YYEHBIE 3ATIMCKN KASAHCKOT'O YHUBEPCUTETA
Towm 155, ku. 4 Du3uKO-MaTEMATUIECKIE HAYKU 2013

UDK 004.912

SEMI-AUTOMATIC GENERATION
OF LINEAR EVENT EXTRACTION PATTERNS
FOR FREE TEXTS

D. Dzendzik, S. Serebryakov

Abstract

In this paper we describe semi-automatic approach to generating event extraction patterns
for free texts. The algorithm is composed of four steps: we automatically extract possible
events from a corpus of free documents, cluster them using dependency-based parse tree paths,
validate random samples from each cluster and generate linear patterns using positive event
clusters. We compare it with the system that uses handcrafted patterns.

Keywords: event extraction, linear patterns, regular expressions, Text MARKER, RUTA.

Introduction

The event extraction (EE) problem is formulated as “to automatically identify events
in free texts and derive detailed information about them, ideally identifying who did
what to whom, when, with what methods, where and why“. Events involve entities and
relations between them and imply a change of state. For instance, the sentence “Palm has
been acquired by Hewlett-Packard for $1.2 billion two days ago* mentions the event of
type Mergers € Acquisitions (MEA) with four arguments — acquirer (Hewlett-Packard),
acquiree (Palm), money paid ($1.2 billion) and event time stamp (two days ago), and
one attribute — event indicator (has been acquired) — a word or a sequence of words
that clearly signals about the possible presence of an event.

The EE problem has been the subject of active research for more than twenty years
since series of MUC conferences started in 1987. Initially, the EE task was limited
so several domains and was characterized by the availability of small-sized corpora.
Nowadays, with the rapid evolution of socially-oriented internet, it is becoming a crucial
task for businesses to analyze the millions of documents with multilingual content each
day with minimal latency in order to get insight and provide critical decisions in time.
We believe that modern and effective solution to the EE problem would allow businesses
to dramatically minimize the time required to start utilizing new sources of information
and reduce the operating costs of such systems.

One of the popular approaches to information extraction (IE) and EE as a sub-
problem of IE in particular is in the use of domain specific extraction patterns such
as linear extraction patterns for annotation graphs and patterns for dependency-based
parse trees (DPT). In this paper we present our approach to semi-automatic generation
of linear extraction patterns for annotation graphs while using DPT patterns in the
process of constructing the first ones.

The paper is structured as follows. In the next section we briefly outline related
work, in particular, we outline papers describing algorithms that minimize human efforts
required to build extraction patterns. In Section 3 we describe in details four steps of
the algorithm. Section 4 presents the results of experiments. We conclude in Section 5
by summarizing the results and outlining current and future work.

99

100 D. Dzendzik, S. Serebryakov

1. Related Work

One of the most known algorithms that learn multi-slot extraction patterns for free
texts is Whisk [1]. It requires a corpus of documents annotated with syntactic data.

The problem of learning conventional character-based regular expressions from an-
notated corpora is described in [2]. The authors demonstrate the applicability of their
method in extracting such structured entities as software names, urls, phone and course
numbers. It is still an open question if their approach can be effectively applied for
extracting higher level structures such as relations or events.

Snowball [3-5] and ExDisco [4, 6] are examples of algorithms for learning information
extraction patterns from un-annotated corpora.

Snowball is a logical successor of DIRPE [3-5, 7] which was developed to extract
binary relations from semi-structured web data. Snowball as DIRPE extracts binary
relations but it is targeted for free texts. The main idea is that there is a small seed
of highly reliable known relations which are searched in a corpus. Once these relations
are found, the algorithm generalizes sentence context around the found relations and
creates patterns. These patterns are used to extract new, previously not seen, relations.
New relations are added to the initial seed, and the algorithm iteratively repeats the
steps. It stops when no new relations have been found.

