density. It is the source which generates 

electric fields. The operation ∇ or div provides the 
source strength and is a measure for the intensity 
of the generated electric field. The charge carrier is 
the electron which has the property of a monopole. 
On the contrary there are no magnetic monopoles 

but only dipoles. Therefore H∇⋅


 is always zero.

Within the frame of further considerations we will refer 
to fibres as light conductors which are made of glass or 
similar matter. They have no electric conductivity (e. g. s 

= 0), no free charge carriers ( 0E∇ =


) and no magnetic 
dipoles ( m = 1). Therefore the Maxwell equations adapted 
to our problem are as follows:

0

0

		and	 0

		and	 0

EH H
t

HE E
t

∂ε ε
∂

∂µ
∂

∇ × = ⋅ ⋅ ∇⋅ =

∇ × = − ⋅ ∇⋅ =



 



 

( 2.1.3 ) 

( 2.1.4 )

2.2	Wave Equation
Using the above equations the goal of the following cal-
culations will be to get an appropriate set of equations de-
scribing the propagation of light in glass or similar matter. 
After this step we will introduce the boundary conditions 
which have to be implemented due to the use of fibre glass. 
Let’s do the first step first. Let’s eliminate the magnetic 

field strength H


 to get an equation which only contains 

the electric field strength E


. By forming the time deriva-
tion of ( 2.1.3) and executing the operation ∇ × on ( 2.1.4) 
we get:

2

0 2

0

0

( 	 ) 0

H E
t t

HE
t

∂ ∂ε ε
∂ ∂

∂µ
∂

∇ × − ⋅ ⋅ =

∇ × ∇ × + ⋅∇ × =








By substitution we get:
2

0 0 2( ) 0EE
t

∂µ ε ε
∂

∇ × ∇ × + ⋅ ⋅ =




( 2.2.1 )

The following vector identity is always valid:

( 	 ) ( )E E E∇ × ∇ × = −∇⋅∇ + ∇ ∇⋅
  

,

where ∇⋅∇ = ∆  is the abbreviation for the Laplace op-
erator

2 2 2

2 2 2x y z
∂ ∂ ∂

∂ ∂ ∂
∆ = + +

Let’s use the identity for ( 2.2.1 ) we get:

2

0 0 2 0EE
t

∂µ ε ε
∂

∆ − ⋅ ⋅ ⋅ =




( 2.2.2 )

Using for the velocity of light in vacuum the relation

0 0

1c
ε µ

=
⋅

and Maxwell’s relation n ε µ= ⋅  ( n is the refractive 
index ), we get with m = 1 as a result the wave equation for 

the electric field E


 in glass:

2 2

2 2 0n EE
c t

∂
∂

∆ − ⋅ =




.
( 2.2.3 )

In the same way we get the wave equation for the magnetic 
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field H


2 2

2 2 0n HH
c t

∂
∂

∆ − ⋅ =




( 2.2.4 )

The first step of our considerations has been completed. 
Both equations contain a term which describes the spa-
tial dependence (Laplace operator) and a term which con-
tains the time dependence. Both equations seem to be very 
„theoretical“ but their practical value will soon become 
evident. Now we have to clarify how the wave equations 
will look like when the light wave hits a boundary. This 
situation is given whenever two media of different refrac-
tive index are in mutual contact. After having performed 
this step we will be in a position to derive all laws of optics 
from Maxwell’s equations. Let’s return to the boundary 
problem. This can be solved in different ways. We will go 
to the simple but safe way and request the validity of the 
law of conservation of energy. This means that the energy 
which arrives per unit time at one side of the boundary has 
to leave it at the other side in the same unit of time since 
there can not be any loss nor accumulation of energy at the 
boundary. Up to now we have not yet determine the energy 
of an electromagnetic field. This will be done next for any 
medium. The power available per unit volume dW consists 
of two parts as will be shown now. The power is generated 

by a current density j


at a field strength E


. We have:
W j Eδ = ⋅




.

We calculate j E⋅




 using the vector identity

( ) ( ) ( )E H H E E H∇⋅ × = ⋅ ∇ × − ⋅ ∇ ×
     

as well as ( 2.1.1 ) and ( 2.1.2 ) we get:

( ) B DW E H H E
t t

∂ ∂δ
∂ ∂

= −∇⋅ × − ⋅ − ⋅
 

   

with 	 0 0	and	B H D Eµ µ ε ε= ⋅ ⋅ = ⋅ ⋅


  

2 21 1
2 20 0( ) ( )W E H H E

t
∂δ µµ ε ε
∂

= −∇⋅ × − ⋅ + ⋅ ⋅
   

It is evident that the second term in the above equation 
contains the stored electromagnetic energy per unit vol-
ume Wem

2 2
0 0

1 1
2 2emW H Eµµ εε= ⋅ + ⋅

 

The first term contains the energy flux density vector

S E H= ×
  

also known as Poynting vector. The conservation of en-
ergy can now simply be expressed as follows:

emWW S j E
t

∂∂
∂

− = ∇⋅ + = − ⋅
 



We required that the energy flux in medium 1 flowing to 
the boundary is equal to the energy flux in medium 2 flow-
ing away from the boundary. Let’s choose as normal to 
the boundary the direction of the z-axis of the coordinate 

system. The following must be true:

1 2
z zS S=
 

1 1 2 2( ) ( )z zE H E H× = ×
   

By evaluation of the vector products we get:

1 1 1 1 2 2 2 2
x y x y x y x yE H H E E H H E⋅ − ⋅ = ⋅ − ⋅

. 

Since the continuity of the energy flux must be assured 
for any type of electromagnetic field we have additionally:

1 2
x xE E= 1 2

x xH H=
1 2
y yE E= 1 2

y yH H=

1 2
tg tgE E= 1 2

tg tgH H=

This set of vector components can also be expressed in the 
following way:

2 1( ) 0	and	 0E N E E H∇ × = × − = ∇ × =
    

( 2.2.5 )

N


is the unit vector and vertically oriented   to the 
boundary. Substituting ( 2.2.5 ) into ( 2.1.1 ) or ( 2.1.2 )

it can be shown that the components of 0D Eεε= ⋅
 

 and 

0B Hµµ= ⋅
 

 in the direction of the normal N


 are con-

tinuous, but E


 and H


are discontinuous in the direction 
of the normal. Let’s summarise the results regarding the 
behaviour of a field at a boundary:

1 2
tg tgE E= 1 2

norm normD D=

1 2
tg tgH H= 1 2

norm normB B=

By means of the equations ( 2.1.1 ), ( 2.1.2 ) and the above 
continuity conditions we are now in a position to describe 
any situation at a boundary.

2.3	Fibres as light wave conductors
Glass fibres as wave conductors have a circular cross sec-
tion. They consist of a core of refractive index nk. The core 
is surrounded by a glass cladding of refractive index nm 
slightly lower than nk. Generally the refractive index of 
the core as well as the refractive index of the cladding are 
considered homogeneously distributed. Between core and 
cladding there is the boundary as described in the previous 
chapter. The final direction of the beam is defined by the 
angle θe under which the beam enters the fibre. Unintended 
but not always avoidable radiation and cladding waves are 
generated in this way. For reasons of mechanical protec-
tion and absorption of the radiation waves the fibre is sur-
rounded by a protective layer.



Page 7

Wave Equation for Glass Fibres

Dr. Walter Luhs - November 1999, revised July 2003 / April 2010 / February 2012

Θ
Θe

Layer

Cladding

Core

Radiation

  

Waves
Cladding Waves

Core Wavesnk

nm

n0

Protective

Fig. 2:  Step index fibre

Fig. 2 reveals some basic facts which can be seen without 
having solved Maxwell’s equations. Taking off from geo-
metrical considerations we can state that there must be a 
limiting angle Qc for total reflection at the boundary be-
tween cladding and core.

cos( ) m
c

k

n
n

Θ = ( 2.3.1 )

For the angle of incidence of the fibre we use the law of 
refraction:

0

sin( )
sin( )

ec k

c

n
n

Θ
=

Θ
and receive:

0

arcsin( sin )k
ec c

n
n

Θ = ⋅ Θ
.

Using equation ( 2.3.1 ) and with no = 1 for air we finally 
get:

2 2arcsin( )ec k mn nΘ = −
The limiting angle Qec represents half the opening angle of 
a cone. All beams entering within this cone will be guided 
in the core by total reflection. As usual in optics here, too, 
we can define a numerical aperture A:

2 2sin ec k mA n n= Θ = − ( 2.3.2 )

Depending under which angle the beams enter the cylindri-
cal core through the cone they propagate helical like. This 
becomes evident if we project the beam displacements 
onto the XY-plane of the fibre. The direction along the fi-
bre is considered as the direction of the z-axis. A periodi-
cal pattern is recognised. It can be interpreted as standing 
waves in the XY-plane. In this context the standing waves 
are called oscillating modes or simply modes. Since these 
modes are built up in the XY-plane, e.g. perpendicularly to 
the z-axis, they are also called transversal modes. Modes 
built up along the z-axis are called longitudinal modes. For 
a deeper understanding of the mode generation and their 
properties we are now going to solve the Maxwell equa-
tions with respect of the fibre boundary conditions.

A

B

Fig. 3:  Helix (A) and Meridional beam (B)

First we are only interested in the core waves. In this re-
gard the cladding can be considered an infinitely extended 
medium of refractive index nm . Because of the cylindri-
cal symmetry of the fibre the Cartesian coordinates are 
replaced by cylindrical coordinates.

X

Y

Z

r

φ

2a

nknm

Fig. 4:  Introduction of cylindrical coordinates

2.4	Wave Equation for Glass Fibres
Let’s solve the wave equations which we quote once again:

2 2

2 2 0n EE
c t

∂
∂

∆ − ⋅ =




.
( 2.4.1 )

2 2

2 2 0n HH
c t

∂
∂

∆ − ⋅ =




( 2.4.2 )

Up to now there was no need to make any assumptions 

for E


 and H


. This will be done now. We presume that 
the wave will propagate in the z-direction of the fibre as 
shown in Fig. 3. It can propagate in zigzag or any other 
way. Therefore we introduce the general coefficient of 
propagation b which will be determined in the course of 
further calculations.
Statement:

ˆ ˆ( , , , ) ( )i t i t i z
r r rE r z t E e E e eω ω βφ ∗ − − ⋅= ⋅ + ⋅ ⋅

ˆ ˆ( , , , ) ( )i t i t i zE r z t E e E e eω ω β
φ φ φφ ∗ − − ⋅= ⋅ + ⋅ ⋅

ˆ ˆ( , , , ) ( )i t i t i z
z z zE r z t E e E e eω ω βφ ∗ − − ⋅= ⋅ + ⋅ ⋅ ( 2.4.3 )

ˆ ˆ ( , , )			i=r	,	 ,	zi iE E r zφ φ=  
are complex functions depending only on the local posi-
tion. They are also called „phasors“. The * indicates the 
complex conjugate value, i. g. replacement of i by -i. First 
we solve the wave equation for the z-component Ez(r,f,z,t) 

of E


 and H


. Then we use the Maxwell equations to get 
the Er- and Ef- components. Using the wave number k, the 
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wave length l, the frequency n and the angular frequency 
w,

2k π
λ

=
and 2ω π ν= ⋅  with 

cν
λ

=

the wave equations  and ( 2.4.1 ) and ( 2.4.2 ) change as 
follows:

2 2( ) 0zk n E∆ + ⋅ = ( 2.4.4 )

2 2( ) 0zk n H∆ + ⋅ = ( 2.4.5 )

We now use the Laplace operator in cylindrical coordi-
nates:

2 2

2 2 2

1 1( )cyl r
r r r r z

∂ ∂ ∂ ∂
∂ ∂ ∂φ ∂

∆ = ⋅ ⋅ + ⋅ +
,

which we change for our purposes in the following way:

,cyl r zφ∆ = ∆ + ∆
The transversal and the longitudinal part of the differential 
equations are separated by introduction of the following 
product:

( , ) ( )z z zE E r E zφ= ⋅
In this way we get from ( 2.4.4 ):

2 2( ) ( , ) ( ) 0cyl z zk n E r E zφ∆ + ⋅ ⋅ ⋅ = ( 2.4.6 )

With the relation

( ( , ) ( )) ( , )
( , ) ( )

z z z z

z z

E r E z E E r
E r E z

φ φ
φ

∆ ⋅ = ⋅ ∆
+ ⋅ ∆

and with equation ( 2.4.1 )we have:
2 2 2

,( ) ( ) ( , ) 0z r zE z k n E rφ β φ⋅ ∆ − + =
For simplification let’s write:

2 2 2 2
rnk n k β= −

Since Ez(z) may have values different from zero we must 
request:

2
,( ) ( , ) 0r rn zk E rφ φ∆ + ⋅ = ( 2.4.7 )

To solve the differential equation ( 2.4.7 ) we use again for 
Ez(r,f) a statement of the type

Ez(r) Ez(f)
Since the fibre shows a rotational symmetry with respect 
to f a useful solution in the sense of physics can only be 
obtained if we request Ez(f) = Ez(f+2p). This leads us to 
the following statement:

2( ) i p
zE e π φφ ⋅ ⋅ ⋅ ⋅= ,

with p as an integer. By substitution into equation (2.4.7) 
we get:

2
, ( ( ) ( )) ( ) ( ) 0r z z rn z zE r E k E r Eφ φ φ∆ ⋅ + ⋅ ⋅ =

( ),

2

2

( ( ) ( )) ( )

( ) ( )

r z z z r z

z z

E r E E E r

pE r E
r

φ φ φ

φ

∆ ⋅ = ⋅ ∆

− ⋅ ⋅

and 

2
2

2( ) ( ) ( ) 0z r rn z
pE k E r
r

φ
 

⋅ ∆ − + ⋅ = 
 

Since Ez(f) is not always zero, the bracket must be zero. 
After multiplication with r2

2 2 2 2( ) ( ) 0r rn zr p r k E r⋅ ∆ − + ⋅ ⋅ =
and evaluation of the Laplace operator which only acts on 
the radial components we finally get:

2
2 2 2 2

2 ( ) 0rn zr r r k p E r
r r

∂ ∂
∂ ∂

 
⋅ + ⋅ + ⋅ − ⋅ =   .

