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UDK 514.763A STUDY OF THE RIEMANN CURVATURETENSOR AND PETROV CLASSIFICATIONIN GENERAL RELATIVITYZ. AhsanAbstratIn this artile, we present and support by examples a riterion for the existene ofgravitational radiation in terms of the invariants of the Riemann urvature tensor. We givea lassi�ation of spaetimes in terms of eletri and magneti parts of the Weyl tensor anddisuss some examples of spaetimes having purely magneti and purely eletri Weyl tensors.The Lanzos potential is studied using the method of general observers and tetrad formalisms.We obtain the Lanzos potentials for perfet �uid spaetimes, G�odel osmologial model, andKerr blak hole. The work also onsiders the spae-matter tensor, introdued by Petrov, andthe perfet-�uid spaetimes with the divergene-free spae-matter tensor.Key words: Weyl tensor, Lanzos potential, tetrad formalisms, G�odel model, Kerr blakhole. IntrodutionThe general theory of relativity is a theory of gravitation in whih gravitationemerges as the property of the spae-time struture through the metri tensor gij .The metri tensor determines another objet (of tensorial nature) known as Riemannurvature tensor. At any given event, this tensorial objet provides all information aboutthe gravitational �eld in the neighbourhood of the event. It may, in real sense, be in-terpreted as desribing the urvature of the spaetime. The Riemann urvature tensoris the simplest non-trivial objet one an build at a point; its vanishing is the riterionfor the absene of genuine gravitational �elds and its struture determines the relativemotion of the neighbouring test partiles via the equation of geodesi deviation. Thesedisussions learly illustrate the importane of the Riemann urvature tensor in generalrelativity and it is for these reasons, a study of this urvature tensor has been madehere. 1. The invariants of Riemann tensorThe Riemann urvature tensor Rkijl is de�ned, for a ovariant vetor �eld Ak ,through the Rii identity [1℄
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ml.The Riemann urvature tensor an be deomposed as [1℄

Rijkl = Cijkl + Eijkl +Gijkl , (2)where Cijkl is the Weyl tensor, Eijkl = −1

2
(gikSjl + gjlSik − gilSjk − gjkSil) isthe Einstein urvature tensor, with Sij ≡ Rij − 1

4
gijR being the traeless tensor
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12
(gikgjl − gilgjk). The Rii tensor Rij is de�ned by Rij ≡ Rkijkand R ≡ gijRij is the Rii salar. These equations lead to a more onvenient deom-position of the Riemann tensor as [1℄

Rijkl = Cijkl +
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(gilRjk + gjkRil − gikRjl − gjlRik) −
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6
(gilgjk − gikgjl). (3)The Riemann urvature tensor has fourteen invariants. There is the Rii salar R .There are four invariants of the Weyl tensor Cijkl . There are three invariants of theEinstein urvature tensor Eijkl and six invariants of the ombined Weyl and Einsteinurvature tensors. In empty spaetimes, there are four invariants of Riemann tensorwhih are given by
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rs .These invariants have been alulated for the lassi�ations of Riemann ten-sor aording to Sharma and Husain [2℄ and Petrov [3℄. It has been found that
A1, A2, B1, and B2 are all equal to zero for ases III(a) and III(b) or Petrov typeIII. This has led to the following riterion for the existene of gravitational radiation:If Rabcd 6= 0 and A1 = A2 = B1 = B2 = 0, then the gravitational radiation ispresent; otherwise, there is no gravitational radiation.The validity of this assertion has been heked by onsidering the following metris(f., [4℄):(i) Takeno's plane wave solution

ds2 = −Adx2 − 2Ddxdy −B dy2 − dz2 + dt2;(ii) Einstein-Rosen metri
ds2 = e2γ−2ψ(dt2 − dr2) − r2e−2ψdφ2 − e2ψdz2,where γ and ψ are funtions of r and t only, ψ = 0 and γ = γ(r − t) ;(iii) The Peres metri
ds2 = −dx2
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4;(iv) The Shwarzhild exterior solution
ds2 = −
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dr2 − r2dθ2 − r2 sin2 θ dφ2 +
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1 − 2m
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)
dt2.It is found that for the metris (i)�(iii), all the four invariants of the Riemanntensor vanish and thus orrespond to the state of gravitational radiation. While for theShwarzhild exterior solution A1 6= 0, B1 6= 0, A2 = 0, B2 6= 0; Shwarzhild solution,being a Petrov type D solution, is known to be non-radiative.2. The eletri and magneti spaetimesIt is known that a physial �eld is always produed by a soure, whih is termed asits harge. Manifestation of �elds when harges are at rest is alled eletri and magnetiwhen they are in motion. This general feature is exempli�ed by the Maxwell's theoryof eletromagnetism from whih the terms of eletri and magneti are derived. This



