INTERNATIONAL SYMPOSIUM
Lunar Exploration and Space Technology Heritage
AUGUST 25-30, 2016
KAZAN, RUSSIA
Published by decision of the Council
Engelhardt Astronomical observatory

Draftsmans authors:
Nefedev Y.A., Dr. Sci. (Phys.–Math.), Prof.
Gusev A.V., PhD, Dr (Phys.–Math.),
Andreev A.O., master

This book is devoted to the development of modern planetary astronomy. The book examines the basic reports of the International Symposium “Lunar Exploration and Space Technology Heritage”. This book will be useful to all researchers in the field of the planetary astronomy. These reports are published in accordance with the Organizing committee's decision. The publishing group is not responsible for the author's mistakes.

This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities

© Group of authors, 2016
© Publishing house of Kazan University, 2016
SUMMARY

The International Forum “Lunar Exploration and Space Technology Heritage” gave a broad outlook of scientific areas: analytical, numerical and structure analysis of early and modern Moon and planets on micro-, meso- and large scales; space geodesy, micro-arcsecond astrometry, geophysical budget of lunar and planetary rotation, free and forced lunar librations, space topography; Lunar and Planetary ephemeris; asteroid and comets, NEO hazards; space physics, planetary science: physics, dynamics and chemistry of the Planets, Moon, moons; Lunar meteorites; gravitational and magnetic fields of the Planets, Moon, moons; lunar and planet dichotomies; microgravity and space life sciences; modern ground observations, space missions and future prospective.

Objective

The goal of the Symposium was to discuss state of art of the Moon studies and to advance UNESCO Thematic Initiative Astronomy and the World Heritage Including Technology Related to Space Exploration. It is intended to exchange scientific ideas on lunar exploration for years to come and to discuss approaches of using innovative technologies. Robust robotic missions are set in the roadmap towards human missions to the Moon and beyond, synergy of both programs underlies the future strategy with international partnership. Historically, solar system exploration began with space flights to the Moon enabling the great capabilities of humans to explore outer space with innovative technologies. UNESCO Thematic Initiative on astronomy heritage included space technology as an important segment of space endeavors. This project technological heritage is addressed as a logic extension of the UNESCO Initiative because it is intrinsically related with the most important breakthroughs in space science rooted in space technology. The purpose of the
Symposium is to consolidate international efforts towards recognition of this project importance and to exchange ideas of how to develop a consistent approach to the legacy of space facilities and human artifacts.

Outline

In framework of the session Lunar Exploration a broad scope of scientific areas were discussed including: Origin, structure, and evolution of the Moon; Science on the Moon and from the Moon; Lunar geophysics and geochemistry; Abundance of volatiles in polar regions; Lunar geodesy and topography; Gravitational, magnetic fields and dichotomies of the Moon; Lunar ephemeris and dynamics; Micro-arc second astrometry, free and forced lunar librations; Analytical and numerical methods and structural analysis; Space missions and future prospective; Synergy of robotic and piloted flights; Perspectives of the future lunar infrastructure deployment and resources utilization.

In framework of the session Space Technology Heritage the most remarkable achievements in the lunar space exploration will be discussed including the 55-anniversary of the first landing on the Moon surface and the first artificial satellite of the Moon launch. These and other historical milestones are rooted in the great progress of space science and technology which paved the road to the great breakthroughs in the human knowledge about space environment. Discussions will address provisional pathways of tangible/intangible objects of space technology heritage aiming to enhance the links between science, education and culture.
International Symposium “AstroKazan-2016”
“Lunar Exploration and Space Technology Heritage”
August 25 - 30, 2016, Kazan Federal University, Russia

Scientific Program

August 25, 2016
09:00–14:00 Registration [to the lobby of “Hayall” hotel (16, Universitetskaya Str, Kazan)]
11:00–13.00 Walking/bus tour of the downtown, visiting to the museums of Kazan University
13.00–14.00 Lunch

August 25, 2016, 14:00–16:00, Assembly Hall of Kazan Federal University, Main building, Kremlevskaya str., 18.
Welcome and Opening Address
Prof. Ilshat Gafurov – Rector of Kazan Federal University, Chairperson of LOC
Greetings from Ministry of Education and Science, the Academy of Science of Tatarstan Republic, scientific organizations and guests of the symposium.

