
УДК 612

ЧАСТОТНОЕ КОДИРОВАНИЕ В СОМАТОСЕНСОРНОЙ КОРЕ
ГОЛВНОГО МОЗГА НОВОРОЖДЕННЫХ КРЫСЯТ

О.Б. Митрухина, Д.С. Сучков, Г.Ф. Сиддикова, Р.Н. Хазипов, М.Г. Минлебаев

Аннотация

Формирование сенсорных карт в коре головного мозга характеризуется наличием «критического» периода, во время которого развитие топографической организации таламокортикальных синапсов крайне чувствительно к сенсорной активности. Этот критический период характеризуется экспрессией уникальных оцилляторных паттернов электрической активности головного мозга, которые, как предполагается, участвуют в формировании высокоспецифичных синаптических связей между нейронами таламуса и коры. В соматосенсорной коре новорожденных крысят показано два таких паттерна, которые разделяются по доминирующей частоте оцилляции на гамма- (около 40–50 Гц) и альфа/бета-, или веретенообразные, оцилляции (7–30 Гц). В настоящей работе исследовались ответы, вызываемые в отдельной кортикальной колонке соматосенсорной коры новорожденных крысят (в представлении усов) стимуляцией топографических (основного уса) и нетопографических (соседних усовых входов) бета-осцилляций. Было показано, что стимуляция топографического входа вызывает гамма-осцилляцию, в то время как стимуляция нетопографического входа приводит к генерации оцилляторного ответа в альфа/бета-частотном диапазоне. Поскольку известно, что гамма-осцилляции приводят к потенциации синаптических контактов, а альфа/бета-осцилляции напротив вызывают депрессию синаптической передачи в таламокортикальных синапсах, делается предположение о том, что эти два оцилляторных паттерна являются основным инструментом для синаптической пластичности при формировании топографических сенсорных карт в коре головного мозга в течение критического периода развития.

Ключевые слова: сенсорная кора, развитие, электроэнцефалография, новорожденный, крыса, соматосенсорная система, нейрональные сети, оцилляции.

Summary

The development of the central nervous system is characterized by expression of the unique patterns of oscillatory electrical activity that are hypothesized to participate in the formation of specific synaptic connections between neurons during development. Two sensory-driven patterns have been studied in the somatosensory cortex of neonatal rats with characteristic oscillatory frequencies: early gamma oscillations (40–50 Hz) and alpha/beta, or spindle-burst, oscillations
(7–30 Hz). Here, we address the question of how these two patterns are activated in relation to the stimulation of the topographic and non-topographic sensory inputs in the neonatal rat barrel cortex. We have found that the stimulation of the topographic sensory input by a deflection of the principal whisker specifically triggers early gamma oscillations in the corresponding cortical barrel in somatosensory cortex, whereas the stimulation of multiple adjacent whiskers (all but principle mode of stimulation) evokes alpha/beta oscillations. Since gamma and alpha/beta oscillations induce long-term potentiation and depression at thalamocortical synapses, respectively, we hypothesize that these two sensory-driven patterns are instrumental in the activity-dependent formation of the topographic maps in sensory cortex during the critical period of thalamocortical development.

Key words: sensory cortex, development, electroencephalography, neonate, rat, somatosensory system, neuronal networks, oscillations.

Литература

Поступила в редакцию 30.04.12
Митрухина Ольга Борисовна – аспирант лаборатории нейробиологии Казанского (Приволжского) федерального университета и лаборатории ранней активности развивающегося мозга Средиземноморского института нейробиологии (INMED/INSERM U901), г. Марсель, Франция.
E-mail: mitrukhina@inmed.univ-mrs.fr

Сучков Дмитрий Сергеевич – аспирант лаборатории нейробиологии Казанского (Приволжского) федерального университета и лаборатории ранней активности развивающегося мозга Средиземноморского института нейробиологии (INMED/INSERM U901), г. Марсель, Франция.
E-mail: suchkov@inmed.univ-mrs.fr

Ситдикова Гузель Фаритовна – доктор биологических наук, профессор кафедры нормальной физиологии, лаборатории нейробиологии Казанского (Приволжского) федерального университета.
E-mail: guzel.sitdikova@ksu.ru

Хазипов Рустем Нариманович – доктор медицинских наук, научный директор Средиземноморского Института нейробиологии Академии медицинских наук Франции (INMED/INSERM U901), г. Марсель, Франция; ведущий научный сотрудник лаборатории нейробиологии Казанского (Приволжского) федерального университета.
E-mail: roustem.khazipov@inserm.fr

Минлебаев Марат Гусманович – кандидат медицинских наук, исследователь лаборатории ранней активности развивающегося мозга Средиземноморского института нейробиологии (INMED/INSERM U901), г. Марсель, Франция; докторант лаборатории нейробиологии Казанского (Приволжского) федерального университета.
E-mail: marat.minlebaev@inserm.fr