Let’s follow our habits and substitute r krn =x and Er = y. 
The result will be:

2
2 2 2

2x x (x ) 0
x x
y y p y∂ ∂

∂ ∂
⋅ + ⋅ + − ⋅ = ( 2.4.8 )

2.5	Solving the Wave Equation with 
Bessel Functions

This is the differential equation for cylindrical func-
tions. Only for special values of p it can be represented 
by elementary functions. This differential equation kept 
Mr. Bessel (1784-1895), Mr. Neumann (1798-1895) and 
Mr. Hankel (1814-1899) restless till they found a solution. 
Anyhow, it was not found in connection with fibre optics. 
For the reader who worked on microwaves it is clearly vis-
ible that this equation is also used to solve problems of 
wave propagation within electric waveguides. The differ-
ence with respect to waveguides is that we consider non-
conductive instead of conductive matter. A total of four 
solutions is known for equation ( 2.4.8 ). Generally these 
solutions are called cylindrical functions. Three basic 
types of cylindrical functions exist. The first type pre-
sumes integer values for p.
1. Type 	 Bessel - Function 	 Jp(x), p integer
Neumann found the second type of cylindrical function. 
He presented the solution for non-integer values of p.

2. Type	 Neumann - Function	 Nn(x), n arbitrary

Finally Hankel evaluated the third type of cylindrical 
function. He introduced a complex (Hankel function 1. 
type) and a complex conjugated (Hankel function 2. type) 
composition of Bessel- and Neumann-functions:

3. Type	
( ) ( )
( ) ( )

(1)

(2)

p p p

p p p

H J x i N x

H J x i N x

= + ⋅

= − ⋅
For each of the presented solutions there exist also modi-
fied versions. Here x is substituted by ix. For the cladding 
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of the fibre we need a solution which is real. Therefore the 
modified Hankel function is used here [ 4 ]. Since the dif-
ferential equation ( 2.4.8 ) is homogenous ( the right side = 
0), also linear combinations of the solutions fulfil the equa-
tion. Fortunately the actual physical situation reduces the 
number of solutions. The Neumann -function has the prop-
erty that it turns to infinity for x→0 or r → 0. That means 
that the fields would be infinite in the centre of the fibre. 
Since that is not in agreement with the reality this solution 
has to be disregarded. The Bessel-function has finite val-
ues in the centre of the fibre. For larger values of x or r the 
Neumann- and the Bessel-function oscillate like the sine 
or cosine. In so far the Bessel-function is a suitable solu-
tion for the core. For the cladding we need in addition an 
attenuation of the field. Here the modified Hankel-function 
offers a promising solution. For x→0 or r → 0 it turns to 
infinity but we only need it for the range r ≥ a (cladding). 
For the range r ≤ a (core) we shall use the Bessel-function. 
For solving the problems at the boundary between core 
and cladding we shall use the continuity conditions of the 
components of E and H for the transition from core to clad-
ding and fit the Bessel- and Hankel-function for r = a. Let’s 
find first the solution for the core. For any integer value of 
p the Bessel-function is:

( )

2

0

( 1)
( ) ( ) 2

( ) 1 2 3 ..... , 				 0 1

p mmi

p
m

xJ
m p m

m m

+=∞

=

−  = ⋅  ∏ ⋅∏ +
= ⋅ ⋅ ⋅ ⋅ =

∑
∏ ∏

( 2.5.1 )

Argument X of Bessel Function
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Fig. 5:  Fig. 5 : Bessel-function for p=0 and p=1

The solution of ( 2.4.7 ) is:
2( , ) ( ) i p

z k E p rnE r C J r k e π φφ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ( 2.5.2 )

2( , ) ( ) i p
z k H p rnH r C J r k e π φφ − ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ( 2.5.3 )

with the range:

r ≤ a 	 and	
2 2 2 2 2
rn rk kk k k n β= = − .

E(r, )φ

φ r

Fig. 6:  Solution of Bessel-function for p=0

Fig. 6 presents the solution for p=0. Because of the f de-
pendence the rotational symmetry is lifted for solutions 
with p≠0. Already now we see how the electric field will 
establish within the core. It also gets clear that the radius 
a of the fibre will be decisive for the order p of the modes. 
In the radial direction of the fibre we observe a main maxi-
mum at r = 0 and further aside maxima or minima which 
are also called nodes. The number of nodes, which will lat-
er be characterised by the counter index q, is determined 
by the diameter of the fibre as well as by the solution of the 
wave equation within the cladding. After having chosen 
a suitable cylindrical function for the solution within the 
cladding, it has to be ensured that it matches the continuity 
conditions for the electric and magnetic field at the bound-
ary between core and cladding. This leads to the complete 
solution. For the waves within the cladding, r ≥ a , we want 
to achieve that the radial field of the core rapidly decreases 
in the cladding to favour the guidance of waves within the 
core. As solutions of the differential equation we use the 
modified Hankel-function: but which type? We first con-
sider both types. The modified Hankel-function will be 
designated by K:

(1) 2( ) 		,	 1rmirk
p rm rm

rm

K irk e rk
r kπ

≈ ⋅ >>
⋅ ⋅

(2) 2( ) 		,	 1rmirk
p rm rm

rm

K irk e rk
r kπ

−≈ ⋅ >>
⋅ ⋅

(The detailed expansion of the modified Hankel-function 
is shown in chapter 6.1 ). The physical situation which we 
are facing requires that the fields E and H are attenuated 
monotonously in the cladding and approach zero for r → ∞. 
This can only be achieved by the Hankel-function K(1) un-
der the condition that rk is purely imaginary. In this case 
the exponent of the e-function becomes real and negative 
which is necessary for attenuation. Let’s remember, r is 
always real but
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2 2 2 2
rm mk k n β= − 	

2 2 2
rm mk k n β= −

,

and km is imaginary if
2 2 2

mk nβ > ( 2.5.4 )

Here we get the first hint for the required coefficient of 
propagation b . Obviously the coefficient of propagation of 
the core must be greater than the coefficient of propagation 
of the cladding, since we defined initially b as coefficient 
of propagation of the core. Since k is the wave number of 
the considered light wave in vacuum and presuming that 
the coefficient of propagation of the core is the product of 
the vacuum wave number k and the refractive index nk we 
can conclude that the refractive index of the cladding must 
be smaller than the refractive index of the core. This is the 
first consequence which we can extract from the solutions. 
It is in agreement with equation ( 2.3.1 ). The solution for 
the cladding of the fibre is now:

(1) 2( , ) ( ) i p
z m E p rnE r D K ik r e π φφ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅

(1) 2( , ) ( ) i p
z m H p rnH r D K ik r e π φφ − ⋅ ⋅ ⋅ ⋅= ⋅ ⋅

We have:

r ≥ a 	 and	
2 2 2 2
rn rm mk k k n β= = − .

Argument v of modified Hankel function
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Fig. 7:  Modified Hankel-function with v = ikrmr

The constants DE,H  , CE,H and b have not yet been defined. 
These constants will be determined by the continuity con-
ditions at the boundary for r = a . To perform these calcula-
tions we need the fields Er(r,f,z,t), Hr(r,f,z,t), and Ef(r,f,z,t), 
Hf(r,f,z,t). We get them from the Maxwell equations.

0

0

		and	 0

		and	 0

EH H
t

HE E
t

∂ε ε
∂

∂µ
∂

∇ × = ⋅ ⋅ ∇⋅ =

∇ × = − ⋅ ∇⋅ =



 



 

Let’s remember the rules for cylindrical coordinates:

1( , , )

( , , )

( )1 1( , , )

z
r

r z

r
z

r z
r z

r z
z r

r
r z

r r r r

φ

φ

φ

∂∂φ
∂φ ∂

∂ ∂φ
∂ ∂

∂ ∂φ
∂ ∂

ΨΨ∇ × Ψ = ⋅ −

Ψ Ψ∇ × Ψ = −

⋅Ψ Ψ∇ × Ψ = ⋅ − ⋅







and
( )1 1r zr

r r r z
φ∂∂ ∂

∂ ∂φ ∂
Ψ⋅Ψ Ψ∇⋅Ψ = ⋅ + ⋅ +



,
So we will get the following four equations:

2
oz z

r
rn

E HiE
k r r

µ ω∂ ∂β
∂ ∂φ

 ⋅
= − ⋅ ⋅ + ⋅ 

 
( 2.5.5 )

2
z z

o
rn

E HiE
k r rφ

∂ ∂β µ ω
∂φ ∂

 
= − ⋅ ⋅ − ⋅ ⋅ 

 
( 2.5.6 )

2
0

2
z z

r
rn

n E HiH
k r r

ω ε ∂ ∂β
∂φ ∂

 ⋅
= ⋅ ⋅ − ⋅ 

 
( 2.5.7 )

2
02

z z

rn

E HiH n
k r rφ

∂ ∂βω ε
∂ ∂φ

 
= − ⋅ ⋅ ⋅ + ⋅ 

 
( 2.5.8 )

Here we will introduce the terms which are common in 
fibre optics and which we will use permanently in the fol-
lowing calculations.
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Both the equations ( 2.5.13 ) and ( 2.5.14 ) represent the 
characteristic equations for the four constants CE, CH, DE 
and DH and assure that the continuity requirements at the 
boundary between core and cladding are fulfilled. Since 
the Bessel functions can not be represented analytically in 
an easy way, a graphical method shown in Fig. 8 is used 
to find a solution. Each of the left sides of the equations ( 
2.5.13 ) and ( 2.5.14 ) is represented as a function of u for 
p=2 . The left side of equation ( 2.5.14 ) has to be positive 
since it is required by the right side ( since Xp<0 ). 

Values for u
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Fig. 8:  Graphical solution of the characteristic equation for 
p=2

Therefore only positive values of J(u)p‑1/Jp(u) have been 
represented. For equation ( 2.5.13 ) the negative values of 
J(u)p+1/J(u)p are used correspondingly. The right side of the 
characteristic equation contains next to u the parameter

2 2 2v ma n kβ= ⋅ −

and the function

(v)
v (v)

p
p

p

K
X

K
′

=
⋅

, depending on v built 
up by the Hankel function (see appendix 6.1). The points 
of intersection of the right side and left side curves of the 
characteristic equations provide the solutions which we 
are looking for. The solution area for positive values is de-
noted as the range of HE-waves the one for negative val-
ues as the range of EH-waves. This denomination has its 
historical roots in waveguide technology. Since the Bessel 
functions are periodical there are several points of solu-
tion. All points of intersection of an area are numbered 
continually.

v

X
p

0 1 2 3 4 5
-5

-4

-3

-2

-1

0

p=2p=1

Fig. 9:  The function Xp(v) for p=1 and p=2

The solutions of the right side for v = 0 play a particu-
lar role. In this case the limiting angle of total reflection 
is reached and the wave propagates even in the cladding 
without attenuation. Whenever a fibre is to guide the light 

Transversal phase unit 2 2 2
k ku k a a n k β= ⋅ = ⋅ − ( 2.5.9 )

Transversal attenuation unit 2 2 2v= m mik a a n kβ⋅ = ⋅ −
,

( 2.5.10 )

Fibre or frequency parameter 2 2 2 2vk mV ka n n u= ⋅ − = + ( 2.5.11 )

Phase parameter ( )
2 2 2 2

2 22 2 2

v
v

m

k m

k nB
uk n n

β −
= =

+−
( 2.5.12 )

The continuity condition leads us to four equations which contain the four constants DE,H , CE,H. Regarding the solution 
procedure all steps are well represented in chapter 6.1. To get solutions for the constants which are unequal from zero 
their coefficient determinant has to be zero. This leads to the following characteristic equations which are at the same 
time the characteristic equations for the fibre.

