МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Казанский (Приволжский) федеральный университет»

ИНСТИТУТ МАТЕМАТИКИ И МЕХАНИКИ ИМ.Н.И. ЛОБАЧЕВСКОГО КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ

Направление: 010800.68 – механика и математическое моделирование Специализация: механика твердого деформируемого тела

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

КОНТАКТНАЯ ЗАДАЧА ДЛЯ ПЛАСТИНЫ С КРУГОВЫМ ВЫРЕЗОМ

Работа зав	ершена:	
«»	2015 г	(М.Г. Васильева)
Работа дог	ущена к защите:	
Havчный р	уководитель	
	ризико-математических наук,	лоцент
" "	2015 г.	(С.А.Кузнецов)
•	ий кафедрой	a h a a a a w
доктор физ	ико-математических наук, пре	эфессор
""	2015 г.	(Ю.Г.Коноплев)

ОГЛАВЛЕНИЕ

1.	Введение	3
	Постановка задачи	
	Определение функции влияния	
	Интегральное уравнение условия контакта	
	Представление решения в графиках	
	Описание практической части	
	Заключение	
8.	Список литературы	19

1. Введение

Одним из основных способов приложения нагрузки к деформируемому телу является контакт, что придает задачам контактного взаимодействия важное прикладное значение. Зная, как распределяется давление в области контакта, можно определить участки концентрации напряжений и другие факторы контактной прочности и жесткости.

Особую роль контактные задачи играют в машиностроении, т.к. в механизмах конструктивно предусмотрено сопряжение деталей, но они находят приложение и в других областях прикладной механики.

Отдельным классом задач являются случаи, когда область контакта соизмерима с размерами соприкасающихся тел, т.к. к ним не применяется допущение Герца о малости области контакта. Впервые обобщение задачи Герца на этот случай осуществил И.Я.Штаерман [5], который рассмотрел задачу о внутреннем контакте упругих тел, ограниченных цилиндрическими поверхностями близких радиусов. Обзор результатов для контактных задач теории упругости для круговых областей содержится в монографии М.И. Теплого «Контактные задачи для областей с круговыми границами» [1].

Обзорная монография «Развитие контактных задач в СССР» под редакцией Л.А. Галина [6] освещает фундаментальные результаты и методы в теории контактных задач до 1975 г., а вышедшая в 2001 г. «Механика контактных взаимодействий» [7] содержит подробный обзор работ выпущенных после этого периода.

В 2001 году в работе О.В. Чумариной [8] были созданы и реализованы алгоритмы решения двумерных контактных задач для мембран произвольной формы (в том числе круговых) взаимодействующих с жесткими телами. В 2004 году вышла книга В.М. Александрова и М.И. Чебакова [9], обобщающая исследования авторов в области задач контактного взаимодействия тел сложной конфигурации, неоднородных тел и задач с усложненными условиями в зоне контакта. В журнале «Вестник машиностроения» в 2011 году выходят статьи «Контактная деформация и сжатие цилиндров» О.И. Косарева [11] и «Об одном методе точного решения контактной задачи Герца для круговых цилиндров с параллельными осями» Ф.Г. Нахатакян [10], где было получено точное решение с использованием модели упругого полупространства на основе теории Герца. В 2014 выходит статья [12], посвященная задаче о внутреннем контакте тел с круговыми границами с учетом большой разности радиусов штампов, радиусов поверхностей покрытий и произвольной глубины внедрения штампа в покрытие.

2. Постановка задачи

В упругой изотропной пластине единичной толщины SI на границе имеется полукруговое отверстие радиуса R, в которое вставлен жесткий диск S2 того же радиуса. Диск прижимается к границе отверстия в пластине и вдавливается на величину γ . В результате этого в областе контакта возникают контактные напряжения, радиальные σ_r и касательные $\tau_{r\alpha}$. Пластина и диск находятся в состоянии статического равновесия. Задача состоит в определении контактных напряжений.