ExDisco uses different approach to deal with the problem of absence of annotated
corpora. It divides the corpus into two parts (relevant and irrelevant documents) and
uses the following idea: relevant documents should contain relevant events and relevant
events are contained in the relevant documents. ExDisco uses a small seed of 2 or 3
known patterns to make an initial split of documents, does syntactic analysis of every
sentence and uses its results for pattern generation.

As opposed to conventional IE from relatively small annotated corpora, Open Infor-
mation Extraction (OIE) deals with large Web-sized un-annotated sets of documents.
The two most known information extraction systems that do OIE are KnowlItAll [4,
8, 9] and TextRunner [4, 8, 10]. They rely on syntactic information rather than lexical
data.

2. Generating Linear Patterns

The motivation behind this research is to minimize human efforts in constructing
event extraction patterns for new types of events. There are three assumptions under-
lying our algorithm. The first one is the way how we define the verity of events. We
define an event to be true (positive) if its indicator and arguments linguistically repre-
sent a valid event mention no matter what polarity, modality, etc. the event mention
has. For instance, in the sentence “Reuters announces that HP will not acquire Palm*
the pair {Reuters, announces} represents a valid event mention of the type Company
Announcement while the pair {HP, announces} does not. On the other hand, the triple
{HP, Palm, will not acquire} represents a valid event mention of the type Mergers &
Acquisitions while the triple {Palm, Reuters, will not acquire} does not.

The algorithm requires that documents are annotated with named entities that
might be arguments of events. This includes not only such named entities as persons,
companies, positions and event indicators, but also temporal and monetary expressions.
The complete set of required named entities depends on types of events to be extracted.
We use the existing NERs (in particular, we use OpenNLP library) which we trust. It
means that we consider texts annotated by appropriate NERs as gold standard and we
do not consider confidences of extracted entities (if NERs provide such information)
during the process of evaluating the extraction patterns.

We also assume that if two events are extracted by the same DPT pattern they
both are either true or false. More generally, a group of N events all extracted by the

SEMI-AUTOMATIC GENERATION OF LINEAR PATTERNS 101

[,
EE Un-annotated corpus

Collection

reader

Named Event Possible
Ssnlti?tg:r:e Tokenizer Entity Indicator Event
p Recognizer Recognizer Extractaor

Fig. 1. Processing pipeline

same DPT pattern contains either only true or false events. A verity of a group of
N events is determined by a verity of a random sample drawn from it. This is the
main assumption that allows us to minimize human efforts required to build extraction
patterns by validating only such a small random sample but not the whole entire group
that might contain tens of thousands of events.

As we have mentioned, the algorithm is composed of four steps. At the first step,
we extract possible events from an un-annotated corpus of documents.

2.1. Extracting Possible Events. Any event type is described by an indicator
(word that clearly signals about the event presence, usually, a verb) and arguments to-
gether with their semantic types. For instance, an event of type Mergers & Acquisitions
is described by an event indicator of type AcquisitionIndicator and two arguments — ac-
quirer of type Company and acquiree of type Company. Another example is an event of
type PersonAnnouncement that is described by an indicator of type AnnouncementIndi-
cator and one argument announcer of type Person. Formally, an event is defined as the
following triple:

E [Tvlv {Afva;T}?;l] ’ (1)

where T is the event type, I is the type of event indicator, event has m arguments and
i-th argument has name AY and type AT.

The core idea at the first step is to generate all possible events for every sentence
in the corpus. To do it, we have built the processing pipeline depicted in Fig. 1. The
primary task of this pipeline is to recognize in text the instances of event indicators and
named entities that might be arguments of events.

The pipeline has typical architecture intended for extracting named entities. Initially,
it splits a text into sentences and tokens. After that, it uses Named Entity and Event
Indicator Recognizers to extract named entities and event indicators. We use OpenNLP
library to extract named entities and a dictionary-based recognizer to extract event
indicators.