22 2 2 2 2
1 2

2 2 4 2 2 4 2

( ) 1 1 1 1
( ) 2 2 v v

p m k k m m
p p

p k k k

J u n n n n npuX u X p
J u n u n u n u

+
    + −  = + − + + ⋅ +           

EH-Waves ( 2.5.13 )

22 2 2 2 2
1 2

2 2 4 2 2 4 2

( ) 1 1 1 1
( ) 2 2 v v

p m k k m m
p p

p k k k

J u n n n n npuX u X p
J u n u n u n u

−
    + −  = − + − + + ⋅ +           

HE-Waves ( 2.5.14 )
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within the core we have to have v>0. Let’s remember that 
2 2 2
ku a n k β= ⋅ −

 and point out that increasing values 
of u signify an increasing fibre diameter a or an increase 
in the root value. In both cases this leads to an increasing 
number of nodes in the radial direction. Let’s characterise 
the radial order defined by the point of intersection of the 
left side of the characteristic equation with the right side 
by the number q. In consequence we can mark the types of 
waves of the corresponding solutions by HEpq or EHpq. A 
state characterised by a couple of values p and q is called 
a mode of the fibre. For each point of intersection there is 
one value for the fibre or frequency parameter V:

2 2

2 2

v

v

EH
pq pq

HE
pq pq

V u

V u

= +

= +

In Fig. 8, for example, 5 points of intersection at the limit-
ing values for v=0 and p=2 are indicated. According to the 
notation rules they are called:

21 22 23 24 25, , , ,HE HE HE HE HEV V V V V
The HE11 - wave plays a particular role. To recognise this 
the graphical solution of the characteristic equation is per-
formed once again but this time for p=1 (Fig. 10). The lim-
iting curve for v®0 shows, that it tends to ¥ for v=0. So the 
point of intersection for q=1 is at:

11 11 0HE HEV u= =

This means that each fibre will transmit this wave even if 
the core is extremely thin and the difference in refractive 
index extremely small. Because of the small attenuation 
value the wave will also propagate within the cladding. 
Therefore the HE11 - wave is the fundamental wave of the 
fibre. It has the smallest limiting value V of all waves.
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Fig. 10:  Graphical solution of the characteristic equation 
for p=1

The limiting value of the characteristic equation for p=0 is 
obtained from ( 2.5.14 ).

( )
( )

( )
( ) ( )1 1

0
0 0

v
J u J u

u X
J u J u

− −
= = − ⋅

Since X0 (v=0)=∞,it must be J0 (u)=0. The first zero-tran-

sition of the Bessel-function for p=0 is 2.405. So we get:

01 01 2.405HEV u= =

If a fibre with this parameter is used next to the fundamen-
tal wave HE11 also the HE01 wave is transmitted. But the 
latter one also propagates within the cladding. From Fig. 
8 we see that the first limiting value of the HE21 wave is at

21 20 2.58EFV u= =

In so far it is only slightly above the HE01 wave. The HE0q 
and EH0q waves are symmetrical with respect to the radial 
direction or the axis because of p=0 , that means they do 
not depend on the angle f . Contrary to all other waves 
they are no hybrid waves with electric, Ez , and magnetic, 
Hz , field components in the direction of propagation. 

E(x,y,0)

E
(o
,o
,z
)

H(x,y,0)

H
(0
,0
,z
)

Ez=E(0,0,z) Hz=H(0,0,z)

H=H(x,y,0) E=E(x,y,0)

TM TE TEM Hybrides

E0q H0q EHpq / HEpq

Fig. 11:  Classification of field orientation

They are either purely „electric“ or purely „magnetic“ in 
the direction of propagation. A wave whose electric field 
strength points only into the z-direction has a magnetic 
field in the transversal direction. Instead of using EH0q 
these waves are designated by E0q. Since the magnetic field 
is transversal with respect to the direction of propagation 
we also speak about TM-waves (Transversal Magnetic 
waves). There are also waves which only have a magnetic 
field with respect to the direction of propagation. In conse-
quence they have a transversal electric field. This all may 
be a bit confusing but is in agreement with the basic expe-
rience of current conducting wires which possess a trans-
versal magnetic field. This, too, is reflected by Maxwell’s 
equations:

0

0

		

		

EH
t

HE
t

∂ε ε
∂

∂µ
∂

∇ × = ⋅ ⋅

∇ × = − ⋅









In so far it is not a particular property of light conducting 
fibres but the consequence of the basic laws of nature. The 
Fig. 11 may contribute to further illustrations of hybrid 
waves particularly.

The designation EH (HE) is supposed to indicate that the 
amplitude of the E(H)-field is larger than the amplitude of 
the H(E) field in the direction of z. This corresponds to the 
definitions in electrical engineering. Still, in fibre optics 
we will observe deviations from this rule.
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If the fibre is made in a way that only the funda-
mental wave (p=1 and q=1) is guided within the 
core the fibre is called a mono or single mode fi-
bre. In all other cases we speak about multi mode 
fibre. Depending on the range of application of the 
fibre one uses one or the other type of fibre. Let’s 
now derive the „design“-rule for a fibre from the 
solutions allowing us to define the conditions un-
der which a fibre „accepts“ an incoming wave at 
given wavelength and guides it as a mono mode 
fibre. For v=0 we have the limiting case with no 
reflection at the cladding. This means:

2 2 2 2 2 2v= 0m ma n k n kβ β⋅ − = ⇒ = ( 2.5.15 )

For very weak guidance of the core wave we must request
2 2 2

mn kβ >
The other limit for b is received by requesting v→∞. In 
this way we get the highest possible attenuation within the 
cladding.

( )
2 2 2 2

2 22 2 2

v 1
v

m

k m

k nB
uk n n

β −
= = =

+−

( )2 2 2 2 2 2 2 2
k m m kk n n k n k nβ = − + =

Then the range of values of b for weak and strong guid-
ance will be defined as follows:

2 2 2 2
m kn k n kβ< ≤ ( 2.5.16 )

If the fibre is supposed to guide only the fundamental wave 
( p=1 ) and the node in radial direction is exactly on the 
boundary between core and cladding ( q=1 ) , V is not to 
pass 2.405 since otherwise the wave HE01 will be transmit-
ted. The condition for the transmission of the fundamental 
wave exclusively is then:

2 2

0 2.405
20 2.405k m

V

a n nπ
λ

< ≤

< − ≤
( 2.5.17 )

Equation ( 2.5.17 ) represents an important prescription for 
the design of the fibre. It fixes the radius a of the core for 
monomode wave guidance if the wavelength l and the re-
fractive index for cladding and core have been selected. If, 
for example, the problem would be to transmit the light of 
a Helium-Neon laser (wavelength 633 nm, refractive index 
of core 1.5, refractive index of cladding 1.4) we would get 
the following range for the radius a:

( ) ( )

9

2 2

633 102.405 0.45
2 1.5 1.4

a mµ
π

−⋅< ⋅ =
−

The result depends strongly on the difference of the refrac-
tive index. The smaller this difference the greater can be 
the radius a.

2.6	Weakly guiding Fibres
Still, because of technical reasons it is not possible to 
choose the refractive index of the core much larger than 
the refractive index of the cladding. Since core and clad-
ding are in close contact glasses of similar temperature 
coefficient can only be used. The consequence of this is 
the small difference in refractive index. For ordinary fi-
bres it is

32 10k m

k

n n
n

−−
≈ ⋅

,
where the refractive index nk of the core is equal to 1.465 
. If we use these values for the above mentioned example 
we get:

( ) ( )

9

2 2

633 100 2.405 2.6
2 1.465 1.462

a mµ
π

−⋅< < ⋅ =
−

The diameter of the fibre should be chosen smaller 
than 5.2 mm to get the desired monomode transmission. 
Reconsidering this example we see that the difference in 
refractive index is fairly small in reality. Therefore we can 
write nm ≈ nk in good approximation. We are going to show 
that these step fibres possess a weak guidance for the core 
waves and some additional advantageous properties which 
we are going to check. We will calculate the characteristic 
equations anticipating that nm ≈ nk. This simplifies equa-
tion ( 2.5.13 ) for EH-waves and equation ( 2.5.14 ) for HE-
waves as follows:

1
2

( )
( ) v

p
p

p

J u pu X
J u

−  = − ⋅ +   HE-waves ( 2.6.1 )
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2
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( ) v

p
p

p

J u pu X
J u

+  = ⋅ −   EH-waves ( 2.6.2 )

Let’s use the identity (see chapter 6.1)

1
2v v

p
p

p

K pX
K

= − 



so we get:
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⋅ = ⋅ HE-waves ( 2.6.3 )
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( ) (v)
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( ) (v)
p p

p p

J u K
u

J u K
+ +

+ +

⋅ = ⋅ EH-waves ( 2.6.4 )

Comparing both equations we can state that they only dif-
fer by the index p. Equation ( 2.6.4 ) has an index larger 
by 2 than equation ( 2.6.3 ). This means that all EH-waves 
with an index p reduced by 2 will have the same form as 
the HE-waves of index p. Since these waves are the ei-
genvalues of the solutions of the characteristic equation 
with the same value they are called „degenerated“ follow-
ing the linguistic habits of quantum mechanics. Therefore 
they are not distinguishable:

, 2,p q p qHE EH −=

Each linear combination of both waves with the same p 
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and q values results in an eigenwave of the fibre, since for 
perfect degeneration the individual waves are at the same 
place at any time. The degeneration is only perfect if nk = 
nm. In reality the difference is so small that we can pre-
sume a perfect degeneration for all practical applications. 
Therefore the combination of HEp,q+EHp-2,q leads to an ei-
genmode which can be expressed as follows:

LPl,q = HEp,q+EHp-2,q
In that way by superposition of the HE2,q and the E0,q wave 
the LP1,q wave is generated. The original properties of the 
EH, HE modes are superimposing to create the properties 
of the LP modes. This is particularly true for the polarisa-
tion of the waves. Since the EH and HE modes are already 
linearly polarised the LP modes are polarised as well. This 
is the reason for the designation LP standing for linearly 
polarised. If we accept that all EH and HE modes which 
distinguish in the order number p by 2 are superimposing 
to form the same LP mode then each LPl,q for l>0 appears 
in 4 variations.

HE2,q + H0q ⇒ LP1,q
H0,q + HE2,q ⇒ LP1,q
HE2,q + E0,q ⇒ LP1,q
H0,q + EH2,q ⇒ LP1,q

Each two of these variations are mutually perpendicularly 
polarised.

Fig. 12:  The four variations of the LP11 mode. The arrows 
are pointing into the direction of the electric field strength 
which coincides with the direction of polarisation.

A particularity among the LP modes is the LP0q mode. It 
ought to result out of a HE1,q and a EH-1,q mode. But this 
one does not exist so that the LP0q mode only consists of 
the HE11 mode. Contrary to fibres with nk>nm the transver-
sal field part is dominant with respect to the longitudinal 
field part. That way the HE11 mode becomes independent 
of f and rotation symmetrically within the weak conduct-
ing fibre. It is designated by LP01. The LP01 wave is the fun-
damental wave of the weak conducting fibre and has two 
orthogonal directions of polarisation like all HE1,q or LP0,q 
waves. If we succeed in realising a less favourable coef-

ficient of propagation for one direction, transmission in 
only one direction of polarisation will occur. This can be 
achieved by elliptical shaped fibres or anisotropic refrac-
tive index of the core. Meanwhile such fibres exist They 
are called „ polarisation preserving “. If linearly polarised 
light of a laser is coupled into such a fibre its direction 
of polarisation at the exit is the same as at the entrance. 
Fortunately we are now diving more and more into prac-
tice. Technically speaking the weak conducting fibre trans-
mitting only the fundamental wave is the most important 
one. It is of special importance in communication tech-
nology because of the small transit time distortion. It is 
similar in laser technology where the coherence properties 
of the laser light have to be transmitted all along the fibre. 
Of importance are also multimode fibres for a large range 
of application in communication and control technology 
whenever the signals are to be transmitted at reduced 
speed and over distances which are not too large. Before 
the transit time distortions are discussed in detail we want 
to define the range which permits a weak conducting fibre 
just to guide the fundamental wave. For the LP01 wave the 
upper value of the fibre parameter is the same as for the 
HE11 wave since it is built up of it. Due to the numerical 
evaluation of the characteristic equation the lowest value 
is zero, but values <1.5 can not be taken into consideration 
since the transversal attenuation would become too small 
and the wave would hardly be guided within the core.

01

2 2

1.5 2.405
21.5 2.405

LP

k m

V

a n nπ
λ

< ≤

< − ≤

This range differs only slightly from the fibre range of rela-
tively high refractive index difference for the HE11 wave. 
But the LP01 or HE11 fundamental wave has the desired ro-
tation symmetrical intensity distribution within the weak 
conducting fibre.