Введем полярную систему координат так, чтобы начало координат совпадало с центром полукругового отверстия. Обозначим через ф полярный угол точек границы отверстия. За положительное направление примем направление отсчета против часовой стрелки.

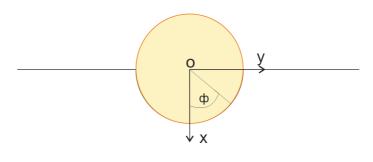


Рис. 1

Предполагаем, что размеры пластины S1 достаточно большие по сравнению с размерами отверстия, поэтому пластину можно считать полубесконечной, а напряжения на внешнем контуре нулевыми.

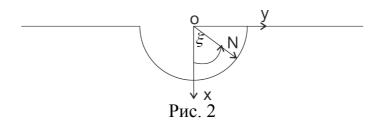
Для вывода уравнения задачи используем условие контакта, которое заключается в том, что перемещения штампа совпадут с перемещениями границы.

$$\int\limits_{-\frac{\pi}{2}+\alpha}^{\frac{\pi}{2}} G(r, R, \varphi, \varphi_o) \sigma(\varphi_o) d\varphi_o = \gamma \cos(\varphi - \alpha) \quad \text{при } r = R. \tag{1}$$

Здесь $G(r,R,\varphi,\varphi_o)$ — перемещение точек границы под действием единичной нагрузки в направлении φ_o , $\gamma\cos(\varphi-\alpha)$ с достаточной точностью задают перемещения штампа и границы отверстия, а α угол в направлении которого вдавливается диск.

3. Определение функции влияния

Рассмотрим пластину с полукруговым отверстием, нагруженную сосредоточенной единичной силой N, действующей по нормали к контуру. Пластина нагружена только в срединной плоскости, а напряжения по толщине пластины постоянны. Такая задача известна как плоская задача теории упругости, решение ее сводится к определению функции напряжений.



Поскольку пластина нагружена только на контуре, достаточно общего решения однородного уравнения [2]:

$$\Delta \Delta \Phi = 0 \tag{2}$$

Общее решение этого уравнения в полярных координатах (r,θ) имеет следующий вид [2]:

$$\Phi = C_{10} + C_{20}r^{2} + C_{30}\ln r + C_{40}r^{2}\ln r + (C_{11}r + C_{21}r^{3} + C_{31}r^{-1} + C_{41}r\ln r)\cos \theta
+ \sum_{n=2}^{\infty} (C_{1n}r^{n} + C_{2n}r^{n+2} + C_{3n}r^{2} + C_{4n}r^{-n+2})\cos n\theta + (D_{11}r + D_{21}r^{3} + D_{31}r^{-1} + D_{41}r\ln r)\sin \theta
+ \sum_{n=2}^{\infty} (D_{1n}r^{n} + D_{2n}r^{n+2} + D_{3n}r^{2} + D_{4n}r^{-n+2})\sin n\theta + E_{1}\theta + E_{2}r^{2}\theta + E_{3}r\theta\sin \theta + E_{4}r\theta\cos \theta$$
(3)

Напряжения определяются по формулам:

$$\sigma_r = \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} \quad , \quad \sigma_{\theta} = \frac{\partial^2 \Phi}{\partial r^2} \quad , \quad \tau_{r\theta} = \frac{-\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \right) \tag{4}$$

Для отверстия r=R граничными условиями являются

$$\sigma_r = \frac{\delta(\theta - \xi)}{R} , \quad \tau_{r\theta} = 0 \tag{5}$$

И при
$$r \to \infty$$
 имеем $\sigma_r \to 0$, $\sigma_\theta \to 0$, $\tau_{r\theta} \to 0$ (6)

Дельта-функцию представим в виде ряда $\frac{1}{\pi} + \frac{2}{\pi} \sum \cos 2k (\theta - \xi)$ [4] и после удовлетворения граничным условиям получим:

$$\Phi(r,\theta) = C_{10} + \frac{R \ln r}{\pi} + \sum_{n=1}^{\infty} \left(\frac{r^{-2n} R^{2n} ((1+2n)r^2 + (-1+2n) R^2) \cos 2n (\theta - \xi)}{(-1+2n)(1+2n)^2 \pi} \right)$$
 (7)