Opening session 1. New Highlights Trends. Chair: Nail Sakhibullin
1. Leonov, Alexey. Space exploration 20m
2. Marov, Mikhail. Russian exploration of the Moon: Past and Present 30m
3. Ping, Jinsong. Promoting a low frequency radio observatory in the lunar space 20m
4. Sherstyukov, Oleg. AstroChallenge 15m
5. Nefedyev, Yuri. Engelhardt Astronomical Observatory (EAO) KFU – 115 yr.! 15m

Social events
16:00–16:30 Photography
16:30–18:00 Concert of classical and spiritual music
18:00–20:00 Welcome Reception

August 26, 2016, 09:30 – 11:00, Astronomical Department of Kazan
Federal University, Kremlevskaya str., 18.
Session 2. The Moon Chair: Mikhail Marov
6. Shevchenko, Vladislav. Fundamental and applied problems of Lunar
modern studies 30m
7. Hanada, Hideo. Evaluation of accuracy of a small telescope like PZT for
observation of lunar rotation and a new proposal for future missions 20m
8. Gudkova, Tamara. Cutoff frequency-momentum scaling law inferred
from the analysis of meteoroids impacts recorded by Apollo seismic
stations 20m
9. Andreev, Alexey. Center of space researches and technologies and
astronomical photographic plates library 20m

Coffee - Break, 11:00 – 11:30
August 26, 2016, 11:30 – 12:30, Astronomical Department of KFU
Session 3. The Moon Chair: Hideo Hanada
10. Tagirov, Murat. The study of the magnetic properties of the lunar soil
20m
11. Ping, Jinsong. Space Geodetic Study by Lunar Radio Ranging in CE-3
Mission 20m
12. Sinitsyn, Mikhail. Analysis of epithermal neutron flux from Bouguer
anomalies revealed by GRAIL 20m

Short Lunch, 12:30 – 13:00
August 26, 2016, 13:00 – 20:00
Session 4. **Space Technology Heritage.** Chairs: Mikhail Marov, Yuri Nefedyev

Visiting session of the Symposium on the Volga river boat to Sviyazhsk within the UNESCO Space Technology Heritage Mission

August 27, 2016, 09:30 – 11:00, Astronomical Department of KFU

Session 5. **Lunar Space Exploration** Chair: Jinsong Ping

13. Bagrov, Alexander. *Optical light beacons as instruments for developing selenodezy and Lunar Movement Theory*

20m

14. Hudec, Rene. *Space exploration with cube satellites & lobster eye space telescopes* 20m

15. Wang, MingYuan. *Exploring obvious lunar ionosphere based on the service module of circumlunar return and reentry spacecraft*

15m

16. Voropaev, Sergey. *Value of tidal effects on the early tectonics of Moon*

20m

17. Batov, Alexey. *Calculation of load Love numbers and static stresses for the interior structure model of Mars with an elastic mantle*

15m

Coffee - Break, 11:00 – 11:30

August 27, 2016, 11:30 – 12:30, Astronomical Department of KFU

Session 6. **Lunar Space Exploration** Chair: Rene Hudec

15m

19. Pugacheva, Svetlana. The Soviet *projects of space missions* to the Moon

15m
20. Rodionova, Zhanna. *First topographic plan of a region of “luna 9” place of site 15m*

21. Shpekin, Mikhail. *Visual 3D-study lunar regions with evidence of geological activity on the basis of the high resolution orbital images 15m*

Lunch, 12:30 – 14:00

August 27, 2016, 14:00 – 21:00

Session 7. Space Technology Heritage. Chairs: Mikhail Marov, Yuri Nefedyev

Visiting session of the Symposium to EAO within the UNESCO Space Technology Heritage Mission: Special Heritage-Memory Discussion, Raif’s Cloister, AstroPark, Planetarium of Kazan Federal University

August 28, 2016, 09:30 – 11:00, Astronomical Department of KFU

Session 8. Lunar Space Exploration Chair: Ming Yuan Wang

22. Hudec, Rene. *Weinek first photographic Moon atlas and Moon photographic plate collection 20m*

23. Meng, Zhiguo. *The microwave thermal emission features of Mare Orientale revealed by CELMS data 20m*

24. Zagidullin, Artur. *Numerical approach to the construction of physical libration of the Moon: the results of the second phase 15m*