LP01

Fig. 13:  Intensity distribution of the LP01 wave

2.7	Coupling of light
We are facing the problem to couple a beam of light to a 
fibre, respectively to introduce it into a fibre, the diameter 
of which is in the order of magnitude of 4-10 mm and in 
so far comparable to the wavelength of light. To get a suf-
ficient high excitation of the fundamental mode of the fibre, 
the beam of the light source has to be focused to a diameter 
of this order of magnitude. Under these circumstances the 
laws of geometrical optics fail because they anticipate par-
allel light beams or plane light waves which in reality exist 
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only in approximation.

f

Fig. 14:  Focusing two beams in geometrical optics

Real parallel light beams do not exist in reality and plane 
wave fronts exist only at a particular point. The reason for 
the failure of geometrical optics is the fact that it has been 
defined at a time where the wave character of light was 
still as unknown as the possibility to describe its behav-
iour by Maxwell’s equations. To describe the propagation 
of light we use the wave equation

2 2

2 2 0n EE
c t

∂
∂

∆ − ⋅ =




Solving this equation for the fibre we anticipated waves 
propagating within the fibre as a cylindrical body

( , , )E E r zφ=
 

with 
2 2 2r x y= +

Without boundary light would propagate as a spherical 
wave in all directions of the space.

( )E E r=
 

with 
2 2 2 2r x y z= + +

When we consider the technically most important case of 
spherical waves propagating in the direction of z within a 
small solid angle we arrive at the following statement for 
the electrical field:

( , )E E r z=
 

with 
2 2 2 2r x y z= + +

In this case the solution of the wave equation provides 
fields which have a Gaussian intensity distribution over the 
cross-section. Therefore they are called Gaussian beams. 
Similar to the solutions of the fibre the Gaussian beams 
exist in different modes depending on the actual boundary 
conditions. Such beams, especially the Gaussian funda-
mental mode (TEM00) are generated with preference by la-
sers. But the light of any light source can be considered as 
the superposition of many such Gaussian modes. Still, the 
intensity of a particular mode is small with respect to the 
total intensity of the light source. The situation is different 
for the laser. Here the total light power can be concentrated 
in the fundamental mode. This is the most outstanding dif-
ference with respect to ordinary light sources next to the 
monochromasy of laser radiation. Gaussian beams behave 
differently from geometrical beams.
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Fig. 15:  Beam diameter of a Gaussian beam as fundamental 
mode TEM00 and function of z.

A Gaussian beam always has a waist. The beam radius w 
results out of the wave equation as follows:

( )
2

0 1
R

zw z w
z

 
= ⋅ +   

w0 is the smallest beam radius at the waist and zr is the 
Rayleigh length

2
0Rz w π

λ
=

In Fig.: 15 the course of the beam diameter as a function 
of z is represented. The beam propagates within the direc-
tion of z. At the position z = z0 the beam has the smallest 
radius. The beam radius increases linearly with increasing 
distance. Since Gaussian beams are spherical waves we 
can attribute a radius of curvature of the wave field to each 
point z. The radius of curvature R can be calculated using 
the following relation:

( )
2
rzR z z
z

= +

This context is reflected by Fig. 16. At z = zr the radius of 
curvature has a minimum . Then R increases with 1/z if z 
tends to z = 0 . For z=0 the radius of curvature is infinite. 
Here the wave front is plane. Above the Rayleigh length 
zr the radius of curvature increases linearly. This is a very 
essential statement. Due to this statement there exists a 
parallel beam only in one point of the light wave, to be 
precise only in its focus. Within the range

r rz z z− ≤ ≤

a beam can be considered as parallel or collimated in good 
approximation. In Fig. 17 the Rayleigh range has been 
marked as well as the divergence Q in the distant field, 
that means for z>>z0 . The graphical representations do 
not well inform about the extremely small divergence of 
laser beams another outstanding property of lasers.



Page 16

Laser diodes

Dr. Walter Luhs - November 1999, revised July 2003 / April 2010 / February 2012

Distance z

W
av
ef
ro
nt
ra
di
us

of
cu
rv
at
ur
e

Z rZ 0

R

Z

Fig. 16:  Course of the radius of curvature of the wave front 
as a function of the distance from the waist at z=0
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Fig. 17:  Rayleigh range zR and divergence Q for the far field 
z>>zR

The reason for this is that the ration of the beam diameter 
with respect to z has not been normalised. Let’s consider, 
for example, a HeNe-Laser (632 nm) with a beam radius 
of wo=1mm at the exit of the laser. For the Rayleigh range 
2 zr we get:

2 6
0 9

3.142 2 2 10 9,9
623 10Rz w mπ

λ
−

−⋅ = = ⋅ =
⋅

To get a maximum of power into the fibre a coupling optic 
of focal distance f is required assuring the coupling of a 
Gaussian beam into a weak guiding step index fibre in the 
LP01 fundamental mode.

2W0
2W

Θ

2a

f f

Fig. 18:  For the calculation of the coupling optic

The radius at the waist is

0
2 2 2
0

w fw
w z

θ
θ

⋅ ⋅ ⋅
=

+ ⋅

The position of the waist is:
2

2
2 0

z fy
wz
θ

⋅=
 +   

Example: The beam of a HeNe laser of 0.5 mm diameter 
and of 1.5 mrad divergence is to focus by means of a lens. 
The focal distance is 50 mm and the lens is at a distance of 
2 m from the laser. We find:

( )

3 3

26 6

0,5 10 0,05 1,5 10 12,6
0,25 10 2,25 10 2 0,05

w mµ
− −

− −

⋅ ⋅ ⋅ ⋅= =
⋅ + ⋅ ⋅ −

( )

( )
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2

2 0,05 2,5 10
1,25

0,52 0,05
1,5

y mµ
−− ⋅ ⋅

= =
 − +   

For this example the position y of the waist coincides with 
the focus in good approximation and the radius of the 
waist is here 12.6 mm. To get the fibre under consideration 
adapted in an optimal way the focal distance f has to be 
chosen in a way that the radius of the beam is equal to the 
radius of the core. When laser diodes are used the prepara-
tion of the beam becomes more complicated.

2.8	Laser diodes
The laser diodes are a special class of lasers. They differ 
from „conventional“ lasers in two points:

1.	 For the classical lasers the laser-active atoms (mol-
ecules or ions) are independent of one another and only 
the same energy levels are used for the laser process. 
This means in principle that in order to produce a popu-
lation inversion an infinite number of atoms can con-
tribute (Boltzmann statistics).

2.	 This is not the case with semiconductor lasers. Here a 
defined energy level can only be occupied by two ac-
tive particles (electrons, Pauli principle). But in semi-
conductors, the wave functions of the individual atoms 
overlap to form a common energy band and the extent 
to which the level is occupied follows the Fermi Dirac 
statistics. When considering the laser process, the tran-
sition between the distribution of population in two en-
ergy bands instead of two energy levels must be taken 
into account as for conventional lasers.

Laser diodes do not have any inherently defined emission 
wavelength, because there are no two discrete energy lev-
els that are responsible for the laser process as with tra-
ditional lasers, but rather an energy distribution of elec-
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trons in energy bands. The second important difference 
concerns the propagation of the laser light within the pn 
zone. The spatial intensity distribution of the laser beam 
is defined by the laser medium and not by the resonator as 
for normal lasers. The goal of this experiment is also the 
understanding and checking of the basic facts. Therefore 
the difference between a laser with two discrete energy 
levels and the semiconductor laser with the typical band 
structure will be discussed in the following.

2.8.1	The energy band model
Atoms or molecules at large distance (compared to the spa-
tial dimensions) to their neighbours do not notice mutu-
ally their existence. They can be considered as independ-
ent particles. Their energy levels are not influenced by the 
neighbouring particles.
The behaviour will be different when the atoms are ap-
proached as it is the case within a solid body. Depending 
on the type of atoms and their mutual interaction the en-
ergy states of the electrons can change in a way that they 
even can abandon „their“ nucleus and move nearly freely 
within the atomic structure. They are not completely free, 
otherwise they could leave the atomic structure. 
How the „free“ electrons behave and how they are organ-
ised will be the subject of the following considerations. 
From the fundamentals of electrostatics we know that un-
equal charges attract. Therefore it is easy to imagine that 
an atomic structure is formed by electrostatic forces.
In the following we will call it „crystal“. However, this 
model will fail latest when we try to justify the existence 
of solid Argon just by freezing it sufficiently. Since there is 
obviously some sort of binding within the crystal structure 
in spite of the fact that inert gases are neutral there must 
be additional forces which are responsible for this binding.
To understand these forces we must call on quantum me-
chanics for help. At the beginning this may be at bit diffi-
cult but it simplifies the later understanding. The Hamilton 
operator and Schroedinger’s equation are supposed to be 
known. But the acceptance of the result of the following 
expertise on exchange interaction, exchange energy and 
tunnel effect for the formation of energy bands will be 
sufficient for further understanding provided quantum 
mechanics is considered as the background of all.

2.8.2	Binding of the hydrogen molecule

r ab

Nucleus A Nucleus B

Electron 1 Electron 2

r a1

r a2

r b2r b1

r 12

Fig. 19:  Interaction of two hydrogen molecules
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 
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( 2.8.1 )

The following Schroedinger equation has to be solved: 

( )2
1 2 28 0m E U

h
π∆Ψ + ∆Ψ + ⋅ − ⋅Ψ =

For two hydrogen atoms without interaction the total en-
ergy will be

( )0 0 01 (2) 2E E E E= + =
Correspondingly the eigenfunction y is the product of the 
eigenfunctions of the individual electrons belonging to the 
nuclei a and b.

( ) ( )12 1 2a bΨ = Ψ ⋅Ψ

Since we can not distinguish between the individual elec-
trons also the following linear combinations are valid ei-
genfunctions:

( ) ( ) ( ) ( )1 2 2 1anti a b a bΨ = Ψ ⋅Ψ + Ψ ⋅Ψ

( ) ( ) ( ) ( )1 2 2 1sym a b a bΨ = Ψ ⋅Ψ − Ψ ⋅Ψ

At the same time Pauli’s principle has to be respected, that 
means the eigenfunction yant contains additionally the anti 
parallel spins ( ↓↑ + ↓↓ ) and the function ysym the parallel 
spins ( ↓↓ - ↑↑ ). The electron distribution described by 
the linear combinations depends also on the distance de-
pendent mutual electrostatic disturbance. As disturbance 
we have to consider the terms

2

1 2

1 1 1

b a ab

U e
r r r

 
∆ = − ⋅ + −  

which are the reason for the mutual interaction. To get the 
complete solution we have to add a „disturbance“-term to 
the undisturbed eigenfunctions ya and ys , as well as to the 
undisturbed energy. Then Schroedinger’s equation will no 
more be homogenous but inhomogeneous because of the 
additional „disturbance“-term. As solution ( see [ 5 ] ) we 
get:

2 2
02symE E e C e A= + ⋅ + ⋅

2 2
02antiE E e C e A= + ⋅ − ⋅

We see that a term with the constant C representing the 
Coulomb part and a term with the constant A representing 
the interaction are added to the undisturbed energy. The 
exchange energy is based on the fact that electron 1 is lo-
calised near to nucleus A at a particular instant and near to 
nucleus B at another instant. The sign of A can be positive 
or negative. The energy difference between the two pos-
sible energies is just

22sym antiE E E e A∆ = − = ⋅ ⋅
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A detailed calculation [ 5 ] results in the following relation 
for C:

( ) ( )2 2 3

2 1 12

1 1 1 1 1 2a b
ab a b

C d r
r r r r

 
= − − + ⋅Ψ ⋅Ψ  ∫

and for A:

( ) ( ) ( ) ( ) 3

2 1 12

1 1 1 1 1 2 2 1a b a b
ab a b

A d r
r r r r

 
= − − + Ψ Ψ Ψ Ψ  ∫

Under respect of the fact that ya2(1) and yb2(2), integrated 
over the whole space represent probability densities which, 
multiplied by the elementary charge e, provide the total 
charge density r of the electrons 1 or 2 near the nuclei A or 
B, the constant C can also be written as:

2 22
2 3 31 2

1 2
1 2
2

3 31 2
1 2

12

ab b b

e eee C d r d r
r r r

e d r d r
r

ρ ρ

ρ ρ

= − −

+

∫ ∫

∫∫

We see that C results out of the attracting or repulsing 
Coulomb forces. The exchange integral A looks very much 
like the Coulomb integral. But the electron densities y2a(1) 
resp. y2b(2) have been replaced by the mixed terms ya(1) 
yb(2) and ya(2) yb(1) which are the result of the electron 
exchange. Here we can summarise as follows: If atoms are 
mutually approached the states of the undisturbed energy 
levels split into energetically different states. The number 
of newly created energy states are corresponding to the 
number of exchangeable electrons. (Fig. 20).
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Fig. 20:  Potential energy due to interaction of two hydrogen 
atoms

One of the curves shows a minimum for a particular dis-
tance of the atoms. No doubt, without being forced the at-
oms will approach till they have acquired the minimum 
of potential energy. This is also the reason for hydrogen 
to occur always as molecular hydrogen H2 under normal 
conditions. The second curve does not have such a dis-
tinct property. The curves distinguish in so far as for the 
binding case the spins of the electrons are anti parallel. For 
the non-binding case they are parallel. It is easy to imag-
ine that an increase of the number of atoms also increases 
the number of exchangeable electrons and in consequence 

also the number of newly generated energy levels. Finally 
the number of energy levels is so high and so dense that we 
can speak about an energy band.
Here it is interesting to compare the action of the electrons 
with the behaviour of ambassadors.