A STUDY OF THE RIEMANN CURVATURE TENSOR. . . 89deomposition an be adapted in general relativity and the Weyl tensor an be deom-posed into eletri and magneti parts. Based on this deomposition, a lassi�ation ofspaetimes is given here whih is supported by a number of examples.An observer with time like 4-veloity vetor u is said [5℄ to measure the eletri andmagneti omponents, Eac and Hac respetively, of the Weyl tensor Cabcd by
Eac = Cabcd u

b ud, Hac =∗ Cabcd u
b ud, (4)where the dual is de�ned to be ∗Cabcd =
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2
ǫabef C

ef
cd . It is possible to hoose a nulltetrad in NP formalism suh that the invariants of urvature tensor an be expressedin terms of the eletri and magneti parts of the Weyl tensor. Eletri and magnetiWeyl tensors of types I and D have been onsidered by MIntosh et al. [6℄. For theremaining Petrov types, we haveTheorem 1. For type II, the Weyl tensor is purely eletri (magneti) if and onlyif ψ2 (or λ) is real (imaginary).Theorem 2. Types III and N Weyl tensors are neither purely eletri nor purelymagneti.It is seen [7℄ that plane-fronted gravitational waves and Robinson �Trautman typesIII and N metris are neither purely eletri nor purely magneti. While, the Robinson �Trautman type II metri, the Shwarzhild and the Reissner �Nordstrom solutions arepurely eletri. 3. Lanzos spin tensorIt is known that an eletromagneti �eld an be generated by a potential, the ques-tion then arises that whether it is possible to generate the gravitational �eld througha potential. The answer is a�rmative: this indeed an be done through the ovariantdi�erentiation of a tensor �eld Lijk [8℄. This tensor �eld is now known as Lanzospotential and the Weyl tensor Chijk is generated by Lijk through the equation [9, 10℄
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k i;p) ghj. (5)This equation is known as Weyl � Lanzos equation.For a gravitational �eld with perfet �uid soure, the basi ovariant variables are:the �uid salars θ (expansion), ρ̃ (energy density), p (pressure); the �uid spatial vetors

ui (4-aeleration), wi (vortiity); the spatial trae-free symmetri tensors σij (�uidshear), the eletri (Eij) and the magneti (Hij) parts of the Weyl tensor; the projetiontensor hij whih projets orthogonal to the �uid 4-veloity vetor ui . We have expressedthese quantities and the equations satis�ed by them in terms of the Newman-Penroseformalism and in the proess have obtained the Lanzos potential for perfet �uidspaetimes. In fat we have proved the following [11℄:Theorem 3. If in a given spaetime there is a �eld of observers ui that is shear-free,irrotational and expanson-free, then the Lanzos potential is given by
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1√
2
(li + nj) and the Lanzos salars Li(i = 0, 1, . . . , 7) in this ase are
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L◦, L7 = −L̄◦, L1 = L3 = L4 = L6 = 0.Theorem 4. If in a given spaetime there is a �eld of observers ui whih is geodeti,shear-free, expansion-free and the vortiity vetor is ovariantly onstant (i.e., ai = θ =

σij = 0, ωi;j = 0), then the Lanzos potential is given by
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ρ {2(mim̄j − m̄imj)uk + (mim̄k − m̄imk)uj − (mjm̄k − m̄jmk)ui}, (7)where ui =
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2
(li + ni) and the Lanzos salars Li(i = 0, 1, . . . , 7) are L1 = L6 =

1

9
ρ,

L◦ = L2 = L3 = L4 = L5 = L7 = 0.It may be noted here that the hypothesis of Theorem 4 are in fat the onditions ofthe G�odel solution and thus, through Eq. (7), a Lanzos potential for the G�odel solutionis obtained.The two-parameter family of solutions whih desribe the spaetime around blakholes is the Kerr family disovered by Roy Patrik Kerr in July 1963. The two parametersare the mass and angular momentum of the blak hole. Using GHP formalism (a tetradformalism), we have obtained Lanzos potential for Kerr spaetime as [11℄
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,whih shows that Lanzos potential of Kerr spaetime is related to the mass parameterof the Kerr blak hole and the Coulomb omponent of the gravitational �eld. Here A isa onstant. 4. Spae-matter tensorPetrov [12℄ introdued a fourth rank tensor whih satis�es all the algebrai propertiesof the Riemann urvature tensor and is more general than the Weyl onformal urvaturetensor. This tensor is de�ned as
Pabcd = Rabcd −Aabcd + σ(gac gbd − gad gbc), (8)where Aabcd =

λ

2
(gac Tbd + gbd Tac − gad Tbc − gbc Tad) and Tab is given by theEinstein's �eld equations Rab − 1