25. Usanin, Vladimir. *The observations of meteors in the mini-megatortore: first results and prospects 15m*
26. Abdulmyanov, Tagir. The mechanism of fragmentation of proto-planetary disks in the early stages of their evolution

Coffee - Break, 11:00 – 11:30

August 28, 2016, 11:30 – 12:30, Astronomical Department of KFU

Session 9. Lunar Space Exploration Chair: Vladimir Shevchenko

27. Churkin, Konstantin. Electronic database of photovoltaic covering and its reduction

28. Sonin, Gennady. On the coastal bluffs of the ancient Mars ocean and testimony of a warmer climate in the past

29. Grishakina, Ekaterina. Comparison of global features of the Moon and Mars topography

Lunch, 12:30 – 14:00

August 28, 2016, 14:00 – 15:30, Astronomical Department of KFU

Session 10. Space Technology Heritage Chair: Mikhail Marov

31. Leyferov, Boris. Knowledge Management System - an integral part of the solution of problems of maintaining outer technological heritage

32. Efano, Vladimir. New and promising research unmanned spacecraft created by NPO S.A. Lavochkin

33. Lemeshevsky, Sergey. Study of the Moon automatic spacecraft: history and the near-term outlook
34. Ushakova, Alena. The management of the external heat flows simulator in thermal vacuum processing of the spacecraft
15m
35. Panin, Yuri. The use of heat pipes of variable conductivity for thermal control of spacecraft
15m
36. Epishin, Boris. The development ephemeris software for astrometric observations from the surface on the Moon
15m

Coffee - Break, 15:30 – 16:00

Poster sessions 11: August 26-28, 2016. Browse of posters will take place during of Coffee- Breaks. Personal "question - answer" communications will be August 28, 16:00-17:00

37. ABDULMYANOV, TAGIR. THE MIGRATION ORBITS OF DUST PARTICLES IN THE INNER REGIONS OF THE PROTO-PLANETARY RINGS: MECHANISM OF FORMATION OF THE PLANETS AND THEIR SATELLITES

38. ANOSHIN DMITRI., TAKHAUOV A., GUSEV A., MARTIAN/LUNAR METEORITES/ SAMPLES AND EARTH’S TEKTITES: GOALS, ACHIEVEMENTS, PROSPECTS.

39. FEOKTISTOVA, EKATERINA. THE POSSIBLE EXISTENCE OF DEPOSITS OF VOLATILE COMPOUNDS IN THE NSR S5 AREA IN THE AREA OF SCOTT CRATER ON THE MOON

40. GUSEV, ALEXANDER. SPIN-ORBIT EVOLUTION AND PHYSICAL LIBRATIONS OF PHOBOS: MODERN STATUS AND PERSPECTIVES FOR EXOMARS, PHODEX AND PHOBOS-GRUNT-II MISSIONS.

41. GUSEV A., HANADA H, MENG ZH, PING J., TIDAL-LIBRATIONAL DISSIPATIVE DYNAMICS OF THE MULTI-LAYERS MOON.
42. NOVLYANSKAYA, INNA. EVALUATION OF THE ACCURACY OF THE MODERN PLANETARY GRAVITY FIELD MODELS

43. ZHARKOV V. N. AND GUDKOVA T.V. ANALYSIS OF GRAVITY AND TOPOGRAPHY DATA FOR MARS

August 29, 2016, 10:00 – 12:00, Astronomical Department of KFU

Closing session 12: General discussion and acceptance of resolutions.

Chairs: Mikhail Marov & Yuri Nefediyev

Lunch, 12:00 – 14:00

August 29, 2016, 14:00 – 16:00, Kazan Federal University

Visit to scientific laboratories and museums of Physics and Geology Institutes.

August 30, 2016. Departure from Kazan.
ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ЗАДАЧИ СОВРЕМЕННЫХ ИССЛЕДОВАНИЙ ЛУНЫ

В.В. ШЕВЧЕНКО
(ГАИШ МГУ)

За прошедшие полвека изучения естественного спутника Земли космическими методами получен огромный объем новой информации, что позволяет постоянно обновлять перечень фундаментальных и прикладных задач современных исследований Луны.