Тогда перемещения можно найти, вычислив напряжения и взяв интеграл:

$$u = \int \varepsilon_r dr = \frac{1}{E} \int (\sigma_r - v \sigma_\theta) dr \tag{8}$$

Константа интегрирования определяется из требования равенства нулю на бесконечности. Тогда:

$$u(r,\theta) = \frac{1}{E\pi} \sum_{n=1}^{\infty} \left(\frac{-2(n(-1+2n)R(1+\nu) + (1+2n)R(1+n-\nu+n\nu))}{(-1+2n)(1+2n)^2} \cos 2n(\theta-\xi) \right)$$
(9)

Перемещения границы для единичной нагрузки, приложенной в центре:

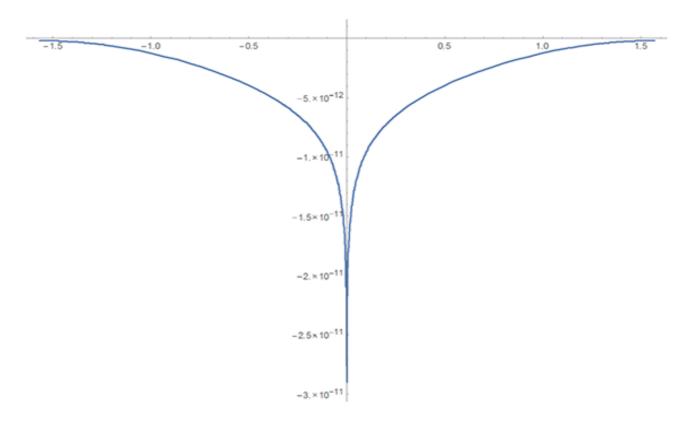
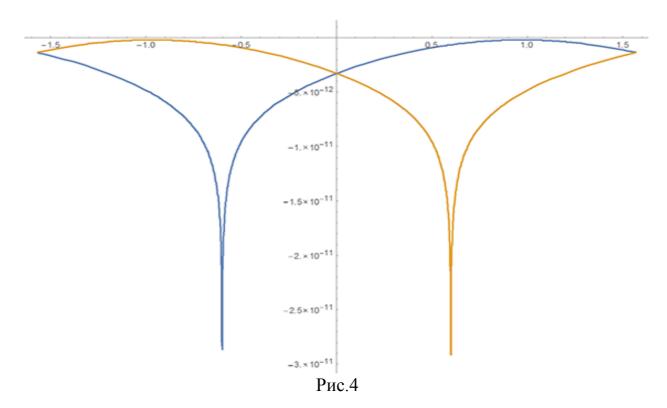
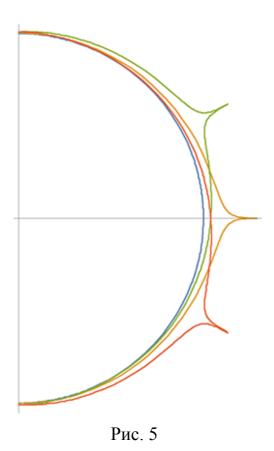


Рис.3

И для единичной нагрузки, смещенной вправо или влево:



В полярной системе координат эти графики имеют следующий вид:



7

Отсюда видно, что функция влияния имеет особенность при $\varphi = \xi$: в точке приложения нагрузки она ведет себя как дельта-функция. Этим она напоминает функцию влияния для упругой полуплоскости, которая имеет вид $\ln \frac{1}{|x-\xi|}$.

