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Abstract

In this paper, we have used the d -posterior approach in regression. Regression predictions
are a sequence of similarly made decisions. Thus, d -risk can be helpful to estimate the quality
of such decisions. We have introduced a method to apply the d -posterior approach in re-
gression models. This method is based on posterior predictive distribution of the dependent
variable with the given novel input of predictors. In order to make d -risk of the prediction
rule meaningful, we have also considered adding probability distribution of the novel input to
the model.

The method has been applied to simple regression models. Firstly, linear regression with
Gaussian white noise has been considered. For the quadratic loss function, estimates with
uniformly minimal d -risks have been constructed. It appears that the parameter estimate
in this model is equal to the Bayesian estimate, but the prediction rule is slightly different.
Secondly, regression for the binary dependent variable has been investigated. In this case,
the d -posterior approach is used for the logit regression model. As for the 0-1 loss function,
the estimate with uniformly minimal d -risk does not exist, we suggested a classification rule,
which minimizes the maximum of two d -risks. The resulting decision rules for both models are
compared to the usual Bayesian decisions and the decisions based on the maximum likelihood
principle.
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Introduction

When solving the regression problem, the first step is always “training” the model
using a finite sample. Only then are the estimates of the model parameters used to
predict the dependent variable value for every new set of predictors. The prediction
itself is a process of making a variety of similar decisions, which gives a reason to apply
the d -posterior approach [1, 2] to control potential risks of such decisions. Since d -risk
can be interpreted as expected loss for a particular prediction value, the d -posterior
approach is a natural alternative to the maximum likelihood and Bayesian principles
in solving this problem.

The d -posterior approach has not been tried for regression problems yet. That is to
say, there is a regression technique [3], which controls the false discovery rate (FDR),
the decision quality related to d -risk. However, the statistical model used in [3] is
not the same as in the classical regression problem statement. Here, we discuss two
classical regression models: linear regression with Gaussian white noise and quadratic
loss function, and logit linear regression with zero-one loss function.

1. Regression

All vectors will be treated as column vectors in this paper. We will also denote
transposing with a superscript T , so that XT Y is a scalar product of two real m -vec-
tors for X ∈ R

m and Y ∈ R
m .
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Let us fix positive integers m and n , such that n ≥ m , and suppose that we have
a full rank real matrix

X =




x1,1 . . . x1,m

...
. . .

...
xn,1 . . . xn,m



 .

This matrix defines predicates for regression. Let Xi be i-th row of the matrix X .
We assume that for every vector X ∈ R

m there exists some density p(y|X, θ)
with respect to some measure, where θ is an unknown parameter from the parameter
space Θ . In this paper, we consider only the case of linear regression, where Θ = R

m

and p(y|X, θ) = f(y|XT θ) for some density f . Hereafter, any kind of probability density
would be denoted as p . It will be clear from the context which density is meant.

The d -posterior approach is a subsection of the Bayesian statistics. Therefore, we
need to define the prior distribution of the parameter θ . We assume that θ is a sample
value of the continuous random variable ϑ with the known density p(θ) .

Let us suppose that we deal with independent observations Y = (y1, . . . , yn)T , which
follow the distribution defined by p(y|Xi, θ) . The likelihood function is p(Y |X, θ) =
n∏

i=1

p(yi|Xi, θ) . The posterior density is

p(θ|Y,X) = p(Y |X, θ)p(θ)
/ ∫

Θ

p(Y |X, θ)p(θ) dθ. (1)

The first problem with regression is to find some estimate θ̂ of θ , which can be
used later to estimate the density p(y∗|X∗, θ̂ ) of the predicted variable y∗ for a novel
predictor input X∗ . The usual maximum likelihood estimate (MLE) maximizes the
likelihood p(Y |X, θ) with respect to θ . Another option is to use the maximum a pos-
teriori (MAP) estimate, which maximizes the posterior density instead (the same as
maximizing p(Y |X, θ)p(θ)). Both options are very popular (MAP estimates are used in
numerous regularization techniques, such as ridge regression, LASSO, etc.).

