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Abstract

In this article, we present and support by examples a criterion for the existence of
gravitational radiation in terms of the invariants of the Riemann curvature tensor. We give
a classification of spacetimes in terms of electric and magnetic parts of the Weyl tensor and
discuss some examples of spacetimes having purely magnetic and purely electric Weyl tensors.
The Lanczos potential is studied using the method of general observers and tetrad formalisms.
We obtain the Lanczos potentials for perfect fluid spacetimes, Gédel cosmological model, and
Kerr black hole. The work also considers the space-matter tensor, introduced by Petrov, and
the perfect-fluid spacetimes with the divergence-free space-matter tensor.
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Introduction

The general theory of relativity is a theory of gravitation in which gravitation
emerges as the property of the space-time structure through the metric tensor g;;.
The metric tensor determines another object (of tensorial nature) known as Riemann
curvature tensor. At any given event, this tensorial object provides all information about
the gravitational field in the neighbourhood of the event. It may, in real sense, be in-
terpreted as describing the curvature of the spacetime. The Riemann curvature tensor
is the simplest non-trivial object one can build at a point; its vanishing is the criterion
for the absence of genuine gravitational fields and its structure determines the relative
motion of the neighbouring test particles via the equation of geodesic deviation. These
discussions clearly illustrate the importance of the Riemann curvature tensor in general
relativity and it is for these reasons, a study of this curvature tensor has been made
here.

1. The invariants of Riemann tensor

The Riemann curvature tensor Rfjl is defined, for a covariant vector field Ay,
through the Ricci identity [1]

Agji = Ay = R Ay, (1)
0 0

k k _
where R = 7Ll T B

The Riemann curvature tensor can be decomposed as [1]
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Rijii = Cijit + Eijrr + Gijrts (2)
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where Cijkl is the Weyl tensor, Eijkl = _E(giksﬂ + gleik — gilSjk - gijil) 18
1

the Einstein curvature tensor, with S;; = R;; — —g¢i; R being the traceless tensor
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and Gijr = (9ikgj1 — gugjx). The Ricci tensor R;; is defined by R;; = Rfjk

R
B 12
and R = g R;; is the Ricci scalar. These equations lead to a more convenient decom-
position of the Riemann tensor as [1]

Rijki = Cijr + %(gilek + gk Ri — gieRji — g Rix) — %(gilgjk —gikgi)-  (3)
The Riemann curvature tensor has fourteen invariants. There is the Ricci scalar R.
There are four invariants of the Weyl tensor Cjji;. There are three invariants of the
Einstein curvature tensor Ejj; and six invariants of the combined Weyl and Einstein
curvature tensors. In empty spacetimes, there are four invariants of Riemann tensor
which are given by
Ay = Ry R, A3 = Rjj, RV,

_ 4 mnrs p 1j _ 4 * mnrs p 1j

B = gRijmnR R, By = gRijmnR R,Y.

These invariants have been calculated for the classifications of Riemann ten-
sor according to Sharma and Husain [2] and Petrov [3]. It has been found that
A1, As, Bj, and By are all equal to zero for cases III(a) and III(b) or Petrov type
IT1. This has led to the following criterion for the existence of gravitational radiation:

If Ropea # 0 and Ay = Ay = By = By = 0, then the gravitational radiation is
present; otherwise, there is no gravitational radiation.

The validity of this assertion has been checked by considering the following metrics
(cf., [4]):

(i) Takeno’s plane wave solution

ds? = —Adz? — 2D dx dy — Bdy? — dz* + dt?;
(ii) Einstein-Rosen metric

ds® = 272V (dt? — dr?) — r?e 2V dg? — e*Vd2?,

where v and ¢ are functions of r and ¢ only, ¥ =0 and v =~v(r —t);
(iii) The Peres metric

ds® = —da} — daj — daf — 2f (dws + da3)? + daf;

(iv) The Schwarzchild exterior solution

—1
2 2
ds? = — (1 — Tm) dr? — r2df? — r? sin® 9dq§2 + (1 — Tm) dt?.

It is found that for the metrics (i)—(iii), all the four invariants of the Riemann
tensor vanish and thus correspond to the state of gravitational radiation. While for the
Schwarzchild exterior solution A; # 0, By # 0, As =0, By # 0; Schwarzchild solution,

being a Petrov type D solution, is known to be non-radiative.

2. The electric and magnetic spacetimes

It is known that a physical field is always produced by a source, which is termed as
its charge. Manifestation of fields when charges are at rest is called electric and magnetic
when they are in motion. This general feature is exemplified by the Maxwell’s theory
of electromagnetism from which the terms of electric and magnetic are derived. This
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decomposition can be adapted in general relativity and the Weyl tensor can be decom-
posed into electric and magnetic parts. Based on this decomposition, a classification of
spacetimes is given here which is supported by a number of examples.