4. Интегральное уравнение условия контакта

Подставим полученное выражение для перемещений границы в условие контакта (1). В точке $\varphi = \varphi_o$ функция влияния имеет особенность, поэтому интеграл разбивается на три части:

$$\int_{\frac{-\pi}{2}+\alpha}^{\frac{\pi}{2}} G(r, R, \varphi, \varphi_o) \sigma(\varphi_o) d\varphi_o = \int_{\frac{-\pi}{2}+\alpha}^{\varphi_o - \varepsilon} G(r, R, \varphi, \varphi_o) \sigma(\varphi_o) d\varphi_o
+ \int_{\varphi_o - \varepsilon}^{\varphi_o + \varepsilon} G(r, R, \varphi, \varphi_o) \sigma(\varphi_o) d\varphi_o + \int_{\varphi_o + \varepsilon}^{\frac{\pi}{2}} G(r, R, \varphi, \varphi_o) \sigma(\varphi_o) d\varphi_o$$
(10)

На малом интервале $[\varphi_o - \varepsilon, \varphi_o + \varepsilon]$ функцию $G(r, R, \varphi, \varphi_o)$ можно заменить дельта-функцией, тогда

$$\int_{\varphi_{o}-\varepsilon}^{\varphi_{o}+\varepsilon} G(r, R, \varphi, \varphi_{o}) \sigma(\varphi_{o}) d\varphi_{o} = \frac{R}{E \pi} \int_{\varphi_{o}-\varepsilon}^{\varphi_{o}+\varepsilon} \delta(\varphi - \varphi_{o}) \sigma(\varphi_{o}) d\varphi_{o} = \frac{R}{E \pi} \sigma(\varphi)$$
(11)

В остальных точках $G(r,R,\varphi,\varphi_o)$ можно представить в виде конечного ряда

$$\frac{R}{E\pi} \sum_{n=1}^{N} \left(\frac{2(n(-1+2n)(1+\nu)+(1+2n)(1+n-\nu+n\nu))}{(-1+2n)(1+2n)^2} \cos 2n(\varphi-\varphi_o) \right) = \frac{R}{E\pi} \sum_{n=1}^{N} u_n(R) \cos 2n(\varphi-\varphi_o) \tag{12}$$

Таким образом, условие контакта запишется в следующем виде:

$$\frac{R}{E\pi} \int_{-\frac{\pi}{2}+\alpha}^{\frac{\pi}{2}} \sum_{n=1}^{N} u_n(R) \cos 2n(\varphi - \varphi_o) \sigma(\varphi_o) d\varphi_o + \frac{R}{E\pi} \sigma(\varphi) = \gamma \cos(\varphi - \alpha)$$
(13)

Т.к.

$$\sum_{n=1}^{N} u_n(R)\cos 2n(\varphi - \varphi_o)\sigma(\varphi_o) = \sum_{n=1}^{N} u_n(R)(\cos 2n\varphi\cos 2n\varphi_o + \sin 2n\varphi\sin 2n\varphi_o) =$$

$$= \sum_{i=1}^{2N} u_i(R)A_i(\varphi)B_i(\varphi_o)$$
(14)

То (13) это интегральное уравнение Фредгольма второго рода с вырожденным ядром.

Решение этого уравнения представляется в виде:

$$\sigma(\varphi) = \frac{E \pi \gamma}{R} \cos(\varphi - \alpha) + \sum_{j=1}^{N} s_j \cos \varphi + d_j \sin \varphi$$
 (15)

5. Представление решения в графиках

Если диск смещается в вертикальном направлении и α =0, то область контакта максимальна, и контактное давление $\sigma(\varphi)$ распределяется следующим образом:

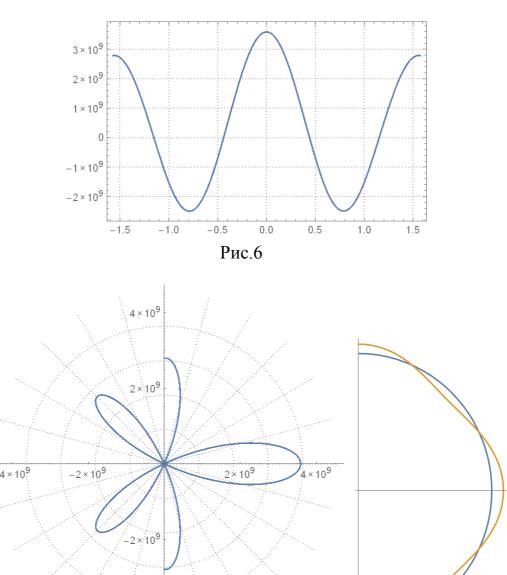


Рис. 8 представляет собой эпюру вдоль границы отверстия.