The less popular option is the Bayesian estimate. Firstly, one needs to specify the
loss function L(θ1, θ2) . The prior risk function for estimate θ̂ is then R

θ̂
= EL(ϑ, θ̂ ) .

The Bayesian estimate minimizes the risk with respect to θ̂ . The corresponding esti-
mation could be achieved more easily by minimizing the posterior risk

R(d|Y,X) = E
[
L(ϑ, d)

∣∣ Y,X
]

=

∫

Θ

L(θ, d)p(θ|Y,X) dθ

with respect to d . In the case of the quadratic loss function, the Bayesian estimate is
a posterior mean. The Bayesian estimates are not widely used, because they usually
require intensive computation.

The d -risk of the estimate θ̂ is

R
θ̂
(d) = E

[
L(ϑ, θ̂)|θ̂ = d

]
.

Since d -risk is a function, there are different possible ways to define the estimate that
“minimizes” its d -risk. For some statistical models, this minimizing is trivial: there exists
such an estimate θ̂∗ that

R
θ̂∗

(d) ≤ R
θ̂
(d), (2)

for any d and any estimate θ̂ . The estimate θ̂∗ , which satisfies (2), is called an estimate
with uniformly minimal d -risk (we will designate it as U -estimate). There is a way to



412 A.A. ZAIKIN

find this estimate [1]: one needs to minimize R(d|Y,X) with respect to its random
arguments (in the case of the above-given regression statement, it is Y ). If for every Y

exists at least one d , for which R(d|Y,X) is minimized, then this d (or any, if there
are multiple solutions) is a U -estimate. As it was said earlier, none of such estimates
have been used in the literature.

However, estimating the parameters is not best suited for the d -posterior approach.
The thing is, the d -risk can be interpreted as average loss for a particular decision value
among a succession of experiments. Actually, the parameter θ is estimated only once.
Therefore, U -estimates can be viewed only as somewhat regularized MLEs, just like
the Bayesian or MAP estimates. On the other hand, prediction for a single training
sample can be made infinitely many times. This gives the opportunity to use the d -risk
for assessing the quality of custom prediction rules. However, in order to make the most
sense of the definition of d -risk, we need to make the predictors random. Indeed, in the
case of constant predictor vector X∗ , the d -risk is “average loss for particular decision
value among a succession of experiments, with predictors equal to X∗ ”. If X∗ is a random
vector, then d -risk is “average loss for particular decision value among a succession of
experiments”. Hence, we will present various possibilities for X∗ distribution. Note that
we formally do not need to specify the distribution of predictors of the matrix X .

For a new set of predictors X∗ , the predictive posterior distribution of the dependent
variable y∗ is

p(y∗|X∗, Y,X) =

∫

Θ

p(y∗|θ,X∗)p(θ|X, Y ) dθ. (3)

The right side of (3) is obtained using the fact that distribution of y∗ provided that X∗

and θ are not dependent on the training sample Y and X . The same can be said about
the distribution of Y , which does not depend on X∗ given X and θ . The posterior
predictive of y∗ can be used in the same manner as the usual posterior distribution
in terms of the Bayesian rules and rules which minimize the d -risk. In this case, y∗ is
the “parameter”, for which we can specify the loss function and posterior risk.

2. Linear regression with Gaussian noise

This section focuses on studying of the following model:

yi = XT
i θ + εi, εi ∼ N (0, σ2), i = 1, . . . , n, (4)

for a mutually independent εi . We assume the variance σ2 of the white noise to be
known. We will discuss this matter later.

The likelihood function of this model is

p(Y |X, θ) = ϕ
(
Y |Xθ, σ2In

)
,

where ϕ(x|µ,Λ) is the density function of multivariate normal distribution with
the mean vector µ and covariance matrix Λ , and Id is the d × d identity matrix.
The corresponding cumulative distribution function will be denoted as Φ(x|µ,Λ) . For
the sake of simplicity, the PDF and CDF for the standard univariate (with mean zero
and variance equal to one) normal distribution will be denoted as ϕ(x) and Φ(x) ,
respectively.