An observer with time like 4-velocity vector u is said [5] to measure the electric and
magnetic components, F,. and H,. respectively, of the Weyl tensor Cypeq by

b, d b, d
Eac = Cabed b U, Hac =" C’abcdu u-, (4)

where the dual is defined to be *Cyupeq = 3 €abef C’ceg. It is possible to choose a null

tetrad in NP formalism such that the invariants of curvature tensor can be expressed
in terms of the electric and magnetic parts of the Weyl tensor. Electric and magnetic
Weyl tensors of types I and D have been considered by McIntosh et al. [6]. For the
remaining Petrov types, we have

Theorem 1. For type II, the Weyl tensor is purely electric (magnetic) if and only
if Yo (or ) is real (imaginary).

Theorem 2. Types III and N Weyl tensors are neither purely electric nor purely
magnetic.

It is seen [7] that plane-fronted gravitational waves and Robinson — Trautman types
IIT and N metrics are neither purely electric nor purely magnetic. While, the Robinson —
Trautman type II metric, the Schwarzchild and the Reissner — Nordstrom solutions are
purely electric.

3. Lanczos spin tensor

It is known that an electromagnetic field can be generated by a potential, the ques-
tion then arises that whether it is possible to generate the gravitational field through
a potential. The answer is affirmative: this indeed can be done through the covariant
differentiation of a tensor field L;j; [8]. This tensor field is now known as Lanczos
potential and the Weyl tensor Cy; i is generated by L;;i through the equation [9, 10]

1
Chijie = Lnigin = Lniksj + Liknsi = Liwisn + 5 (L% + L") gne +

1 1 1
+ i(thk;p + Lkph;p) 9ij — §(thj;p + Ljph;p) 9ik — §(Lipk;p + Lkpi;p) 9hj- (5)

This equation is known as Weyl —Lanczos equation.

For a gravitational field with perfect fluid source, the basic covariant variables are:
the fluid scalars 0 (expansion), p (energy density), p (pressure); the fluid spatial vectors
u; (4-acceleration), w; (vorticity); the spatial trace-free symmetric tensors o;; (fluid
shear), the electric (E;;) and the magnetic (H;;) parts of the Weyl tensor; the projection
tensor h;; which projects orthogonal to the fluid 4-velocity vector u;. We have expressed
these quantities and the equations satisfied by them in terms of the Newman-Penrose
formalism and in the process have obtained the Lanczos potential for perfect fluid
spacetimes. In fact we have proved the following [11]:

Theorem 3. If in a given spacetime there is a field of observers u® that is shear-free,
irrotational and expanson-free, then the Lanczos potential is given by

1 1
Liji = =& {m[i ug] Uk g M gnk} —r {m[z' ug) Uk~ g T gnk} ; (6)
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. 1 . .

where u' = %(l’ + n?) and the Lanczos scalars L;(i = 0,1,...,7) in this case are
1 1. 1 _

LO = _§K/7 L2 = _5L07 L5 = 5L07 L7 = _LO) Ll = L3 = L4 = LG =0.

Theorem 4. If in a given spacetime there is a field of observers u' which is geodetic,
shear-free, expansion-free and the vorticity vector is covariantly constant (i.e., a; = 0 =
0ij = 0,w;;; = 0), then the Lanczos potential is given by

2
Liji = \/? pA2(mgmy — mimyg)ug + (mamy, — mimp)u; — (mgmy, — mgmp)uiy,  (7)
1 _ 1
where u* = —2(11 +n") and the Lanczos scalars L;(i =0,1,...,7) are L1 = Lg = 9
Lo=Ly=L3=Ly=1Ls=1L;=0.

It may be noted here that the hypothesis of Theorem 4 are in fact the conditions of
the Godel solution and thus, through Eq. (7), a Lanczos potential for the Godel solution
is obtained.

The two-parameter family of solutions which describe the spacetime around black
holes is the Kerr family discovered by Roy Patrick Kerr in July 1963. The two parameters

are the mass and angular momentum of the black hole. Using GHP formalism (a tetrad
formalism), we have obtained Lanczos potential for Kerr spacetime as [11]

1 1/3 A 2/3
L= (8 =R ()
3\ M 3 \M
which shows that Lanczos potential of Kerr spacetime is related to the mass parameter

of the Kerr black hole and the Coulomb component of the gravitational field. Here A is
a constant.