1. Внутреннее строение Луны

Исполнилось 50 лет со времени выхода на окололунную орбиту первого в мире искусственного спутника Луны – автоматической лунной станции (АЛС) «Луна – 10». Активное существование аппарата на орбите продолжалось с 3 апреля по 29 мая 1966 г.

Выдающийся отечественный специалист в области космической баллистики, навигации космических аппаратов и планетологии Э.Л. Аким по результатам траекторных измерений АЛС «Луна – 10» впервые определил основные параметры гравитационного поля Луны. Эта работа, в которой был вычислен параметр «нецентральности» поля тяготения естественного спутника Земли, определяющего степень «грушевидности» фигуры, положила начало изучению внутреннего распределения масс в теле Луны (Аким, 1966).
На рис. 1 приведена трехмерная схема обобщенного вида гравитационного поля Луны, построенная по этим данным. Радиальные отклонения от окружности увеличены в 1000 раз. Стрелками 1 и 2 указаны положительные аномалии. Стрелкой 3 указана отрицательная аномалия в южной части обратного полушария Луны. Связь этих гравитационных аномалий с конкретными образованиями лунного рельефа была установлена в процессе последующих исследований. Аномалия 1 вскоре была расшифрована как концентрация масс в Море Дождей и Море Ясности. Соответствующие образования внутреннего распределения масс были названы «масконами». Аномалии 2 и 3 получили свое окончательное объяснение уже в последнее время.

На рис. 2 показана детальная карта гравитационного поля Луны, построенная по результатам измерений, проведенных в процессе осуществления миссии «GRAIL» (НАСА, 2012г.). Двигаясь по одинаковым окололунным орбитам, два лунных спутника измеряли с высокой точностью изменения расстояний между ними, вызываемые даже очень
незначительными гравитационными аномалиями. Согласно заявлению научного руководителя проекта М. Зубер точность измерений составляла десятые доли микрона, что позволило выявить многочисленные мелкие гравитационные аномалии (Zuber et al., 2013).

Рис. 2

Кроме значений гравитационного поля по результатам миссии «GRAIL» удалось уточнить локальные изменения мощности лунной коры. В области, которая соответствует положительной аномалии 2 на рис. 1, толщина коры оказалась наибольшей. В этом же районе вблизи восточного вала кратера Энгельгардт высокоточные альтиметрические измерения зафиксировали наиболее возвышенное место на Луне. Относительно средней поверхности с радиусом 1738 км высотная отметка здесь составила 10,785 км.

Отрицательная аномалия 3 в южной части обратной стороны, отмеченная на рис. 1, как оказалось, совпадает с гигантской кольцевой структурой Южный полюс – Эйткен. На рис. 2 эта область низких значений гравитационного поля расположена южнее широты –30° между долготами 180° и –120°.
Таким образом, пионерские измерения распределения масс внутри лунного шара, проведенные с использованием первого искусственного спутника Луны, получили блестящее подтверждение на современном уровне космической техники и методологии. Следующим шагом в этом направлении следует рассматривать гравиметрические измерения непосредственно на лунной поверхности.

2. Происхождение древних депрессий на Луне

В недавней работе Joy K.H. et al. (2012) была подробно рассмотрена история формирования ударных форм лунного рельефа различных размеров. Согласно этому анализу в последние 3,7 млрд. лет в качестве кратерообразующих ударников выступали астероидные фрагменты, по составу относящиеся к примитивным хондритам. Два периода в лунной истории: от 3,7 до 4,0 млрд. лет и от 4,0 до 4,4 млрд. лет авторы выделили как неопределенные в отношении типа ударников и на своей хронологической схеме отметили знаками вопроса.

Стратиграфические исследования показали, что структура Южный полюс – Эйткен возникла в Доимбрийский период около 4,2 – 4,3 млрд. лет назад (Wieczorek et al., 2012).

Таким образом, возвращаясь к исследованию хронологии лунных ударных событий (Joy K.H. et al., 2012), можно уточнить природу тел-ударников в самые ранние периоды истории Луны (рис. 3).
В период от 4,0 до 4,4 млрд. лет гигантские структуры типа бассейна Южный полюс – Эйткен (SPA) формировались в результате столкновения Луны с кометами типа кометы Хейла – Боппа. Период от 3,7 до 4,0 млрд. лет, по-видимому, был характерен столкновениями с протопланетными объектами и формированием структур типа Моря Дождей (MI). Прямые исследования внутри этих структур позволят уточнить их природу.