For this model, the MLE of θ is well-known:

θ̂ml = (XT
X)−1

X
T Y.

If we try to apply the maximum likelihood principle to prediction, we can obtain
the usual predicting scheme, which involves MLE of θ . Indeed, in order to maximize
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p(y∗, Y |θ,X,X∗) with respect to unknown parameters, we need to maximize it with
respect to θ and y∗ . Since the mode of normal distribution is its mean, the MLE of y∗
is XT

∗
θ̂ml . Note that here we do not need to estimate σ2 for prediction.

For the Bayesian analysis, we need to specify the prior:

p(θ) = ϕ(θ|0, τ2Im).

The parameter τ is known.
The posterior density of θ is

p(θ|Y,X) = ϕ

(
θ
∣∣∣
SX

T Y

σ
, S

)
, S =

(
Im

τ
+

X
T
X

σ

)−1

.

This expression can be derived from the convolution theorem. The Bayesian estimate
of θ for the quadratic loss function L(θ, d) = ‖θ − d‖2

2 is the posterior mean:

θ̂B =
SX

T Y

σ
.

Note that this expression depends on σ and τ .
In the same Bayesian setting, the posterior predictive for a new set of the predictor

variables X∗ is

p(y∗|X∗, Y,X) = ϕ

(
y∗

∣∣∣
XT

∗
SX

T Y

σ
,XT

∗
SX∗ + σ2

)
. (5)

This can be derived from the direct representation of the model (4), because the li-
near transformation of normal distribution is normal distribution as well. If the poste-
rior predictive is treated as posterior distribution, then for the quadratic loss function
L(y∗, d) = (y∗ − d)2 the Bayesian estimate for y∗ is X∗θ̂B .

Now, let us consider the d -posterior approach to estimate θ . For the model studied
in this section, we can find the U -estimate. Indeed, the posterior risk can be expressed as

R(d|Y,X) = E
[
‖ϑ − d‖2

2

∣∣ Y,X
]

=

= E

[
‖ϑ − θ̂B‖2

2

∣∣ Y,X
]
+ ‖θ̂B − d‖2

2 = trace(S) + ‖θ̂B − d‖2

2.

We used the fact that E
[
ϑ

∣∣ Y,X
]

= θ̂B . Since the only term which depends on Y is

the term with θ̂B , the minimizing with respect to Y is straightforward, and the U -es-
timate of θ is equal to the Bayesian estimate θ̂B .

Now, we want to find the U -estimate for y∗ . As it was said in the previous section,
in order to make the use of d -risk meaningful, we need to consider X∗ random. Sur-
prisingly, we do not need to specify it unless we assume that it does not depend on θ .
Then, the posterior predictive distribution does not depend on the distribution of X∗ ,
and it is given by formula (5). On a side note, if we consider X to be random with
distribution which does not depend on θ , then the posterior predictive also does not
change.

In order to find the U -estimate of y∗ for the quadratic loss function, we need to
minimize

R(d|X∗, Y,X) = E
[
(y∗ − d)2

∣∣ X∗, Y,X
]

with respect to X∗, Y . Unfortunately, it seems that there is no invertible solution of
that optimization problem. However, if we consider only Y to be random, the U -
estimate of y∗ is equal to the Bayesian estimate. Considering only X∗ to be random
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gives a completely different result. Indeed, the posterior risk of the decision d can be
expressed as

R(d|X∗, Y,X) = E

[
(y∗ − XT

∗
θ̂B)2

∣∣ X∗, Y,X
]

+ (XT
∗

θ̂B − d)2 =

= XT
∗

SX∗ + σ2 + (XT
∗

θ̂B − d)2.

Differentiating with respect to X∗ yield

R′(d|X∗, Y,X) = 2SX∗ + 2θ̂B

(
XT

∗
θ̂B − d

)
.