4. Space-matter tensor

Petrov [12] introduced a fourth rank tensor which satisfies all the algebraic properties
of the Riemann curvature tensor and is more general than the Weyl conformal curvature
tensor. This tensor is defined as

Pabcd - Rabcd - Aabcd + U(gac 9gbd — Gad gbc)a (8)

A L
where Aabcd - E(gac de + 9bd Tac — Yad Tbc — Gbc Tad) and Tab 15 given by the

1
Einstein’s field equations R,, — §R gap = A Tap. Here X is a constant and T, is the

energy-momentum tensor. The tensor P,p.q is known as space-matter tensor. The first
part of this tensor represents the curvature of the space and the second part represents
the distribution and motion of the matter. From the equations of Section 1, we have

Pabcd = C’abcd + (gad Rbc + Gbe Rad — Jac Rbd — gbd Rac) +

2
—+ (gR + U> (gac 9vd — Yad gbc)a (9)

which can also be expressed as

2
P, = Oy + (65 Rye — 0" Rpa + goe R + gpa RY) + <§R + U) (6" gba — 0% gbe)- (10)
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The algebraic properties (including spinor equivalent) and the classification of
the space-matter tensor have been studied by Ahsan [13-15]. The concept of matter
collineation, defined in terms of the space-matter tensor, has also been introduced by Ah-
san [16], who obtained the necessary and sufficient conditions under which a spacetime,
including electromagnetic fields, may admit such collineation. In this section, the diver-
gence of the space-matter tensor has been expressed in terms of the energy-momentum
and Ricci tensors. Perfect-fluid spacetimes with divergence-free space-matter tensor
have also been considered.

The space matter tensor can also be written as

1
thcd = R;},lcd + 5(5? Toa — 53 Tye + God Tch — Gbe TC?) + 0'(52 Jod — 62 gbc) (11)
so that the divergence of thcd is given by

1 1
thcd;h = Rz}fcd;h + §(de;c — Theia) + i(gbd Tjih — Gbe Tcﬁh) +0cgvd — 0,d e (12)

which on using the contracted Bianchi identities and T%b = 0 reduces to

1 1
Pgn = 5 Tocia = Toase) + 5 [(T'+20) e goa — (T + 20).d gyl (13)
We thus have
Theorem 5. If Ty, is a Codazzi tensor and T = —20, then the space-matter tensor

is divergence-free.

While in terms of Ricci tensor, the divergence of the space-matter tensor takes the
form

1
~(R.c9pd — R.d gve). (14)

h
Pocasn = Ryeia = Roaie — 5

We thus have

Theorem 6. For Einstein spaces with o = 0, the divergence of space-matter tensor
vanishes.

For a perfect-fluid distribution, the energy-momentum tensor is given by

Tap = (1 + p) Ua Wb + D Gab, (15)

where p is the energy density, p is the isotropic pressure and u, is the fluid four velocity
vector. Consider now the fluid spacetime with divergence-free space-matter tensor and
we have

1
Theorem 7. If 0 = _ET and the fluid spacetime has divergence-free space-matter

tensor, then either (un+ p) = 0 (that is, the perfect fluid spacetime satisfies the vacu-
umlike equation of state) or the spacetime represents a Friedmann — Robertson — Walker
cosmological model with (u — 3p) as constant.

For the proofs of these theorems and other related results, see [17].
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Pesome

3. Azxcan. UccienoBanue puMmaHoBa TeH30pa KPUBU3HBL U Kiaaccudukanuu [lerposa B 00-
meil TEOPUU OTHOCUTETILHOCTH.

Ha ocHoBe mMHBapMaHTOB pMMaHOBA TEH30pa KPUBU3HBI MPEICTABIECH W TTPOULITIOCTPUPO-
BaH PAa3JINYHBIMU IPUMEPAMU KPUTEPU CyIeCTBOBAHNUS T'PABUTANMOHHOTO M3aydenns. /lamna
KJTaccudUKAIus TPOCTPAHCTB-BPEMEH UCXOd U3 SIEKTPUIECKON W MAaTHUTHOMN COCTABIISIONINX
ter3opa Beitng. PaccMoTpenbl HEKOTOpBIE TIPUMEpPHI TTPOCTPAHCTB-BPEMEH, ¥ KOTOPBIX TEH-
30p Beilsisi coiepKuT TOTBKO MAarHUTHYIO UM TOJIBKO JIEKTPUIECKYIO 9acTh. IIpoBesero mc-
cJieIOBaHue TOTEHIMAaa JIAHIoma ¢ MOMOMBI0 MeTo[a o0ImuX Hab/ aaTe el 1 TeTpaIHoro
dopmamm3Ma, OIyYeH TTOTeHIna I JIaHIoNa, /171 TPOCTPAHCTB-BPEMEH MICATHHOM KUIKOCTH.
Kpowme Ttoro, momyden morenrman Jlammoma s KocMoJsioruteckoit mosmenu ['émenss m dep-
Hoit npipel Keppa. Paccmorpensl TeH30p IpocTpaHCTBa-MaTepuu, BBEAeHHBIN [leTpoBbiM, u
MTPOCTPAHCTBA-BPEMEHA WILATHHON KUIKOCTH C TEH30POM TIPOCTPAHCTBA-MATEPUN, HE COIEP-
JKAIUM TUBEPTeHTHON JaCTH.

KuroueBbie ciioBa: TeH3op Beiins, morenmmas Jlawmmoma, TeTpamaHbIil  (opManm3Mm,
mozenb ['énens, gepuasa apipa Keppa.
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