3. Особенности полярных областей Луны

На космическом аппарате «ЛРО», запущенным НАСА в 2009 г., работает прибор «ЛЕНД» (Lunar Exploration Neutron Detector), измеряющий потоки нейтронов от лунной поверхности. Интенсивность потока надтепловых нейтронов в обратной пропорции зависит от содержания водорода в поверхностном слое лунного грунта. Эффективная глубина зондированного слоя составляет около 2-х метров. По результатам этих измерений делается оценка содержания в грунте низкотемпературных отложений воды. Прибор создан в ИКИ РАН (Mitrofanov et al., 2010).

Используя результаты измерений, выполненных на начальном этапе прибором «ЛЕНД», был проведен комплексный эксперимент. В процессе этого эксперимента блок ракеты – носителя «Центавр» был направлен для падения в область кратера Кабео, которая согласно данным прибора «ЛЕНД» имела поверхностный слой, наиболее насыщенный отложениями водяного льда. На рис. 4 приведена карта, поясняющая селенографические особенности комплексного эксперимента. В нижней части рисунка показаны данные о научных организациях, участвовавших в проведении данного эксперимента.

Спектральный анализ возникшего в результате удара облака показал, что в нем содержится от 140 до 300 кг водяного пара (Colaprete et al., 2010). Согласно оценкам, выполненным в ГАИШ МГУ по данным, основанным на результатах «ЛРО/ЛОЛА», общая площадь холодных
ловушек в кратере Кабео составляет ~ 530 кв. км. Следовательно, общая масса водяного льда в грунте холодных ловушек кратера Кабео составляет ~ 18х10³ т. Таким образом, суммарная величина ледяных отложений в южной полярной области Луны может достигать от 100 тыс. т до 200 тыс. т.

Рис. 4

В дополнение к признакам воды, комплексный анализ облака выбросов показал следы и других химических соединений, характерных, прежде всего, для состава кометного вещества: 570 кг углеродного газа, 140 кг молекулярного водорода, 160 кг кальция, 120 кг ртути, 40 кг магния. По мнению Colaprete et al. (2010) эти величины характерны для вещества межзвездной среды или протопланетных дисков. Выведенные
соотношения H₂S/H₂O, NH₃/H₂O, SO₂/H₂O и CO/H₂O более близко отражают распространенность таких молекул в горячих ядрах Галактик.

К сказанному следует добавить, что согласно недавнему исследованию Levison et al. (2010) более 90% комет, находящихся в Облаке Оорта, первоначально зародились в протопланетных дисках других звезд. Таким образом, с большой долей вероятности можно заключить, что низкотемпературные отложения в полярных холодных ловушках Луны, образованные падением комет, могут содержать вещество других звезд!

Обнаружение и последующий анализ низкотемпературных отложений в полярных областях Луны позволили указать на еще одно принципиально важное событие в истории Луны. В новом исследовании по анализу распространения полярных льдов Луны Siegler et al. (2016) показали, что за последние 3 млрд. лет ось вращения Луны изменила свою ориентацию в пространстве примерно на 6°. Соответственно этому положение полюсов на поверхности лунного шара сместилось. На рис. 5 приводится изображение южной полярной области Луны, на котором показано современное положение полюса вблизи кратера Шеклтон и его предположительное положение в древности, совпадающее с кратером Кабео.

Рис. 5
Авторы исследования полагают, что причиной такого изменения ориентации оси могло стать образование покрытия базальтовыми лавами депрессии Океана Бурь, связанное с глобальным перемещением масс в мантии Луны. Возраст образования обширной формации Океана Бурь между 4,0 и 3,0 млрд. лет назад подтверждается и другими исследователями (Hiesinger, H. et al., 2003; Andrews-Hanna J.C. et al., 2014).

По-видимому, более точные данные о современном положении и движении лунных полюсов можно будет получить путем астрометрических наблюдений непосредственно с лунной поверхности. В этом отношении заслуживают внимания разработки лунного полярного телескопа и методики наблюдений с поверхности Луны, выполняемые в Астрономической обсерватории им. В.П. Энгельгардта (Петрова и др., 2013).