Now, we need to solve the equation R′(d|X∗, Y,X) = 0 . By performing some transfor-
mations, we can get a solution for d :

2SX∗ + 2θ̂B

(
XT

∗
θ̂B − d

)
= 0,

θ̂T
BSX∗ + θ̂T

B θ̂B

(
XT

∗
θ̂B − d

)
= 0,

d =
θ̂T

BSX∗

θ̂T
B θ̂B

+ XT
∗

θ̂B = XT
∗

Sθ̂B

θ̂T
B θ̂B

+ XT
∗

θ̂B .

The right side of the last expression is obtained by transposing the first term on the left
side. This yields the linear dependence on X∗ of the U -estimate for y∗ : y∗ = XT

∗
θ̂U ,

where

θ̂U = θ̂B +
Sθ̂B

θ̂T
B θ̂B

.

The fixed values of Y do not significantly affect interpretation. For the fixed Y ,
the d -risk is an “average loss for particular decision value among a succession of expe-
riments, given the training set Y ”. One can argue that this interpretation is even more
natural and useful than the interpretation of d -risk for a random Y .

The problematic part here is the fact that hyperparameters σ and τ need to be
known. In case of unknown hyperparameters, the ML-II procedure (maximum likelihood
estimates) is popular. Another approach is to specify the distributions of σ and τ , and
use the marginal likelihood in all derivations. This approach is useful because marginal
likelihoods obtained that way are usually not very sensitive to changes of second-level
prior distributions parameters. Unfortunately, all these techniques do not yield results
which can be expressed with explicit formulas. It is also very difficult to apprehend their
impact on the posterior distribution and U -estimates.

3. Logit linear regression

In this section, we assume that dependent variables take only two values (0 and 1)
and follow the logit linear regression model. The density of a single observation is

P(yi = 1|θ,Xi) = σ
(
XT

i θ
)
,

where sigmoid function is given by

σ(x) =
1

1 + e−x
.

The likelihood function in this case is given by

p(Y |θ,X) =

n∏

i=1

σ
(
(2yi − 1)XT

i θ
)
.
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The prior of θ is assumed to be Gaussian: p(θ) = ϕ(θ|0, τ2) . Here, we also consider
X∗ to be random, and its distribution does not depend on θ . One such possibility is to
consider X∗ Gaussian with the mean vector 0 and covariance matrix Λ .

Unfortunately, integrals and optimization problems are intractable. Binary linear
regression is usually fitted by the numerical methods, regardless of the method of esti-
mating (MLE and MAP estimates or Bayesian estimate).

The posterior density of θ is given by (1). The posterior predictive of a new set of
predictors X∗ is given by (3). Now, let us suppose that the loss function is given by

L(y∗, d) =

{
1, y∗ = d,

0, y∗ 6= d.

The Bayesian prediction rule for L predicts the value k that has the maximum predic-
tive posterior probability of P(y∗ = k|X∗, Y,X) .

The next step is to predict the value of y∗ given the new input X∗ . For this purpose,
we define the classification rule φ = φ(X∗, Y,X) , so the values of φ correspond to
predicted values of y∗ . D -risks of the classification rule φ for the 0-1 loss function are
given by

Rφ(0) = P(y∗ = 1|φ = 0), Rφ(1) = P(y∗ = 0|φ = 1).

These formulas can be expressed as

Rφ(k) =

∫

Θ

∫

Rm

P(y∗ = 1 − k|θ,X∗)p(θ,X∗|φ = k) dX∗ dθ,

where

p(θ,X∗|φ = k) = P(φ = k|θ,X∗)p(θ)p(X∗)

/ ∫

Θ

∫

Rm

P(φ = k|θ,X∗)p(θ)p(X∗) dX∗ dθ.

This expression for d -risk is convenient, because we usually know the distribution
P(φ = k|θ,X∗) .