The last component on the pipeline (Possible Event Extractor) uses previously ex-
tracted information together with descriptions of events to extract possible events. First,
this component determines if a sentence may contain at least one event of any type. To
do it, it iterates over description of event types. For each event type, it determines if
a sentence contains (1) an indicator of appropriate type and if so (2) a minimal num-
ber of appropriate named entities. For instance, for event of type PersonAnnouncement

102 D. Dzendzik, S. Serebryakov

a sentence must contain at least one indicator of type AnnouncementIndicator and at
least one named entity of type Person. For event of type Mergers & Acquisitions, a sen-
tence must contain at least one indicator of type AcquisitionIndicator and at least two
named entities of type Company. If a sentence cannot contain a mention of at least one
event, it is not processed further.

If there can be at least one event mention in a sentence, we apply Stanford parser
to obtain DPT. For every type of event T for which there can be at least one event
mention, we generate all possible events. At the second step, we construct a list of all
appropriate event indicators {I}?_; found in a sentence. Then we construct a set of
named entities that will be part of possible events. We compute the shortest paths in
DPT from indicators to every named entity in this set. We then generate all possible
events around each event indicator. For every possible event, we construct the DPT
extraction pattern. We consider its string representation to be possible event’s pattern
id — a non unique string that is composed of event type and DPT paths. Two events of
the same type having the same paths from indicators to arguments will have the same
pattern id. The format of pattern id is as follows: IndicatorType Attribute,Type : Pathy,
AttributesType : Paths ,. .. For instance, the event mentioned in the sentence “Google
acquires Neotonic Software has the following pattern id: AcquisitionIndicator Com-
pany:nsubj, Company:dobj.

It is possible to count the number N of events that are generated around each
indicator. Let us denote the number of distinct types of arguments as m/ and for each
J-th distinct type let S; be the number of arguments in the event definition of this
type and let N; be the number of named entities of this type in a sentence. Then
there can be P;(N;,S;) = N;!/(N; —S;)! variants to fill S; arguments with N; named
entities. To compute the number of possible events, we need to multiply all these values

N = T PN, 55).
i

2.2. Grouping Possible Events into Clusters. After an input corpus has been
processed and all possible events have been identified, we group events according to their
pattern ids. Inside every group all events have the same pattern id. In other words, they
are all extracted by the same DPT pattern. We sort groups by cardinality and generate
random subset for each group.

2.3. User Validation. At the third step, a user validates small random subset
of each cluster using Eclipse IDE. Eclipse UIMA CAS Editor plugin [11] visualizes
events’ annotations and annotations of indicators and arguments. A user is presented
with a text annotated with possible events and the task for him is to iterate through
every event and mark each event either as true or false. The task thus is to judge
if a particular event annotation (possible event) correctly links arguments with event
indicator (Fig. 2).

2.4. Generating Linear Patterns. Finally, the system annotates groups of
events as positive or negative based on subsets validated by a user at the previous
step. This is done by counting the numbers of true and false events in a subset. If there
are more positive events in the subset, the whole entire group is annotated as posi-
tive and vice versa. Positive groups are further used to generate and generalize event
extraction patterns.

An input data for the pattern generation algorithm is the sentence annotation graph.
The graph contains such annotations as events, their indicators and arguments (named
entities) and sentence context which is presented as tokens’ types in the Text MARKER

SEMI-AUTOMATIC GENERATION OF LINEAR PATTERNS 103

& Cas Editor - hphpl X
File Edit Navigate Search Project Tomcat Run Window Hel
s R F] e e o] Qe | & e (@ GorEsir]
‘s [7] 045_cluster_37_seleced.xmi 52 = B [Annotation Styles 52 Q=]
|, Pittston Co said it has tentatively agreed to acquire WIC International NV in a © [ype Syle
tax-free exchange of stockCCX Network Inc said it has entered into a letter of intent [7] TePossibleDayNumber | BACKGRO!
to acquire privately-held Modern Mailers Inc and its affiliate AnWalt Inc for about || TEPoscibleVear
3,200,000 dlrs in common stoc said it had agreed to buy