The electrons in the most outside shell will learn first about 
the approach of an unknown atom. The eigenfunctions 
will overlap in a way that makes sense. One electron will 
leave the nucleus tentatively to enter an orbit of the ap-
proaching atom. It may execute a few rotations and then 
return to its original nucleus.

If everything is O.K. and the spins of the other electrons 
have adapted appropriate orientations new visits are per-
formed. Due to the visits of these „curious“ electrons the 
nuclei can continue their approach. This procedure goes 
on till the nuclei have reached their minimum of accept-
able distance. Meanwhile it can no more be distinguished 
which electron was part of which nucleus.

If there is a great number of nuclei which have approached 
in this way there will also be a great number of electrons 
which are weakly bound to the nuclei. Still, there is one 
iron-rule for the electrons: my energy level can only be 
shared by one electron with opposite spin (Pauli princi-
ple). Serious physicists may now warn to assume that there 
may be eventually male and female electrons. But who 
knows.....
Let’s return to incorruptible physics.

Up to now we presumed that the atom only has one elec-
tron. With regard to the semiconductors to be discussed 
later this will not be the case. Discussing the properties 
of solid bodies it is sufficient to consider the valence elec-
trons that means the most outside located electrons only as 
it has been done for separated atoms. The inner electrons 
bound closely to the nucleus participate with a rather small 
probability in the exchange processes. Analogously to the 
valence electrons of the atoms there is the valence band 
in solid bodies. Its population by electrons defines essen-
tially the properties of the solid body. If the valence band 
is not completely occupied it will be responsible for the 
conductivity of electrons. A valence band not completely 
occupied is called

conduction band.

If it is completely occupied the next not completely occu-
pied band will be called conduction band.
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Fig. 21:  Band formation by several electrons. The most out-
side electrons are responsible for the equilibrium distance r0

In the following section the question is to be answered how 
the density of states of a band of electrons looks like and 
on which quantities it depends. Before doing that and for 
reasons of completeness another attempt is made to deter-
mine the electron distribution within a solid body.

2.8.3	Periodic potentials
Although quantum mechanics is fairly powerful, up to now 
one has not succeeded to calculate the energy eigenvalues 
of complex atoms and molecules. One generally relies on 
skilful statements for the energy potentials to which the 
electrons are submitted. The statement of periodical po-
tentials has been found to be especially powerful. A clear 
presentation is found in [ 5 ] and [ 8 ]. We follow the outlin-
ing by statistical considerations.

2.8.4	Fermi distribution
In Fig. 21 we have shown that the energy bands are the 
result of the mutual interaction of the atoms. Each band 
has a particular width DE, the magnitude of which is de-
termined by the exchange energy and not by the number 
N of the interacting atoms. Furthermore we know that the 
number of energy levels within a band is determined by 
the number of interacting electrons. The Pauli principle 
states that such a level can only be occupied by two elec-
trons. In this case the spins of the electrons are anti-paral-
lel. Within a band the electrons are free to move and they 
have a kinetic energy of

21 v
2

E m=
or 

2

2
pE
m

=

The mass of the electron is m, v the velocity and p the im-
pulse. The constant potential energy will not be taken into 
consideration. Furthermore we will set the energy of the 
lower band edge to zero. The maximum energy Emax of 
an electron within a band can not pass the value DE since 
otherwise the electron would leave the band and no longer 
be a part of it. Consequently we can write:

2
max max

1
2

E E p
m

= ∆ =
.

We still have to find out how many electrons of energy 
E ≤ Emax exist and within a second step we wish to know 
how many electrons exist in the energy interval dE. To 
reach this goal we will use a trick already applied in deriv-
ing the number of modes in a cavity resonator.(see XP-02 
Emission & Absorption). But here we will consider elec-
trons instead of photons. The course of considerations will 
be the same since we can attribute to each electron a wave 
with wave vector k. For the impulse p we write:

p k= ⋅






Only such electron energies are permitted within a volume 
the wave functions of which are zero at the walls. To ex-
press it in a more simple way: an integer multiple of half 
the wavelength l of the associated standing wave must fit, 
for instance, into the length L of a cube:

2x xL n λ=
 and 

2
xk π

λ
=

For the electron energy of the cube we get:

( )
2 2 2

2 2 2

2 2 2 x y z
pE k k k k k
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= = ⋅ = + +
 

 
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 
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Let’s remember the equation of a sphere
2 2 2 2R x y z= + +

and compare it with the equation for E. We recognise an 
analogous equation of the following type:

( )
2

2 2 2
22 x y z

mLE n n n
h

= + +

or with

2 2

2
kE
m

= 

 we get  

2
2 2 2 2

2 x y z
kL n n n
π

= + +

The radius of this sphere is Lk/p and n1, n2, n3 are the x y 
z coordinates. As n is an integer and positive they only 
generate one eighth of a complete sphere set up by a spatial 
lattice with lattice constant 1. Permissible are only such 

wave vectors k


, the components of which are coinciding 
with the n values or, to express it differently, each point 
of intersection of the lattice represents a valid solution for 
the wave vector k of a stationary wave. The answer to the 
initially raised question regarding the number of electrons 
for a particular length L of a potential box results now out 
of the counting of the number of points of intersection. Fig. 
22.
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Fig. 22:  Calculation of the electron density

This work can also be done analytically. If one uses the 
formula for the volume of a sphere Vsphere = 4/3 p R

3 one 
gets for one eighth of a sphere with a radius for an upper 
limit of energy at Emax:

( )
3

max
1 4
8 3

kN E Lπ
π

 = ⋅ ⋅   

with 

2 2

2
kE
m

= 

 or 

2
2

2

4 2k mE
h
π=

 one gets:

( ) ( )3/23

8 2
3

N E V mE
h
π= ⋅

Here V is the volume of the box. An additional factor of 
2 accounts for the fact that two electrons are admitted in 
each state if their spins are anti-parallel. Let’s divide N(E) 
by the volume V to get the electron density

( ) ( )3/23

8 2
3

n E mE
h
π= ⋅

The electron density per unit energy dn(E)/dE is found by 
differentiation:

( ) ( )3/23

4 2dn E m E dE
h
π= ⋅
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Fig. 23:  Number of electrons per unit volume V and energy 
interval dE as a function of the energy E.

The situation in Fig. 23 shows that the band has not been 
completely filled up since the Fermi energy is smaller than 
the maximal possible energy. This means that this band 
is a conduction band. If the Fermi energy would be equal 

to the maximal energy we would have a valence band. A 
transfer of this knowledge to the energy level scheme of 
Fig. 21 and a selection of the 2s band would provide the 
picture of Fig. 24.

Up to this point we anticipated that the temperature of the 
solid body would be 0 K. For temperatures deviating from 
this temperature we still have to respect thermodynamic 
aspects namely additional energy because of heat intro-
duced from outside.
Fermi and Dirac described this situation using statistical 
methods. [ 7 ]. The electrons were treated as particles of a 
gas: equal and indistinguishable. Furthermore it was pre-
sumed that the particles obey the exclusiveness principle 
which means that any two particles can not be in the same 
dynamic state and that the wave function of the whole sys-
tem is anti-symmetrical. 

E maxE max

E Fermi

Fig. 24:  Distribution of free electrons over the energy states 
within a conduction band

Particles which satisfy these requirements are also called 
Fermions. Correspondingly all particles which have a spin 
of 1/2 are Fermions and obey the Fermi Dirac statistics. 
Electrons are such particles. Under respect of these as-
sumptions both physicists got the following equation for 
the particle density of the electrons within an energy in-
terval dE:

( ) ( )3/23

4 2
1

FermiE E
kT

dn E Em dE
dE h

e

π
−= ⋅ ⋅

+

Energy

d
n
/d
E

E maxE Fermi

Fig. 25:  Number of electrons per unit volume and energy in-
terval dE as a function of the energy E, but for a temperature 
T > 0
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The above equation is illustrated by Fig. 25. As shown in 
Fig. 24 by introduction of thermal energy the „highest“ 
electrons can populate the states which are above them. 
Based on these facts we are well equipped to understand 
the behaviour of solid bodies. We are going to concentrate 
now on our special interest on the semiconductors which 
will be presented in the next chapter with the help of the 
previously performed considerations.

2.8.5	Semiconductors
Before starting the description of the semiconductor with 
regard to its behaviour as „lasing“ medium we still have to 
study the „holes“. 

States of a band which are not occupied by electrons are 
called „holes“. Whenever an electron leaves its state it cre-
ates a hole. The electron destroys a hole whenever it occu-
pies a new state. The whole process can be interpreted in 
that way that the hole and the electron exchange their posi-
tion Fig. 26. Also the holes have their own dynamic behav-
iour and can be considered as particles like the electrons.
It is interesting to note that the holes do have the exact 
opposite properties of the electrons. Since the temporary 
course of the holes’ migration is the same as for the elec-
tron they have also the same mass except that the mass of 
the hole has the opposite sign. Furthermore its charge is 
positive.
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Fig. 26:  Electron and hole transition

Once the existence of the holes has been accepted they 
also have to have a   population density. It will be intro-
duced in the following.
For this reason we complete Fig. 24, as shown in Fig. 27. It 
is easy to understand that on one side the holes are prefer-
ably at the upper band edge and on the other side their pop-
ulation density results out of the difference of the popula-
tion density minus the population density of the electrons.
Fig. 28 shows the population density of the electrons. Fig. 
29 shows the difference and in so far the population den-
sity of the holes. Attention has to be paid to the fact that 
the abscissa represents the energy scale of the band and 
not the energy of the holes.

E Fermi

E max

T = 0

E Fermi

E max

T > 0

Fig. 27:  Distribution of the holes and the electrons within 
an energy band

To prepare the discussion of optical transitions in semicon-
ductors it gives a sense to modify the diagrams.
Until now the abscissa was used as energy scale for the 
diagrams of the state and population densities. For the 
presentation of optical transitions it is more practical to 
use the ordinate as energy scale.
To get use to it Fig. 28 has been represented in the modified 
way in Fig. 30. The shown population density refers to an 
energy scale for which the lower edge of the valence band 
has been set arbitrarily to zero. 
The represented situation refers to a semiconductor where 
the distance between conduction and valence band is in 
the order of magnitude of thermal energy (kT). Here the 
Fermi energy lies in the forbidden zone.

Energy

dn
/d
E

E max

Fig. 28:  Population density of the electrons
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Fig. 29:  Population density of the holes

Because of the thermal energy some electrons have left the 
valence band and created holes. For the following consid-
erations it is sufficient to learn something about the popu-
lation densities of the electrons in the conduction band as 
well as about the holes in the valence band. As will be 
shown later there are optical transitions from the conduc-
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tion band to the valence band provided they are allowed. 
Near the lower band edge of the conduction band the state 
densities are admitted to be parabolic [ 4 ]. The same is 
true for the holes at the upper edge of the valence band. 
Fig. 31. The densities of states inform about the number 
of states which are disposed for population and the spec-
tral distribution reflects how the electrons and holes are 
distributing over these states. Next to the band edges the 
spectral distribution fits to a Boltzmann distribution.
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Fig. 30:  Population density on the energy scale

If we succeed to populate the conduction band with elec-
trons and to have a valence band which is not completely 
occupied by electrons (Fig. 14) electrons may pass from 
the conduction band to the valence band. That way a pho-
ton is generated. By absorption of a photon the inverse 
process is also possible.
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Fig. 31:  Densities of states and spectral distributions

The following illustration Fig. 32 shows the situation of a 
population inversion in a semiconductor. Attention must be 
drawn to the fact that, until now, we only discussed a semi-
conductor consisting of one type of atoms. Consequently 
the situation shown in Fig. 32 is, at least for this type of 
direct semiconductor, only fictitious. It can only be created 
for very short intervals of time and can therefore not be 
taken into consideration for the realisation of a semicon-
ductor laser. By doping the basic semiconductor material 
we can create band structures with different properties. 
A very simple example may be the semiconductor diode 
where the basic material, germanium or silicon, is convert-
ed into p or n conducting material using suitable donators 

and acceptors. By the connection of the doped materials 
a barrier (also called active zone) is formed. It will be re-
sponsible for the properties of the element.
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Fig. 32:  Population inversion in a semiconductor for T > 0

Silicon is mainly used for highly integrated electronic 
circuits while ZnS is chosen as fluorescent semiconductor 
for TV screens. As light emitting diodes and laser diodes 
so called mixed semiconductors like AlGaAs are in use. 
Mixed semiconductors can be obtained whenever within 
the semiconductors of valence three or five individual at-
oms are replaced by others of the same group of the peri-
odical system. The most important mixed semiconductor 
is aluminium gallium arsenide (AlGaAs), where a portion 
of the gallium atoms has been replaced by aluminium at-
oms. This type of semiconductor can only be produced by 
a fall out as thin crystal layer, the so called epitaxy layer, 
on host crystals. To perform this stress free it is impor-
tant that the lattice structure of the host crystal (lattice 
matching) coincides fairly well with the lattices structure 
of AlGaAs. This is the case for GaAs substrate crystals of 
any concentration regarding the Al and Ga atoms within 
the epitaxy layer. In that way the combination of AlGaAs 
epitaxy layers and GaAs substrates offers an ideal possi-
bility to influence the position of the band edges and the 
properties of the transitions by variation of the portions of 
Ga or Al. 