4. Перспективы пилотируемых миссий для исследования и освоения Луны

Основные задачи исследования и последующего освоения естественного спутника Земли были определены в Федеральной космической программе на 2016 – 2025 гг., утвержденной правительством РФ 23 марта 2016 г. Первый этап лунных исследований включает осуществление ряда автоматических миссий по посадке на лунную поверхность, доставки многоцелевого лунохода и вывода на окололунную орбиту спутников нового поколения.

Такое многоплановое возвращение на Луну предполагает подготовку и реализацию на заключительном этапе принятой программы пилотируемых полетов. Ведущее ракетно-космическое предприятие страны ОАО РКК «Энергия» приступило к разработке нового пилотируемого корабля, предназначенного для осуществления лунных экспедиций.
На рис. 6 показан эскиз общего вида корабля, получившего название «Федерация» (Афанасьев, 2016).

Часто задаются вопросы о целесообразности пилотируемых полетов на Луну, более сложных и более затратных, чем автоматические, роботизированные миссии. Прежде всего следует отметить, что основное преимущество пилотируемой миссии заключается в креативности поведения членов экипажа пилотируемых кораблей на Луне в различных ситуациях. Можно привести несколько примеров из практики экспедиций, осуществленных по программе «Аполлон».

В качестве примера можно указать на операцию по демонтажу и доставке на Землю телекамеры автоматического аппарата «Сервейор – 3» экипажем КК «Аполлон – 12». КА «Сервейор – 3» совершил посадку в районе кратера Коперник в апреле 1967 г. В результате аварийной задержки выключения посадочных двигателей аппарат два раза подпрыгнул на несколько метров, прежде чем окончательно утвердился

21
на склоне небольшого кратера. Результаты воздействия поднятых облаков пыли и последующего длительного пребывание в лунной среде электронного оборудования и оптических деталей телевизионной камеры представляли на тот период особый интерес. Было решено демонтировать избранную часть оборудования и доставить на Землю для детального обследования. Выполнение подобной операции автоматическим аппаратом, очевидно, не представлялось возможным. Задачу решили члены экипажа КК «Аполлон – 12». Посадочный модуль ноябре 1969 г. совершил посадку на расстоянии около 200 м от КА «Сервейор – 3». Члены экипажа Ч. Конрад и А. Бин отыскали автоматическую станцию на лунной поверхности, что тогда представляло собой особую задачу целенаправленного ориентирования на лунной поверхности, демонтировали около 10 кг оборудования и доставили его на Землю.

Экипажу КК «Аполлон – 15» в процессе выхода на лунную поверхность неожиданно удалось обнаружить фрагмент чистого анортозита. Исследование этого образца в земной лаборатории показало, что его возраст достигает 4,1 ± 0,1 млрд. лет. Этот наиболее древний из всех найденных образцов фрагмент лунного вещества впоследствии стал именоваться как «Камень бытия».

Стоит отметить также неожиданное поведение командира лунного модуля КК «Аполлон – 16» Дж. Янга. В момент традиционного приветствия после установки флага в месте посадки Дж. Янг подпрыгнул «с места», демонстрируя уникальность лунных условий, характерных малой силой тяжести. В скафандре с автономным оборудованием жизнеобеспечения астронавт имеет вес на Земле около 170 кг (рис. 7).

В архиве автора этой статьи сохранился снимок рядом с Дж. Янгом. Оказалось, что мы с ним одинакового роста – 1,76 м. Используя эту величину можно примерно оценить высоту прыжка астронавта на Луне. Несмотря на значительную общую массу собственного веса, скафандра и
оборудования жизнеобеспечения Дж. Янгу удалось без разбега «с места» подпрыгнуть почти на метр, показав всем, каковы условия в лунном мире малой силы тяжести!

Рис. 7 (фото НАСА и автора)

Следует упомянуть еще один пример креативного поведения человека в лунных условиях. Член экипажа КК «Аполлон – 17», первый ученый на Луне (и, к сожалению, пока последний) геолог Х. Шмидт обнаружил так называемый «оранжевый грунт». До этого ни автоматам, ни участникам других экспедиций не удалось выявить на лунной поверхности такой необычно окрашенный реголит. Анализ этих образцов на Земле показал, что благодаря находке Х. Шмидта был открыт поздний лунный вулканизм, относящийся к периоду около 3,7 млрд. лет назад.