a combination of cash and common stock]
said it entered into a conditional contract to acquire the
affiliated entitles for 19 mln dlrs| said it terminated
an agreement with Allied Stores Corp to buy from Allied the four
in Syracuse, N said it has entered an agreement in principal
to buy closely-held in a stock exchange transactionKellwood Co said
it signed a definitive agreement to acquire Robert Scott Ltd Inc, David Brooks Ltd
Inc and Andrew Harvey Ltd of Dedham, MassAllwaste Inc said it entered into an agreement
in principle to buy Tank Cleaning Co, a privately-held company that cleans tank trailers,
in exchange for about 1 3 mln shares or Allwaste common
said it has withdrawn its May 27 offer to acquire

[7] Resignationindicator BACKGRO!
said it has entered into a definitive agreement to acquire 7] AequisitionEvent BACKGRO!
for 2,800,000 dlrs in common stock i (] Acquisitionindicator BACKGROI ~
, Clir——
[Edit View 23 8+xX-0O B2 outli.. 3 |([{iFeat.. ElPro.. = 8
Feature Value EhsSSe X Y
sofa [Sofa] Text =
begin 0 4 AcquisitionEvent E
end 75 Pittston Co said it has tentatively a | |
precision 00 CCX Network Inc said it has enterec
» indicator [Acquisitionind... Marcade Group said it had agreed t
verity true International American Homes Inc
stingPath com.hp.hplts.e... May Department Stores Co said it t
eventld 3820 Diceon Electronics Inc said it has er
» acquirer [Company] Kellwood Co said it signed definit
> acquiee [Company] Allwaste Inc said it entered intoan: ~

Fig. 2. UIMA CAS Editor perspective (Eclipse IDE)

W] [yom] [em |

MARKUP| |sw || CW || CAPL. | |PERIOD ||COLON |

Fig. 3. Type system of Textt MARKER rule engine.

typesystem notation (Fig. 3). We use bottom-up generalization strategy and start with
the most specific version of a pattern. We generalize patterns until F1-measure of new

ones increases.

There are two operations that we use during the pattern generalizing process (Fig. 4):

A. BottomUpGen: bottom-up generalization (see Fig. 3). After the token type is
changed, its neighbors are checked. If there are two tokens with the same type
close to each other, they are replaced by one token of the same type with expanded
quantifier: “company” “based” “in” “Tel” “Aviv’ — SW SW SW CW CW — SW|3]
CW[2] — W[5]

(a) replacing text of a word with its specific word type: “recently” — SW;
“May” — CW; “INC” — CAP

(b) replacing type of word with a more general type:

104 D. Dzendzik, S. Serebryakov

1: procedure GENERALIZERULE(rule)

2 curpl + 0

3 newpgl + TESTRULE(rule)

4 while (newpl —curpl) >0 do

5: curpl < newpl

6 rules « empty list

7 rules.add(BESTRULE(BOTTOMUPGEN (rule)))
8 rules.add(BESTRULE(QUANTMODIF(rule)))

9: if NEWRULESUNKNOWN (rules) then
10: newRule + BESTRULE(rules)

11: newpl + TESTRULE(new Rule)
12: rule + newRule

13: end if

14: end while

15: return (rule)

16: end procedure

Fig. 4. Algorithm of pattern generalization

SW, CW, CAP — W
(c) replacing punctuation marks with more general type:
COLON, COMMA, SEMICOLON — PM

(d) replacing types with a more general type:
W, PM — ANY

B. QuantModif: quantifier modification (the expansion/restriction of a quantifier)

(a) Expansion: SW[3] — SW|24]
(b) Restriction: CW[2,7] — CW][2,6]

Using these two operations we iteratively generalize patterns. At every step we select
the best pattern and we stop generalizing process when Fl-measure stops improving
(newgpl). We keep the list of previously generalized patterns. If the current pattern
has already been seen, it is not processed further. This corresponds to line 9 of the
algorithm (Fig. 4).