2.8.6	Semiconductor laser
As simple as it may seem, it took about 20 years until peo-
ple had acquired the necessary technology of coating un-
der extremely pure conditions.

It all began in 1962 with the first laser diode, just two years 
after Maiman had demonstrated the first functional ruby 
laser. In the course of 1962 three different groups reported 
more or less simultaneously the realisation of GaAs diodes

	 1. 	 R. N. Hall 	 General Electric
	 2. 	 M. I. Nathan 	 IBM
	 3. 	 T. M. Quist 	 MIT

The first laser was basically made of highly doped GaAs 
(Fig. 33). A threshold current of 100 kA/cm2 was needed 
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since the GaAs material of those days was not by far as 
good as it is today regarding the losses within the crystal. 
Because of thermal conditions the laser could only work 
at 70 0K and in the pulsed mode. In the course of the fol-
lowing years the threshold could be lowered to 60 kA/cm2 
by improving the crystals but only the use of a hetero-
transition (Bell Labs. and RCA-Labs.) brought the „break-
through“ in 1968. The threshold could be lowered to 8 kA/
cm2 and working in the pulse mode at room temperature 
was possible Fig. 34.

n - GaAs

p - GaAs

Injection
Current

Active
Zone

Fig. 33:  Simple laser diode around 1962, working at 70 K 
and with 100 kA/cm2 in the pulse mode.

n GaAs

p GaAlAs

Injection Current

Active Zone

Fig. 34:  Simple-hetero structured laser around 1968, work-
ing at 8 kA/cm2 in pulse mode at room temperature.

In this concept a layer of p conducting GaAlAs is brought 
on the p layer of the pn transition of GaAs. The slightly 
higher band gap of GaAlAs compared to GaAs ensures 
that a potential barrier is created between both materials in 
a way that charge carriers accumulate here and the forma-
tion of inversion is increased respectively the laser thresh-
old is remarkably lowered to 8 kA/cm2 .
The next step in development was the attachment of a sim-
ilar layer on the n-side of the crystal. That way the thresh-
old could be lowered once again in 1970. Now it amounted 
to about 1 kA/cm2. Until today nearly all commercially 
sold laser diodes are built up on the double hetero struc-
ture principle. (Fig. 36 and Fig. 37).

n - AlGaAs n - GaAs p - AlGaAs

Fig. 35:  Energy band diagram of a N n P - double hetero 
structure.

AuZn contact

Oxide Layer

p-AlGaAs

GaAs active zone
n-GaAs substrate

AuGe contact n-AlGaAs

p-AlGaAs

n-AlGaAs

Fig. 36:  „Buried“ hetero structure. The active zone has been 
buried between some layers which ensure an optimal beam 
guidance in the zone.

2.8.7	Resonator and beam guidance
As already mentioned at the beginning the diode laser dif-
fers from the „classical“ lasers in the dimensions of the 
resonator and in the propagation of the beam. For the 
diode lasers the active material represents the resonator 
at the same time. Furthermore the ratio of the resonator 
length ( 300 mm ) to the wavelength (820 nm) is:

L / l = 366 ,

For a HeNe-Laser ( l = 632 nm ) with a typical resonator 
length of 20 cm this ratio is 3 108. Considering addition-
ally the lateral dimensions of the resonator we get a ratio 
of 12.5 for the diode lasers with a typical width of 10 mm 
for the active zone. With capillary diameters of the He-Ne 
tubes of about 1 mm one gets a value of 1582. This already 
indicates that the beam characteristics of the laser diode 
will distinguish significantly from „classical“ lasers.

2.8.8	Divergence and intensity distribu-
tion
Not only the beam guidance but also the size of the laser 
mirrors influences the beam geometry. Generally for con-
ventional lasers the mirrors are very large compared with 
the beam diameter. The laser mirror ( crystal gap area of 
the active zone) of the laser diodes has a size of about 10 
mm x 2 mm, through which the laser beam has „to squeeze“ 
itself. Diffraction effects will be the consequence and lead 
to elliptical beam profiles. (Fig. 37).
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θ

θP

Fig. 37:  Elliptical beam profile of a diffraction limited laser 
diode in the far field (some meters).

The polarisation is parallel to the “junction plane”, that 
is the plane which is passed by the injection current per-
pendicularly. The divergence angles q^ and qll differ by 
about 10-30° depending on the type of laser diode. If the 
beams are extended geometrically into the active medium 
the horizontal beams will have another apparent point of 
origin as the vertical beams. The difference between the 
points of origin is called astigmatic difference Fig. 38. It 
amounts to about 10 mm for the so called index guided di-
odes. For the so called gain guided diodes these values are 
appreciably higher. Modern diodes are mostly index guid-
ed diodes. This means that the laser beam is forced not to 
leave the resonator laterally by attaching lateral layers of 
higher refractive index to the active zone (Fig. 36). At the 
gain guided diodes the current is forced to pass along a 
small path (about 2-3 mm width).

θ

θP

Astigmatical difference

δε

Fig. 38:  Astigmatic difference de

In this way the direction of the amplification (which is 
proportional to the current flux) and the laser radiation 
are determined. At the gain guided diodes the formation 
of curved wave fronts within the resonator is disadvan-
tageous since they simulate spherical mirrors. In this 
case higher injection currents provoke transversal modes 
which will not appear in index guided diodes because of 
the plane wave fronts. Laser diodes with intensity profiles 
following a Gauss curve and a beam profile which is only 
limited by diffraction are called diffraction limited lasers 
( DFL ). They represent the most „civilised“ diode lasers. 
For the time being they are only available for powers up to 
200 mW. High power diode lasers as used, for example, to 
pump Nd YAG lasers partially have very fissured nearly 
rectangular intensity profiles.

2.8.9	Polarisation
It is understandable that the laser radiation of the diodes 
has a distinct direction of polarisation, since the height of 
the exit window is 4 times and the width 12.5 times larger 

than the wavelength. Because of the fraction of spontane-
ous emission the light of the laser diode also contains com-
ponents oscillating in the vertical direction The ratio of 
polarisation, P^ to Pll , depends on the output power since 
for higher laser power the ratio of spontaneous to stimu-
lated emission is changing (Fig. 42).

2.8.10	Spectral properties
Another property of the diode laser is the dependence of 
its wavelength on the temperature (about 0.25 nm/°K) and 
on the injection current (about 0.05 nm/mA). Users who 
need a well defined wavelength have to adjust temperature 
and injection current in a way that the wavelength remains 
constant. By changing the temperature the wavelength of 
the laser radiation can be altered.

Temperature
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Fig. 39:  Emission wavelength as a function of the crystal 
temperature of the laser diode and hysteresis.

The wavelength increases with increasing temperature. 
The reason for this is that the refractive index and the 
length of the active zone , respectively the resonator, in-
crease with increasing temperature. Beyond a certain tem-
perature the mode does not fit anymore into the resonator 
and another mode which faces more favourable conditions 
will start to oscillate. 
As the distance between two successive modes is very 
large for the extremely short resonator ( typical 300 mm), 
the jump is about 0.3 nanometer. Lowering the tempera-
ture gets the laser jumping back in his wavelength. After 
this the laser must not be necessarily in the departing 
mode. Applications anticipating the tuning ability of the 
laser diode should therefore be performed within a jump-
free range of the characteristic line (Fig. 39).
A similar behaviour is observed for the variation of the 
injection current and in consequence for the laser output 
power. Here the change in wavelength is mainly the result 
of an increase in the refractive index which again is influ-
enced by the higher charge density in the active zone.  A 
higher output power provokes also a higher loss of heat 
and an increase in temperature of the active zone. The 
strong dependence of the current and the output power on 
the temperature are typical for a semiconductor (Fig. 40). 
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Fig. 40:  Laser power versus injection current with the tem-
perature T as parameter

The wavelength of the laser diode depends on the tempera-
ture T and the injection current I in the following way:
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l(T0, I0) is a known wavelength at T0 and I0.. Generally it is 
sufficient to consider only the linear terms. For a precision 
of dl/l < 10-6 the quadratic terms have to be respected. 
The equation is valid within a jump-free range. The re-

quirement ( ), . cT I constλ λ= =  provides directly:

( ) ( )0
0

c T

I I

I T T
λ λ α

α α
−

= − −

One gets a dependence as shown in Fig. 41
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Fig. 41:  Injection current as a function of the temperature 
for constant wavelength

2.8.11	Optical power
In regard to „classical“ lasers the light of a diode laser con-
tains a remarkable high fraction of non-coherent „LED“ 

radiation. For currents below the laser threshold the spon-
taneous emission is dominant. Stimulated emission is re-
sponsible for the strong increase above the laser threshold. 
The threshold current can be determined by the point of 
intersection of the extrapolated characteristic lines of the 
initial and of the lasing working mode. The rounding off 
of the characteristic line is the result of spontaneous emis-
sion. It also is the cause for the oscillation of several modes 
next to the threshold. At higher currents the mode spec-
trum becomes more and more clean.
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Fig. 42:  Output power of the laser diode as a function of the 
injection current
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2.9	Detectors, properties and range 
of applications

Semiconductor pn-transitions with a band gap of Eg are 
suitable for the detection of optical radiation if the energy 
Ep of the photons is equal or greater than the band gap.

p gE Eω= ≥

In this case an arriving photon can stimulate an electron 
to pass from the valence band to the conduction band. (Fig. 
43).
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Fig. 43:  Absorption of a photon with subsequent transi-
tion of the stimulated electron from the valence band to the 
conduction band

Here three types of events are possible:

A	 An electron of the valence band in the p-zone is stim-
ulated and enters the p-zone of the conduction band. 
Because of the external electric field due to the voltage 
V it will diffuse through the barrier layer into the n-
zone and contributes to the external current passing the 
resistor RL unless it recombines in the p-zone.

B	 If an electron of the barrier layer is hit by a photon 
the hole of the barrier layer will migrate into the p-
zone and the electron into the n-zone. The drift of both 
charges through the barrier layer causes a current im-
pulse. The duration of the impulse depends on the drift 
speed and on the length of the barrier layer.

C	 The case is similar to case A. The hole migrates due 
to the presence of the external field into the p-zone or 
recombines in the n-zone.

Only electrons which are in the barrier layer (case B) or 
near the boundary of the barrier layer (area of diffusion, 
case A and C) contribute to the external current due to 

stimulation by photons. All others will recombine within 
their area. In the utmost case one elementary charge q can 
be created for each incoming photon. As already men-
tioned, not every photon will create in the average a cur-
rent impulse. In this context the production rate G, leading 
to an average current <iPh> is defined as follows:

Phi q G= ⋅

At a light energy of P0 a number of 

oP
ω photons will hit 

the detector as ω  is just the energy of one photon. But 
only that fraction of photons is converted into current 
pulses which is absorbed in the barrier layer. This fraction 

may be called 0Pη⋅ , where h is called quantum efficiency. 
The number of generated current pulses or the production 
rate will be

0G Pη
ω

= ⋅


and the average photo current:

0Ph
qi Pη

ω
⋅= ⋅


Because of processes which are typical for semiconduc-
tors there is already a current flowing even if there are no 
photons entering the detector. This current is called  „dark“ 
current and has four reasons:

1. diffusion current, it is created because of statistical os-
cillations of the charge carriers within the diffusion 
area

2. regeneration or recombination current, it is generated by 
random generation and annihilation of holes

3. surface currents, which are hardly avoidable since the 
ideal insulator does not exist

4. avalanche currents are flows of electrons which appear 
at high electric field strengths, if, for example, a 
high voltage is applied to the photodiode

All these effects contribute to the dark current iD in a way 
that finally the characteristic line of the diode can be ex-
pressed as follows:

1
Dq U

kT
s Ph D Phi i e i i i

⋅ 
= − − = −  

This current i passes the load resistor RL and provokes the 
voltage drop Ua , which represents the signal.
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Fig. 44:  Characteristic line of a photodiode in the photocon-
ductive mode
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A good detector of optical communication technology is 
characterised by the fact that it is very fast ( up to the GHz 
range ) and that it has a high quantum efficiency which 
means that it is very sensitive. Depending on the wave-
length range which has to be covered by the detector one 
uses silicon or germanium semiconductor material for the 
construction of the detectors.