2
R gab = λ Tab . Here λ is a onstant and Tab is theenergy-momentum tensor. The tensor Pabcd is known as spae-matter tensor. The �rstpart of this tensor represents the urvature of the spae and the seond part representsthe distribution and motion of the matter. From the equations of Setion 1, we have
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(gac gbd − gad gbc), (9)whih an also be expressed as
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A STUDY OF THE RIEMANN CURVATURE TENSOR. . . 91The algebrai properties (inluding spinor equivalent) and the lassi�ation ofthe spae-matter tensor have been studied by Ahsan [13�15℄. The onept of matterollineation, de�ned in terms of the spae-matter tensor, has also been introdued by Ah-san [16℄, who obtained the neessary and su�ient onditions under whih a spaetime,inluding eletromagneti �elds, may admit suh ollineation. In this setion, the diver-gene of the spae-matter tensor has been expressed in terms of the energy-momentumand Rii tensors. Perfet-�uid spaetimes with divergene-free spae-matter tensorhave also been onsidered.The spae matter tensor an also be written as
P hbcd = Rhbcd +

1
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(δhc Tbd − δhd Tbc + gbd T

h
c − gbc T

h
d ) + σ(δhc gbd − δhd gbc) (11)so that the divergene of P hbcd is given by
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1

2
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h
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h
d;h) + σ,c gbd − σ,d gbc. (12)whih on using the ontrated Bianhi identities and T ab;b = 0 redues to

P hbcd;h =
1

2
(Tbc;d − Tbd;c) +

1

2
[(T + 2σ),c gbd − (T + 2σ),d gbc] . (13)We thus haveTheorem 5. If Tab is a Codazzi tensor and T = −2σ, then the spae-matter tensoris divergene-free.While in terms of Rii tensor, the divergene of the spae-matter tensor takes theform

P hbcd;h = Rbc;d −Rbd;c −
1

4
(R,c gbd −R,d gbc). (14)We thus haveTheorem 6. For Einstein spaes with σ = 0 , the divergene of spae-matter tensorvanishes.For a perfet-�uid distribution, the energy-momentum tensor is given by

Tab = (µ+ p)ua ub + p gab, (15)where µ is the energy density, p is the isotropi pressure and ua is the �uid four veloityvetor. Consider now the �uid spaetime with divergene-free spae-matter tensor andwe haveTheorem 7. If σ = −1

2
T and the �uid spaetime has divergene-free spae-mattertensor, then either (µ + p) = 0 (that is, the perfet �uid spaetime satis�es the vau-umlike equation of state) or the spaetime represents a Friedmann �Robertson �Walkerosmologial model with (µ− 3p) as onstant.For the proofs of these theorems and other related results, see [17℄.



92 Z. AHSAN�åçþìåÇ. Àõñàí. Èññëåäîâàíèå ðèìàíîâà òåíçîðà êðèâèçíû è êëàññè�èêàöèè Ïåòðîâà â îá-ùåé òåîðèè îòíîñèòåëüíîñòè.Íà îñíîâå èíâàðèàíòîâ ðèìàíîâà òåíçîðà êðèâèçíû ïðåäñòàâëåí è ïðîèëëþñòðèðî-âàí ðàçëè÷íûìè ïðèìåðàìè êðèòåðèé ñóùåñòâîâàíèÿ ãðàâèòàöèîííîãî èçëó÷åíèÿ. Äàíàêëàññè�èêàöèÿ ïðîñòðàíñòâ-âðåìåí èñõîäÿ èç ýëåêòðè÷åñêîé è ìàãíèòíîé ñîñòàâëÿþùèõòåíçîðà Âåéëÿ. �àññìîòðåíû íåêîòîðûå ïðèìåðû ïðîñòðàíñòâ-âðåìåí, ó êîòîðûõ òåí-çîð Âåéëÿ ñîäåðæèò òîëüêî ìàãíèòíóþ èëè òîëüêî ýëåêòðè÷åñêóþ ÷àñòü. Ïðîâåäåíî èñ-ñëåäîâàíèå ïîòåíöèàëà Ëàíöîøà ñ ïîìîùüþ ìåòîäà îáùèõ íàáëþäàòåëåé è òåòðàäíîãî�îðìàëèçìà, ïîëó÷åí ïîòåíöèàë Ëàíöîøà äëÿ ïðîñòðàíñòâ-âðåìåí èäåàëüíîé æèäêîñòè.Êðîìå òîãî, ïîëó÷åí ïîòåíöèàë Ëàíöîøà äëÿ êîñìîëîãè÷åñêîé ìîäåëè ��åäåëÿ è ÷åð-íîé äûðû Êåððà. �àññìîòðåíû òåíçîð ïðîñòðàíñòâà-ìàòåðèè, ââåäåííûé Ïåòðîâûì, èïðîñòðàíñòâà-âðåìåíà èäåàëüíîé æèäêîñòè ñ òåíçîðîì ïðîñòðàíñòâà-ìàòåðèè, íå ñîäåð-æàùèì äèâåðãåíòíîé ÷àñòè.Êëþ÷åâûå ñëîâà: òåíçîð Âåéëÿ, ïîòåíöèàë Ëàíöîøà, òåòðàäíûé �îðìàëèçì,ìîäåëü ��åäåëÿ, ÷åðíàÿ äûðà Êåððà.
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