3. Experiments

We ran preliminary experiments on the English part of the Reuters (RCV2) dataset.
We have processed this dataset and have determined (a) the sentences that contain
possible events and (b) actual number of true events in those sentences. Table 1 presents
the properties of constructed in such a way annotated dataset. For instance, we have

Table 1. Properties of annotated dataset constructed based on English part of RCV2

Event type ‘ M&A ‘ MPC ‘ Res
Sentences with possible events # 83 45 80
True events # 12 16 25

determined that there are 83 sentences that may contain events of type Mergers €
Acquisitions (M&A) and only 12 true events are mentioned in those 83 sentences. The
table also presents the results for events of types Management Position Change (MPC)
and Resignation (Res).

SEMI-AUTOMATIC GENERATION OF LINEAR PATTERNS 105

Table 2. Train/Test partitions of annotated dataset

‘ Partition 1 ‘ Partition 2

M&A 61/22 55 /28
MPC 38/7 30/15
Res 54/26 56 /24

Table 3. Performance metrics for Mergers € Acquisitions event type

handcrafted (10 patterns) | automatic(8 patterns)

Train / Test Train / Test
P Precision 0.50 / - 1.00 / 1.00
g Recall 0.11 / 0.00 1.00 / 0.33
g | Fl-measure 0.18 / - 1.00 / 0.50
P Precision -/ 0.50 1.00 / 1.00
2 Recall 0.00 / 0.50 1.00 / 0.50
& | Fl-measure —/0.50 1.00 / 0.66

Table 4. Performance metrics for Management Position Chang event type

handcrafted (3 patterns) | automatic(9/8 patterns)

Train / Test Train / Test
B Precision 0.78 / 0.50 0.92 / 1.00
g Recall 0.58 / 0.33 1.00 / 0.33
g | Fl-measure 0.67 / 0.40 0.96 / 0.50
° Precision 0.67 / 1.00 1.00 / 1.00
g Recall 0.60 / 0.40 1.00 / 0.40
& | Fl-measure 0.63 / 0.57 1.00 / 0.57

In the first experiment, we have compared handcrafted patterns with patterns ob-
tained automatically and provided their performance metrics on both train and test
sets. The handcrafted patterns have been constructed previously based on the RSS
articles obtained from such sources as Yahoo and Google news feeds. Due to the fact
that we have obtained quite small dataset, we have made two train/test partitions of
entire annotated dataset in each creating randomly train/test sets in proportion 2:1
(see Table 2).

Tables 3-5 present the results of experiments for each event type separately. For the
M&A event type (Table 3), eight automatically constructed patterns outperformed or
produced the same results as ten handcrafted ones in terms of precision, recall and F1-
measure on both train and test sets in both partitions. Note that in the first partition
on test and in the second partition on train data, the handcrafted patterns did not
extract any event, that is why we do not provide performance metrics for these cases.
The algorithm constructed the same number of patterns (eight) in both partitions.

For the MPC event type (Table 4) we observed the same situation. The automatically
constructed patterns had the same or higher performance as the handcrafted ones.
However, the algorithm constructed 9 patterns in the first and 8 patterns in the second
partitions compared to the three handcrafted patterns. Moreover, in the second partition
on test set, the automatically created and handcrafted patterns demonstrated the same
performance.

The results for the Res event type are presented in Table 5. In this case, the hand-
crafted patterns had higher precision by lower recall and F1-measure.

106 D. Dzendzik, S. Serebryakov

Table 5. Performance metrics for Resignation event type

handcrafted (5 patterns) | automatic(10 patterns)

Train / Test Train / Test
p Precision 1.00 / 1.00 0.90 / 0.33
g Recall 0.19 / 0.25 0.90 / 0.75
g | Fl-measure 0.32 / 0.40 0.90 / 0.46
P Precision 1.00 / 1.00 0.83 / 0.50
g Recall 0.18 / 0.33 0.86 / 0.67
& | Fl-measure 0.30 / 0.50 0.84 / 0.57