2.9.1	Ge and Si PIN-diodes
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Fig. 45:  Relative sensitivity for Si and Ge photodetector

To have absorption of a photon at all, its energy has to fit 
into the band structure of the material under consideration. 
From the condition

ph G
hcE h Eω ν
λ

= = = ≥

one recognises that for large wavelengths the energy of the 
photon may no more be sufficient „ to lift“ the electron in 
a way that it passes the band gap. For smaller wavelengths 
one has to respect that the conduction band and also the 
valence band have upper edges which is followed by a 
band gap. Photon energies which pass the upper limit of 
the conduction band can no more be absorbed. The wave-
length of the applied light source decides which detector 
material is to be used. For wavelengths above 1 mm up to 
1.5 mm Germanium is recommended. Below these values 
Silicon detectors are used. In the present experiment we 
employ a  laser diode of 810 nm wavelength. Therefore a 

silicon detector is used. To get a high quantum efficiency 
not a PN but a PIN detector has been chosen.
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Fig. 46:  Construction of a PIN detector

Contrary to a detector with a simple pn-layer this type of 
detector has an intrinsic conducting layer inserted in be-
tween the p- and n-layer. Therefore the name PIN-diode. 
The reason for this is to enlarge the barrier layer which 
increases the probability of absorption of a photon and the 
generation of a current impulse, e.g. the quantum efficien-
cy. The quantum efficiency for such an arrangement is:

( )( )1 1 pddR e e ααη −−= − −

R is the Fresnel reflection at the Si or Ge surface 
which is hit by the photons, a is the coefficient 
of absorption, d the thickness of the intrinsic 
zone and dp the thickness of the p-layer. By at-
tachment of a reflex reducing layer on the upper 
side of the p-layer R can get a value of less than 
1%. Since adp is anyhow <<1, the thickness of 
the intrinsic layer should be chosen as large as 
possible. The consequence of this is that the 
drift time rises and the limiting frequency of the 
detector is reduced. In so far a compromise be-
tween high quantum efficiency and high limiting 
frequency has to be made. In this experiment a 
PIN-Si-photo diode, type BPX61 is used. It has 
the following characteristic parameters.
Quantum efficiency h at 850 nm 90 %

Rise time 2.2r L jR Cτ = ⋅  10%-90% at 
RL= 50W and Ud=10V

1.7 ns

Capacity Cj at Ud =

0 V 73 pF

1 V 38 pF

10 V 15 pF

dark current id at Ud = 10V 2 nA

Photosensitivity at Ud = 5V 70 nA/lx
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4.0	Preparing the fibre
Before using the fibre it has to be prepared in such a way 
that the input as well as output faces are perpendicular as 
well as of best optical quality. This is achieved by using 
a fibre cleaver and breaker. To do so first of all the plas-
tic coating has to be removed by means of the so called 
Miller’s pliers.

Diameter set screw

Fig. 47:  Miller’s pliers (module M)

The pliers have to be adjusted in such a way that the closed 
pliers do not scratch the glass of the fibre by removing the 
plastic cover. This is be done by adjusting the diameter set 
screw.

Ceramic Blade

Stop for plastic cover
Rubber clamp

V groove for fibre

Fig. 48:  Fibre cleaver and breaker (module K)

The fibre with removed plastic coating is inserted in such 
a way that the remained plastic coating stops at the stopper 
(Fig. 48) and the coating free part inside the rubber clamp.

Press Lever

Insert Fibre

Fig. 49:  First phase

Press the lever as shown in Fig. 49 and insert the fibre.

Release Lever
to fix the fibre

Fig. 50:  Second phase

Release the lever to fix the fibre by means of the rubber 
clamp.

briefly press
this lever

gently bend the support

Fig. 51:  Third phase

Gently bend the support and briefly press the ceramic 
blade of the cutter lever onto the fibre. The fibre will break.

Release lever

Fig. 52:  Final phase

Remove the ready fibre from the cleaver.

Attention: Remove the rest of the fibre and deposit in a 
closed box or container to avoid that these parts may enter 
and injure the human body.
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5.0	Experiments

5.1	Experimental set-up

A

H

B

C

D

E

G

P

K
M

13

S

Fig. 53:  Experimental set-up with fibre

5.2	Description of the modules
This set-up has been made with a multimode fibre. Because 
of didactic reasons a bare fibre without extra protective 
coating has been selected. The connection of the fibre with 
module D is done in the following way:

1
2

3

Fig. 54:  Mounting the bare fibre to module D

The cut and cleaved fibre (1) is put into the groove of  hold-
er 2 and carefully fixed with the two magnets (3).

1

2

3

Module A : The laser diode in its housing (1) is mounted 
on a four axes fine adjustment holder. A Peltier cooler 

and a thermistor for measuring the laser diode temper-
ature are incorporated in the housing. The laser diode 
emits a maximum power of 50 mW as laser of class 3B.

1

Module B: A microscope objective collimates the laser di-
ode radiation. The objective is screwed into the mount-
ing plate that it can easily be taken away from the plate 
holder and exchanged for another one.

1

2

3

Module C: Basically the same arrangement as module B 
but with a fine adjustment holder with four axis XY, q 
and f and an objective (1) of smaller focal length to 
focus the collimated laser diode radiation in such a 
way that an effective coupling to the fibre is ensured. 
Purposely a beam shaping of the laser diode radiation 
has been omitted to simplify the entrance into the ex-
periment.
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Module D: Before starting the experiment the prepared 
fibre is mounted  to the module D. The fibre holder is 
mounted on a stage with linear displacement in the di-
rection of the beam.

Module F: 5000 m multimode fibre are coiled up on a 
drum. Of course also monomode fibres can be used, 
which however make alignment much more complex.

module G

rotatable arm

Module E: The second fibre holder is mounted on a hinged 
joined angle connector, but without a linear stage. This 
device allows the measurement of the angle dependent 
output power of the fibre.

Module G: This module consists of the detector with a 
PIN photodiode and is mounted on top of the pivot arm 
of the module E. By turning the arm the angle resolved 
intensity distribution either of the laser diode or the fi-
bre output can be measured. The module is connected 
to the signal conditioner box where a BNC socket is 
provided to connect the output either to an oscilloscope 
or digital multimeter. 

Module P - ED-0060 Photodetector signal conditioning box
This device allows the connection of the photodetector to an oscilloscope. For 
this purpose the photoelectric current which is proportional to the number of 
incident photons needs to be converted into a voltage. This is done by the simple 
however very effective by the circuit as shown on the left. 
The circuit is driven by a 9 V battery which lasts almost one year under regular 
operation. The impedance of the output can be adjusted from 50 Ω to 100 kΩ. 
The “OFF” position still provides via an 1 MΩ shunt a signal with a very high 
sensitivity which sometimes is useful.
For fast signals the lower shunt resistors are used. Rise times of 1 ns can be 
measured in the 50 and 100 Ω position.

Module H Digital Laser Diode and Peltier’s Element Controller ED-020
This fully digital operating device controls the injection current as well as the 
temperature of the diode laser head. All parameters can be set and displayed by 
means of a one knob interaction. A specific menu item is selected by turning the 
knob. Pressing the knob acts as enter key.
The diode laser head is connected via a multi-pin connector to the device. A 
BNC jacket provides a synchronisation signal of the modulation frequency when 
the diode laser is electronically switched on and off. The ED-0020 device pro-
vides an integrated USB interface which enables full remote control by an op-
tional computer or laptop.
Specifications:
Injection current	 1000 mA maximum, selectable in steps of 10 mA
Temperature	  15 - 40 ° C in steps of 1°
Modulation	 10 to 1000 Hz in steps of 10 Hz
Operating Voltage	 12 VDC, by means of an extra wall plug power supply
Inputs	 Diode laser connection
Outputs	 Modulation signal as TTL trigger signal via BNC jacket
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12 V connector
pin 2.5 mm

7-pin diode laser
connector

Modulator signal

USB connector

The connectors are located on the left side of the ED-020. A simple wall plug 
power supply with an output of 12 VDC is attached.
The diode laser connection requires a 7 pin connector and is suited for the DIMO 
0.5 W laser head with integrated Peltier’s element and NTC temperature sensor. 
However, also other laser heads may be connected, please feel free to ask for 
our support. A BNC jack is provided to deliver a monitor signal for the internal 
modulator. This signal can be used as trigger. The USB connector is provided for 
future expansions to control the unit by external software.

Laser ON / OFF
Turning the central knob highlights sequentially the selected item. To switch the 
laser on, turn the knob until the “Laser” menu is highlighted as shown in the fig-
ure on the left side. Pressing the central knob shortly (less one second) switches 
the laser on or off. If  a previous value of the current has been set and the laser is 
switched of, the processor provides a soft shut down of the laser diode.

Injection current
Select the “Current” menu and press the central knob down for 2 seconds until 
the “Current” item starts to blink. By turning the knob the current is selected 
which is set to the laser diode from the processor with soft steps of 10 mA in 
100 ms. This assures a safe and lifetime extending operation for the laser diode. 
Pressing again the central knob leaves and closes the current menu.

Temperature
Select the “Temp.” menu and press the central knob down for 2 seconds until the 
“Temp.” item starts to blink. The temperature set point is selected by turning the 
knob. To enter the value the central knob must be pressed as long as the menu 
item “Temp.” stops blinking. The temperature can be set in a range from 15° up 
to 35 °C. In highlighted mode the value of the temperature is the temperature set 
point. In non highlighted mode the actual temperature is displayed. It may take 
a while before the system reaches the stable temperature.

Modulator
The injection current can be switched periodically on and off. In this mode the 
output power of the laser diode is modulated as well. This is of interest, when 
time dependant measurements shall be carried out. The modulation frequency 
can be set from 0 to 1000 Hz. The duty cycle is fixed to 50%. 
A monitor signal of this modulation signal is present as TTL signal at the BNC 
jack as shown in the illustration of the left page.
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5.3	Properties of the laser diode used
TIME

CH1 CH2

GA N

5.3.1	Spatial intensity distribution
By means of the above shown set-up the intensity distribution of the laser diode is measured. For this reason the laser 
diode module is set quite near to the rotation joint so that the unavoidable distance L from the axis of the rotation joint 
is a minimum. To measure the intensity distribution as a function of the angle with reference to another axis of the laser 
diode, the latter one can be rotated in its holder. The lateral screw (M3-screw) is released at the holder for this reason 
and the laser diode is turned into the desired position. It gives a sense to measure the intensity distribution once in direc-
tion of the greatest divergence and under 900 with respect to this direction. To eliminate the influence of environmental 
light from the detector the laser diode should be modulated. Therefore the modulation is selected to the „on“ position. 
By means of the control button when the modulation frequency is selected a value for it which is not too high will be 
selected in a way that proper rectangular signals can be observed. The output of the photo diode signal conditioner is 
connected to an oscilloscope. This is switched to the „AC“ mode. Our object of observation is exclusively the amplitude. 
In that way all environmental disturbances can be eliminated. With the same set-up, but the detector under 00 to the 
laser diode, the output power is measured as a function of the injection current and the temperature of the laser diode. 
Attention has to be paid to the fact that the detector does not approach saturation, which can be assured by choosing the 
distance to the laser diode in an appropriate manner. If a monochromator is available (can be ordered separately), the 
dependence of the wavelength on the temperature and on the injection current can be measured in addition.
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5.4	Measurements with the fibre

module A

module B

module G

T ME

CH1 CH2

GAIN

Fig. 55:  Alignment of  the diode laser

Before we take off with the measurements we have to de-
fine the optical axis of the set-up. This is done with the 
help of an oscilloscope. Again the injection current is 
modulated so that we can see rectangular pulses on the os-
cilloscope. The collimator (module B) is brought at such a 
position to the laser diode that a nearly parallel laser beam 
is formed. By means of the fine pitch adjustment screws of 

module A the laser beam is then centred on the detector. 
This can be checked by looking for the maximum signal 
on the oscilloscope. Precaution has to be taken that the 
detector does not reach saturation. Eventually the injec-
tion current has to be reduced by a suitable amount. The 
next step is to bring the coupling optics (module C) into 
the set-up.

ME

H1 H2

N

A
B C

D
EF

G

TIME

CH1 CH2

GAIN

Fig. 56:  Insert of Module C 

The distance of module C to B is more or less arbitrary 
since the laser beam is nearly parallel. 50 mm are recom-
mended. Now the fibre adjustment holder (module D, with-
out fibre) is put on the rail at a distance of about 10 mm 
from module (C). The fibre is then carefully mounted to 
the fibre adjustment holder and fixed. The laser diode is 
switched to maximum injection current and the internal 
modulation is „on“. The detector (G) is fixed to the holder 
plate vis a vis of the fibre exit. If the amplifier of the con-
trol unit and the oscilloscope are set to highest amplifica-
tion one already detects modulated laser light at the exit of 
the fibre. Now the fibre has to be adjusted. While observ-
ing the amplitude on the oscilloscope one turns gently the 
adjustment screws of the adjustment holder (E). If there is 
no further increase in the amplitude the distance between 

fibre and coupling optics will be changed by acting on the 
linear displacement of the translation stage of module D. 
In the new position the fine adjustment screws of (E) are 
readjusted. Since the amplitude increases continuously the 
amplification of the oscilloscope has to be reduced accord-
ingly. At a certain state of adjustment the injection cur-
rent has to be reduced since meanwhile so much power is 
coupled to the fibre that the detector approaches saturation. 
By means of the IR conversion card one can now observe 
the outgoing radiation if the room is sufficiently darkened. 
The previous adjustment steps are repeated until no more 
power increase is observed. The set-up is now well pre-
pared for the following measurements.
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5.4.1	Numerical aperture

A
B C

D
EF G

T ME

CH1 CH2

GAIN

The pivot arm carrying the is used to measure the angle 
reolved intensity distribution. The smallest distance is pre-
determined by the rotation joint. The power is measured 
for different angles. Here, too, we use modulated light to 
eliminate the influence of environmental disturbances.