In the case of finite decision spaces, U -estimates do not exist in most cases [1], so
we need to use different definition of the optimal decision rule. The binary classification
can be perceived as a problem of comparing two hypotheses. There exists [4] such a rule
φ∗ that for the given 0 < β0 < 1 Rφ∗(0) ≤ β0 and Rφ∗(1) is minimal among all
the rules φ that satisfy Rφ(0) ≤ β0 . The most important thing here is that such a rule
(in setting of the prediction problem of the current section) has the following form:

φ∗ =

{
1, T > C,

0, T ≤ C
,

for some constant C and T = P(y∗ = 1|X∗, Y,X) . Note that for the Bayesian prediction
rule C = 0.5 .

Of course, one can define β0 and numerically find C , for which Rφ∗(0) ≤ β0 . This is
the case when one decision is more important than other. However, usually researchers
do not distinguish different values of dependent variables, and the most natural way to
find such C is that Rφ∗(0) = Rφ∗(1) . It is possible for d -risks which are small enough,
or, conversely, large n . The latter is due to the fact that d -risks tend to 0 as n → ∞ ,
see [5].

Note that we can calculate d -risks of φ for the fixed X∗ using

Rφ(k|X∗) = P(y∗ = 1 − k|φ = k,X∗), k = 0, 1. (6)
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Fig. 1. Sample d -risks (6) of φ∗ for C = 0.4 and C = 0.5 . Solid line is Rφ∗(0) and dashed
line is Rφ∗(1)

In order to get Rφ(k) , one needs to calculate expectation of the last expression with
respect to X∗ .

The expression (6) is very interesting as it shows which values of X∗ are the most
risky in taking decisions. In order to see that, we set up a numerical example. We con-
sider a simple regression model of the form

P(yi = 1|θ,Xi) = σ (θ0 + xiθ1) ,

where xi is a scalar value. Let (θ0, θ1)
T ∼ N (0, 4I2) , xi, x∗ ∼ N (0, 9), i = 1, . . . , n ,

n = 25 . In the numerical Monte-Carlo experiment, we calculated frequencies of errors
and calculated conditional d -risks (6). The results for φ∗ with C = 0.4 and C = 0.5
are shown in Fig. 1. Due to the symmetry of distributions of all variables, it is expected
that d -risk has also a symmetrical form. The values of x∗ with the largest d -risk are
those closest to zero. It is also expected, because then y∗ takes values 0 and 1 with the
expected probability of 0.5.

Conclusions

We studied the ways to construct the prediction rules, which minimize the d -risk.
For the linear regression with Gaussian noise, we constructed the U -estimate for the re-
gression parameter θ and U -estimate for prediction of y∗ of a new observation X∗ for
random X∗ and fixed Y . For the linear logit regression, we suggested the prediction
rule, which minimizes the maximum of two d -risks.
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d-Aпостериорный подход в регрессии

А.А. Заикин

Казанский (Приволжский) федеральный университет, г. Казань, 420008, Россия

Аннотация

В статье представлена попытка применить d -апостериорный подход в регрессии. Так
как регрессионные прогнозы являются по сути последовательностью схожих решений, это
даёт возможность использования d -риска как меры качества прогнозирования. В рабо-
те изучаются различные подходы к применению d -апостериорного подхода для прогноза
в регрессионных моделях. Предлагается подход, основанный на апостериорном прогно-
стическом распределении переменной-регрессора в зависимости от значений переменных-
предикторов. Для того чтобы интерпретация d -риска правила прогноза имела смысл,
предлагается добавить в вероятностную модель распределение предикторов.

Эта методика была применена на двух простых регрессионных моделях. Сначала изу-
чается линейная регрессия с гауссовским белым шумом. Для этой модели и для квадра-
тической функции потерь были построены оценки с равномерно минимальным d -риском.
Оказалось, что оценка параметра совпадает с байесовской оценкой, а прогноз несколь-
ко отличается. Далее рассматривается логистическая регрессия для бинарной зависимой
переменной. Для функции потерь 1–0 не существует правила прогоноза, равномерно ми-
нимизирующего d -риск, поэтому предлагается правило, которое минимизирует максимум
двух d -рисков. Полученные для обеих моделей правила сравниваются с известными ре-
шающими функциями, построенными согласно Байесовскому принципу и принципу мак-
симального правдоподобия.
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