Table 6. F1-measure values of semi-automatically constructed patterns

M&A ‘ MPC ‘ Res

0.4523 | 0.5428 | 0.5000
0.4666 | 0.5714 | 0.5988
0.4888 | 0.6750 | 0.6321
0.5555 | 0.6904 | 0.6426
0.8333 | 0.7023 | 0.6764

Table 7. Performance metrics of handcrafted patterns on whole dataset
‘ M&A ‘ MPC ‘ Res ‘
Precision 0.5 0.73 1.0
Recall 0.08 0.53 0.2
Fl-measure | 0.14 0.62 | 0.33

In the second experiment, we tested the handcrafted and automatically constructed
patterns on the whole annotated dataset. Since as we have mentioned that the dataset
is quite small, we tested the algorithm using 5-fold cross validation 5 times. Perfor-
mance characteristics are depicted at table 6 that presents Fl-measure values sorted
in increasing order. As it can be seen we got very different result each time (F1-measure:
0.4523-0.8333 for M&A, 0.5428-0.7023 for MPC, 0.5000-0.6764 for Res).

The results of the handcrafted patterns on the whole dataset are presented in Table 7.

4. Conclusions and Future Work

In the paper we outlined the current progress in developing the algorithm for semi-
automatic generation of linear event extraction patterns for free texts and presented
preliminary experimental results. Our next steps are to enhance the algorithm with
additional capabilities and validate it on a larger dataset.

Currently, we extract only mandatory events’ arguments. We will add capability
to generalize patterns that will include optional arguments as well (such as temporal
and monetary expressions). We plan to explore the possibility of improvement and
optimization of the algorithm. We will work on enhancing the generalization algorithm
by providing additional operations as well as intelligent selection of operations to apply
at each iteration. We will also explore possibility to utilize negative examples. We have
a dataset of approximately 110000 news articles that we will use for validating the
algorithm. We will also study in much more details the theoretical properties of the
proposed algorithm.

SEMI-AUTOMATIC GENERATION OF LINEAR PATTERNS 107

Pesrome

J.A. JIsendsux, C.B. Cepebpaxos. ABTOMATU3NPOBAHHOE IIOCTPOECHUE JIMHEHHBIX MTPABUJ
JIJIsl M3BJIEYEHUs COOBITUI M3 HEAHHOTHPOBAHHOI'O TEKCTA.

B crarbe onmchiBaeTcsi aBTOMATH3UPOBAHHBIN II0/X0J] K IIOCTPOECHUIO JIMHEHHBIX ITPABUII
JUIsl U3BJIEYEHHsI COOBITUN M3 HEAHHOTHMPOBAHHBIX TEKCTOB. AJIFOPUTM COCTOUT M3 HUETBIPEX
[IarOB: AaBTOMAaTUIECKOE U3BJIeUEeHE TOTEHINATBHBIX COOBITHI U3 KOPITyCa HEAHHOTUPOBAHHBIX
JIOKYMEHTOB, KJIACTEPU3aIlMsi UX C UCIIOJb30BAHUEM IIyTel B JiepeBe 3aBHUCUMOCTEl, IPOBEPKa
CJIy4YaifHO BBIOPAHHBIX NMPUMEPOB U3 KarXKJIOTO KJIACTEPA U IMOCTPOEHUE JIMHEWHBIX MPABUJI Ha
OCHOBE KJIACTEPOB, TOJIYYUBIINX IMOJIOKUTEJIHHYIO OIEHKY. [IpoBOAMTCS CpaBHEHWE TOJIYI€H-
HBIX [IPABUJI C CUCTEMOI, UCIOJIb3YIONIeH IPaBUJIa, IOCTPOEHHBIE KCIIEPTOM BDPYYHYIO.

KuroueBsble cjioBa: n3BjedeHne COOBITHIA, JTMHEIHbIE TPABUIIA, PETYISPHBIE BHIPAXKEHNUS,

Text MARKER, RUTA.