Рис.7

-4×10⁹

Рис.8

При угле $\alpha = \frac{\pi}{8}$ контактное давление имеет следующий вид:

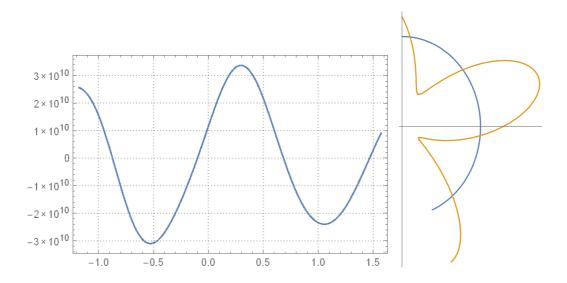


Рис.9 Рис.10

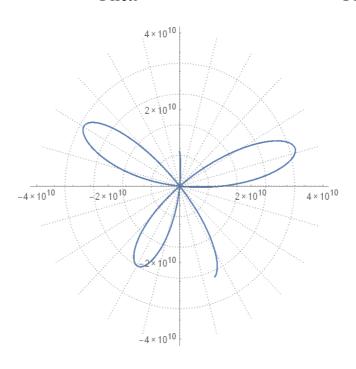


Рис.11

График для $\alpha = \frac{\pi}{6}$

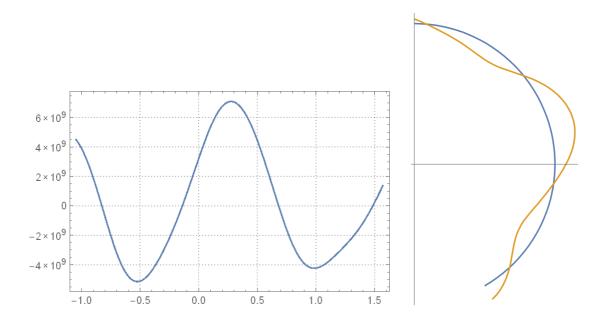


Рис. 12 Рис. 13

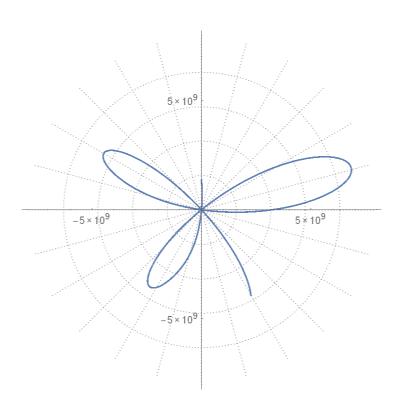
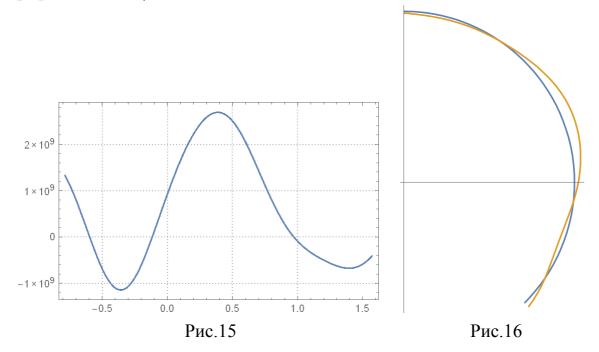