In determining the numerical aperture we will meet some 
physical effects which make the interpretation of the 
measured values a bit difficult. We are speaking about 
the cladding waves which leave the fibre together with the 
core waves simulating an aperture which is just too high. 
At larger distances of the detector this influence is remark-
ably reduced. The picture shown in the left was taken with 
a simple black and white CCD camera during a measure-
ment. It is clearly to see that next to the central LP01-mode 
a rather appreciable intensity leaves the fibre via the clad-
ding. It is this intensity which eventually may simulate a 
too high numerical aperture. With the help of this simple 
but impressive technology these problems can be bypassed. 
For completeness reasons it must be mentioned that these 
cladding modes can also be eliminated by using a „mode 
stripper“. This can be achieved by removing the protective 
coating of the fibre near the end of the fibre and bending 
it over an arc of about 7 cm within a liquid which has a 
similar refractive index as the cladding. (for example oil 
of paraffin). By this method the cladding modes are going 
to leave the fibre before they can falsify the measurements.
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5.4.2	Transit time effects
ME

H1 2

N

A
B C

D
EF

G

T ME

CH1 CH2

GAIN

Another very interesting experiment is the measurement 
of the transit time of light through the fibre. The set-up is 
modified so that the detector is again next to the end of the 
fibre in holder E. 
The detector is connected to the signal conditioning box 
(module P) and the shunt is set to 50 W to reduce the rise 
time of the photodiode to the nano second range. The out 
put of the signal conditioning box is connected to the first 
channel of the oscilloscope. The second channel is con-
nected to the monitor exit of the modulation output at the 
control unit ED-0020 (module H). For an appropriate set 
of the time base one gets curve A.

1 0 %0

5 0 %

CB

A

T1
T2

The fibre is now eliminated from the set-up by taking off 
the mounted connections from the holders. (Attention! Put 
the fibre ends at a safe place)

Curve B is represented and the time difference T1 at 50 
% of the rise time is measured. The time T1 represents all 
transit time delays of the system without fibre. Then the fi-
bre is reinserted and adjusted to maximum power. Next we 
are going to find curve C and time T2. The time T2 contains 

the transit time delays of the system and the transit time of 
the light through the fibre. The order of magnitude of the 
transit time through the fibre can be estimated as follows:

8

100 1.45 0.5
3 10Light eff

L n s
c

τ µ= ⋅ = ⋅ ≈
⋅

The above value is obtained for a length of the fibre of 100 
metres only.
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6.0	Mathematical Appendix

6.1	The modified Hankel-function
The Hankel-function itself results in complex values. By rotation of the coordinate system by 90 degree the values of 
the Hankel-function needed for the description of the physical situation become real. That means the imaginary axis has 
been rotated into the real axis.
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For the used abbreviation Xp  we get by using the differentiation and recurrence formula:
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For v << 1 the following relations are valid:
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6.2	Calculation of the constants CE,CH,DE and DH using the continuity 
condition

The solutions of the wave equation are substituted into the equations ( 2.5.6 ), ( 2.5.7 ) and ( 2.5.8 ).

0
02 2 2

0
02 2 2

2
2 0

02 2 2	

pip ipzk
k zk E p H

k k k

pip ipzm
m zm E p H

m m m

p ipzk k
k k zk E

k k k

JH ii ip pE E C J e C e
k a r k a k r

KH ii ip pE E D K e D e
k a r k a k r

JE i ni ip pH n H C e
k r a k r ak

φ φ
φ

φ φ
φ

φ
φ

∂∂ µ ωβ βµ ω
∂ ∂

∂∂ µ ωβ βµ ω
∂ ∂

∂∂ ωεβ βωε
∂ ∂

−

−

 = − − = +  
 = − − = +  
 = − − = − −  

2
2 0

02 2 2

ip
H p

p ip ipzm m
m m zm E H p

m m m

C J e

KE i ni ip pH n H D e D K e
k r a k r ak

φ

φ φ
φ

∂∂ ωεβ βωε
∂ ∂

−

− = − − = − −  

We now use the definition for u and v :
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The continuity relation for the radial field components:
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The complete continuity relation written in matrix form:
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For further simplification we write:
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The determinant is expanded and set to zero
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and finally we get :
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− + −
− + + − =

Re-substitution leads to:
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32 4 2 2 4 22 2 2 2 2
2 2 2 2 2 20 0 0 0

4 4 2 2 2 2

3 2 4 2 2 4 22 2 3 2 2
2 2 2 2 2 20 0 0 0

2 2 4 2 2 4

2 22 4 2 2 4 2
0 0 0 0

2 4 2

v v v v

0
v v

v

m m
p p p p p p p p p p

k k
p p p p p p p p p p

p pk m

p p

a n a np a p aJ K J K J J K K J K
u u

a n a np a p aJ K J K J J K K J K
u u u u

J Ka n a n
J u K

µ ε ω µ ε ωβ β

µ ε ω µ ε ωβ β

µ ε ω µ ε ω

− + + −′ ′ ′

− − + + =′ ′ ′

′ ′
+

2 4 2 2 4 2
0 0 0 0

4 2 2 2 2 2 2

22 2 2 2 2 2 2 2 2 2 2

4 2 2 2 2 4

v v

0
u v v v

p p p p m k

p p

J J K K a n a n
J K u u

p a p a p a p a
u u

µ ε ω µ ε ω

β β β β

′ ′  
+ +  

− − − − =

Collecting terms:

2 22 2 2 2 2 2

2 4 2 4 2 2 2 2 2 2 2 2 4 2 2 4
0 0

1 2 1 0
v v v u v v

p p p p p pk m m k

p p p p

J K J J K Kn n n n p
J u K J K u u a u

β
µ ε ω

′ ′ ′ ′    + + + − + + =     

Rewriting:

22 22 2 2 2 2 2 2 2

2 4 2 4 2 2 2 2 2 2 2 2
0 0

u v 0
v v v u v

p p p pk m m k

p p p p

J K J Kn n n n p
J u K J K u u a

β
µ ε ω

′ ′ ′ ′    ++ + + − =     
Carrying out the differentiation with respect to r and redefinition:

( ) ( )( )
( ) p k p

p k k k p

J k r J u
J k r k k J u

r u
∂ ∂

∂ ∂
⋅

⋅ = = = ⋅′ ′

( ) ( )(v)
( ) v

u
p k p

p k m m p

K ik r K
K ik r ik ik K

r
∂ ∂

∂ ∂
⋅

⋅ = = = ⋅′ ′

we get:

( )
22 2 2 22 2 2 2 2 2

2 2
2 4 2 4 2 2 2 2 2 2

0 0

( ) (v) ( ) (v) u v 0
v v u v

k p m p k p m pk m
m k

p p p p

k J u k K k J u ik Kn n pn n
J u K J u K a

β
µ ε ω

′ ′ ′ ′  +− + + − =  

( )
22 2 2 2 2 2

2 2 2 2
2 2 2 2 2 2 2

0 0

( ) (v) ( ) (v) u v 0
v v u v

p p p p
k m m k

p p p p

J u K J u K pn n n n
u J K uJ K

β
µ ε ω

′ ′ ′ ′  ++ + + − =  

By using the abbreviation for:

( )
0 0

22 2 2 2
2 2 2 2 2 2

2 2 2

( ) (v) 1; 	; ;
( ) v (v)

+v 0
v

p p
p k p m

p p

p k p m p p m k

J u K
X k X ik c k c

uJ u K e

p uY n X n Y X n n
k u

ω
µ

β

′ ′
= = = ⋅ =

 
+ + + − =  

we get: 

2 22 2 2 2 2 2 2 2 2
2

2 2 2 2 2 2 2

+v
2 2 v

m k m k m
p p p p

k k k k

n n n n n p uY X X X
n n n n k u

β   + +
= − ± − −      

With rewriting the square root:
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( )22 22 2 2 222 2 2 2 2
2 2

2 2 2 2 2

4
2 4 2

m k k mpm k m k m
p p p

k k k k k

n n n nXn n n n nX X X
n n n n n

 + −   + − − = =        
we finally get 

2 22 2 2 2 2 2 2 2

2 2 2 2 2 2

+v
2 2 v

m k k m
p p p

k k k

n n n n p uY X X
n n n k u

β   + −
= − ± −      

Let’s rewrite Yp again as Jp and let’s use the derivation of the Bessel-function with respect to its argument:

1
1 2

( ) ( ) ( )1 1 ( ) ( )
( ) ( ) ( ) ( )

p p p
p p p

p p p p

J u J u J up pY J u J u
uJ u uJ u u uJ u u uJ u u

∂
∂

′  = = = ± = ±  




 

,
so we get:

2 22 2 2 2 2 2 2 2
1

2 2 2 2 2 2

( ) +v
( ) 2 2 v

p m k k m
p p

p k k k

J u n n n np p uuX u X
J u n u n n k u

β−
    + − = − + − −        

2 22 2 2 2 2 2 2 2
1

2 2 2 2 2 2

( ) +v
( ) 2 2 v

p m k k m
p p

p k k k

J u n n n np p uuX u X
J u n u n n k u

β+
    + − = + − −        

Using for the coefficient of propagation b the relation ( 2.5.12 ),

( )
( )2 2 2 22 2 2 2

2 2 2
2 2 2 22 2 2

vv
v v

k mm
m

k m

k n nk n k n
u uk n n

β β
−−

= ⇒ = +
+ +−

we get the solution
22 2 2 2 2

1 2
2 2 4 2 2 4 2

( ) 1 1 1 1
( ) 2 2 v v

p m k k m m
p p

p k k k

J u n n n n npuX u X p
J u n u n u n u

+
    + −  = + − − + ⋅ +           

( 7.2.1 )

22 2 2 2 2
1 2

2 2 4 2 2 4 2

( ) 1 1 1 1
( ) 2 2 v v

p m k k m m
p p

p k k k

J u n n n n npuX u X p
J u n u n u n u

−
    + −  = − + − − + ⋅ +           

( 7.2.2 )
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7.0	Laser safety

7.1	 Laser safety remarks
The experimental set-up contains a laser which is only 
suitable for laboratory applications.
With the individual modules in the assembled state, laser 
radiation (semiconductor laser) can be produced at 830 nm 
with a maximum power of 200 mW.

The complete assembled laser is therefore a product which 
exhibits the power characteristics of a Class 3B laser. 

Laser radiation
Power max. 50 mW 808 nm

Class 3B

The user must observe the laser safety regulations, e.g. 

DIN VDE 0837 or IEC 0837.

In these guidelines of February 1986 the following points 
are listed for the operation of laser equipment in laborato-
ries and places of work.

Laser equipment in laboratories and places of work

Class 3B laser equipment

Class 3B lasers are potentially hazardous, because a direct 
beam or a beam reflected by a mirror can enter the unpro-
tected eye (direct viewing into the beam). The following 
precautions should be made to prevent direct viewing into 
the beam and to avoid uncontrolled reflections from mir-
rors:
a.) The laser should only be operated in a supervised laser 
area

b.) Special care should be taken to avoid unintentional re-
flections from mirrors

c.) Where possible the laser beam should terminate on a 

material which scatters the light diffusely after the beam 
has passed along its intended path. The colour and reflec-
tion properties of the material should enable the beam to 
be diffused, so keeping the hazards due to reflection as low 
as possible.

Note: Conditions for safely observing a diffuse reflection 
of a Class 3B laser which emits in the visible range are :
Minimum distance of 13 cm between screen and cornea 
of the eye and a maximum observation time of 10s. Other 
observation conditions require comparison of the radia-
tion density of the diffused reflection with the MZB value.

d.) Eye protection is necessary if there is a possibility of 
either direct or reflected radiation entering the eye or dif-
fuse reflections can be seen which do not fulfil the condi-
tions in c.).

e.) The entrances to supervised laser areas should be iden-
tified with the laser warning symbol

MZB means Maximum Permissible Radiation (Maximal 
zulässige Bestrahlung) and it is defined in section 13 of 
DIN/VDE 0837.

Special attention is drawn to point 12.4 of DIN VDE0837:

Laser equipment for demonstration, display and exhibition 
purposes

Only Class 1 and Class 2 lasers should be used for demon-
strations, displays and exhibitions in unsupervised areas.

Lasers of a higher class should then only be permitted if 
the operation of the laser is controlled by an experienced 
and well trained operator and/or the spectators are protect-
ed from radiation exposure values which does not exceed 
the applicable MZB values.

Each laser system, which is used in schools for training 
etc. should fulfil all the applicable requirements placed 
on class 1 and class 2 laser equipment; also, it should not 
grant persons access to radiation which exceeds the appli-
cable limits in Class 1 or Class 2.
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