References

1. Soderland S. Learning Information Extraction Rules for Semi-Structured and Free Text //
Machine Learning. — 1999. — V. 34, No 1-3. — P. 233-272.

2. Li Y., Krishnamurthy R., Raghavan S., Vaithyanathan S., Jagadish H.V. Regular expres-
sion learning for information extraction // EMNLP’08 Proc. Conf. on Empirical Methods
in Natural Language Processing. — Stroudsburg, PA, USA: Association for Computational
Linguistics, 2008. — P. 21-30.

3. Agichtein E., Gravano L. Snowball: extracting relations from large plain-text collec-
tions // DL’00 Proc. Fifth ACM Conf. Digital libraries. — N. Y., USA: ACM, 2000. —
P. 85-94.

4. Bach N., Badaskar S. A Review of Relation Extraction. — 2007. — URL: http://
www.cs.cmu.edu/fibach/papers/A-survey-on-Relation-Extraction.pdf.

5. McDonald R. Extracting Relations from Unstructured Text. Technical Report: MS-CIS-
05-06. — 2005. — URL: http://www.ryanmecd.com/papers/MS-CIS-05-06.pdf.

6. Yangarber R., Grishman R., Tapanainen P. Automatic Acquisition of Domain Knowledge
for Information Extraction // COLING’00 Proc. 18th Conf. on Computational linguis-
tics. — Stroudsburg, PA, USA: Association for Computational Linguistics, 2000. — V. 2. —
P. 940-946.

7. Brin S. Extracting Patterns and Relations from the World Wide Web // WebDB’98
Selected papers from the Int. Workshop on The World Wide Web and Databases. —
London, UK: Springer-Verlag, 1999. — P. 172-183.

8. Etzioni O., Banko M., Soderland S., Weld D.S. Open information extraction from the
web // Communications of the ACM. — 2008. — V. 51, No 12. — P. 68-74.

9. FEtzioni O., Cafarella M., Downey D., Kok S., Popescu A.-M., Shaked T., Soderland S.,
Weld D.S., Yates A. Web-scale information extraction in knowitall: (preliminary re-
sults) // WWW’04 Proc. 13th Int. Conf. on World Wide Web. — N. Y., USA: ACM,
2004. — P. 100-110.

10. Yates A., Banko M., Broadhead M., Cafarella M.J., Etzioni O., Soderland S. TextRunner:
Open Information Extraction on the Web // NAACL-Demonstrations’07 Proc. Human
Language Technologies: The Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations. — Stroudsburg, PA, USA:
Association for Computational Linguistics, 2007. — P. 25-26.

108 D. Dzendzik, S. Serebryakov

11. Kluegl P., Atzmueller M., Puppe F. Integrating the Rule-Based IE Component
TextMarker into UIMA // Proc. LWA. — 2008. — P. 73-77.

IToctynuia B pegaknuo
31.07.13

Dzendzik, Darya — Student, Saint-Petersburg State University; Intern, Hewlett-Packard
Laboratories, Saint Petersburg, Russia.

Hzenazuk Jdapbpsi AnatosnbeBHa — cryient, Cankr-Ilerepbyprckumii rocyiapcTBeHHBIH
YHUBEPCUTET; TPAKTUKAHT, Poccriickoe OTeIeHne nccaeaoBaTebckoit taboparopun “Hewlett-
Packard Laboratories”, r. Caukr-IleTrepbypr, Poccusi.

E-mail: daryadzen@gmail.com, daria.dzendzik@hp.com

Serebryakov, Sergey — PhD, Research Engineer, Hewlett-Packard Laboratories, Saint
Petersburg, Russia.

CepebpsikoB Cepreii BajnepbeBudY — KaHIUJIAT TEXHUYECKUX HAyK, HHXKEHEP-UC-
cieoBaTesib, Poccuiickoe OTIeeHne uccaeaoBaTebekoit Jjaboparopun “Hewlett-Packard
Laboratories”, r. Caunkr-IleTrepbypr, Poccus.

E-mail: sergey.serebryakov@hp.com