Рис. 14

График для $\alpha = \frac{\pi}{4}$



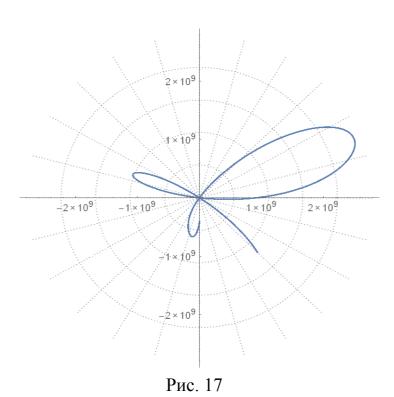


График для $\alpha = \frac{\pi}{3}$

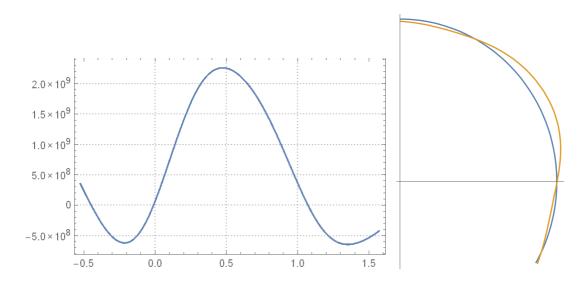


Рис.18 Рис.19

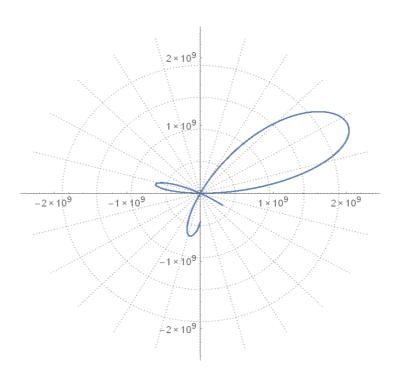


Рис. 20

График для $\alpha = \frac{3\pi}{8}$

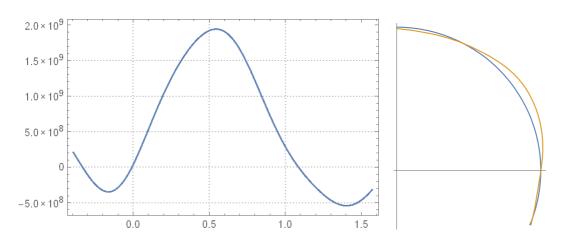


Рис. 21 Рис. 22

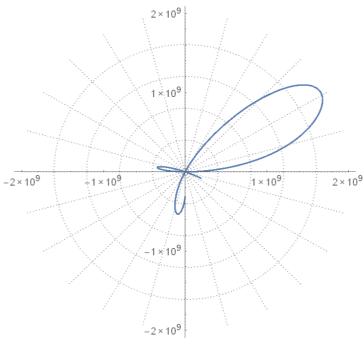


Рис. 23

Если угол α отрицательный, то есть штамп вдавливается в противоположном направлении, то границы интегрирования изменятся, и уравнение (13) примет следующий вид:

$$\frac{R}{E\pi} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}-\alpha} \sum_{n=1}^{N} u_n(R) \cos 2n(\varphi - \varphi_o) \sigma(\varphi_o) d\varphi_o + \frac{R}{E\pi} \sigma(\varphi) = y \cos(\varphi + \alpha)$$
(16)

Все графики, построенные для его решения, будут выглядеть аналогично графикам для положительного угла, но симметрично отобразятся вокруг оси $\varphi = 0$

Например, график, построенный для $\alpha = \frac{-3\pi}{8}$ выглядит так:



2×10⁹ -2×10^{9}

Рис. 26

Максимальное напряжение при $\frac{y}{R}$ =0,001 и $E = 1.23*10$ ¹¹				
$\alpha = 0$	$\alpha = \frac{\pi}{8}$	$\alpha = \frac{\pi}{4}$	$\alpha = \frac{3\pi}{8}$	
3.59*109	3.37*1010	2.63102*109	2.17*109	

Максимальное напряжение при угле $\alpha = 0$ и $E = 1.23*10^{11}$			
$\frac{y}{R}$ =0,05	$\frac{y}{R}$ =0,01	$\frac{y}{R}$ =0,005	$\frac{y}{R}$ =0,001
1.79*1011	3.59*1010	1.79*109	3.59*109

Максимальное напряжение при угле $\alpha = 0$ и $\frac{\gamma}{R} = 0.001$			
$E = 1.6*10^{10}$	E = 7.1*1010	$E = 1.23*10^{11}$	E = 2.06*10 ¹¹
4.77*109	2.07*1010	3.59*1010	6.01*109

Максимальное напряжение при угле $\alpha = 0$, $\frac{y}{R} = 0.001$ и $E = 1.23*10^{11}$				
N =3	N =5	N=6	N =7	N=10
3.5503*109	3.587*109	3.59582*109	3.590*109	3.59339*109
N=15	N =20	N =25	N =25	
3.59239*109	3.59278*109	3.59257*109		

6. Описание практической части

Для вычислений и построения графиков использовался пакет символьной математики Wolfram Mathematica (WM), который позиционирует себя как наиболее полную систему для современных технических вычислений в мире. Мathematica обладает высокой скоростью и точностью вычислений. В отличие от пакетов MathCAD и MatLab, которые используют преимущественно числовые алгоритмы, она позволяет получить аналитическое решение, когда это возможно.

7. Заключение

В результатах, полученных в данной работе, были выявлены следующие закономерности:

- 1) Если штамп смещается строго вертикально, то максимальные напряжения возникнут в центре, а по обе стороны от него возникнут две симметричные зоны отрыва, которые компенсируются высокими напряжениями на краях. Для более точного решения необходимо решить многоконтактную задачу.
- 2) При изменении угла вдавливания штампа зона максимальных напряжений и зоны отрыва смещаются с запаздыванием. Величина максимальных напряжений до определенного значения α растет, а потом падает. При дальнейшем увеличении угла на свободном краю отверстия происходит отрыв, как это можно наблюдать на графике для $\alpha = \frac{\pi}{4}$.
- 3) От остальных параметров (E, γ , $\frac{1}{R}$) решение зависит линейно.

8. Список литературы:

- 1) Теплый М.И. Контактные задачи для области с круговыми границами
- 2) Лукасевич С. Локальные нагрузки в пластинах и оболочках М.: Мир, 1982. 542 с.
- 3) Тимошенко С.П., Гудьер Дж. Теория упругости. 2-е изд. М.: Наука, 1979. 560c.
- 4) Тихонов А.Н., Самарский А.А. Уравнения математической физики
- 5) Штаерман И. Я. Контактная задача по теории упругости М.-JL: ГИТТЛ, 1949. 270 с.
- 6) Развитие контактных задач в СССР / Под ред. Л.А. Галина. М.:Наука, 1976. 493 с.
- 7) Айзекович С.М. и др. Механика контактных взаимодействий / под ред. И.И. Воровича и В.М. Александрова. М.: Физматлит, 2001. 672 с.
- 8) Чумарина О.В. Контактные задачи взаимодействия мембраны сложной формы с жестким телом и жидкостью 2001. 149 с.
- 9) Александров В.М., Чебаков М.И. Аналитические методы в контактных задачах теории упругости М.: Физматлит, 2004. 304 с.
- 10) Нахатакян Ф.Г. Об одном методе точного решения контактной задачи Герца для круговых цилиндров с параллельными осями / Вестник машиностроения. № 3, 2011. С. 3-6.
- 11) Косарев О.И. Контактная деформация и сжатие цилиндров / Вестник машиностроения. № 2. 2011. C.27-31.
- 12) Кравчук А.С., Чижик С.А., Мищак Анджей. Моделирование износа защитных покрытий цилиндрических подшипников скольжения, а также шаровых опор и наконечников / APRIORI. Серия: Естественные и технические науки. №5. 2014.