Учитывая, что в перспективе ближайших десятилетий проблема детальной разведки и утилизации лунных природных ресурсов станет
одной из наиболее актуальных задач освоения ближнего космоса, пилотируемые лунные миссии приобретут существенное значение для дальнейшего развития космических исследований.

5. Утилизация лунных природных ресурсов

Проблема обнаружения, оценки и последующего использования лунных природных ресурсов в настоящее время переходит из области перспективных планов отдаленного будущего в разряд непосредственных задач текущих исследований.

Комплекс бортовой аппаратуры спутника «ЛРО» (Lunar Reconnaissance Orbiter), выведенного на орбиту в 2009 г., предназначен, в том числе, и для выявления мест, имеющих различные запасы природных ресурсов. Предполагается, что на следующем этапе лунных исследований эти районы могут использоваться в качестве участков более детального анализа с помощью автоматических аппаратов или пилотируемых экспедиций (http://lunar.gsfc.nasa.gov). В качестве глобального обзора лунной поверхности в этом направлении следует упомянуть данные о распространении титана в поверхностном реголите. При этом следует заметить, что содержание титана в местных лунных породах оказалось выше его содержание в земных рудах, используемых для добычи этого металла на Земле. Если на Земле титановые руды содержат до 1% металла, то в отдельных районах лунных морей по данным «ЛРО» содержание титана в ильменитовых породах может достигать более 10% по весу (http://spaceref.com/news; http://lroc.sese.asu.edu).

В последнее время все больше привлекают внимание содержащиеся в поверхностных породах Луны платиноиды и редкоземельные металлы. Этот в основном коммерческий интерес вызывается следующими обстоятельствами.

В 2015 г. аналитики американского финансового конгломерата GoldmanSachs опубликовали прогноз, согласно которому разведанных
запасов золота, алмазов и цинка на Земле осталось на 20 лет добычи, а резервы платины, меди и никеля иссякнут через 40 лет. Примерно такие же сроки относятся и к редкоземельным металлам. Поскольку эти группы ресурсов непосредственно определяют интенсивность развития высоких технологий в области электроники, связи, оборонной промышленности и др., очевидна их особая значимость.

Несколько лет назад предполагалось, что стратегическим выходом из создающейся ситуации может оказаться разработка сближающихся с Землей астероидов. В самом деле, относительно небольшой металлический астероид размером 1,5 км содержит различные редкие металлы стоимостью 20 трлн. долларов. Однако, понятная сложность поимки, транспортировки на рабочую орбиту и последующей утилизации вещества такого тела, делает подобный способ добычи астероидных ресурсов нерациональным.

В последнее время появились разработки, согласно которым значительная часть астероидов, падающих на лунную поверхность, не испаряется в результате высокотемпературных ударных процессов. В этом случае механически разрушенный астероид остается внутри образованного им кратера. Таким образом, даже если при падении астероида на поверхность Луны внутри ударного кратера сохраняется лишь 1% материала удара, то и тогда его доставка на Землю может быть экономически выгодной.

Результатом подобного изменения стратегических планов стало то, что власти США 3 августа 2016 г. впервые в истории разрешили частной компании при поддержке НАСА совершить полет на Луну. Компания «Moon Express Inc.» планирует доставить первый космический аппарат на поверхность Луны уже в 2017 г., а через некоторое время начать пробную добычу на спутнике Земли природных ресурсов.

На рис. 8 показан участок обнажения с «оранжевым» грунтом, упоминавшимся выше (A), а также частицы этого грунта, исследованные в лаборатории (B). Анализ «оранжевых» частиц показал высокое содержание титана в их химическом составе (данные экспедиции «Аполлон – 17»). Основатели компании утверждают, что уже через 15 лет Луна станет важной частью экономики Земли.

Литература

Афанасьев И. Новый корабль получил имя // Новости космонавтики, 2016, № 3.

WEINEK FIRST PHOTOGRAPHIC MOON ATLAS AND MOON PHOTOGRAPHIC PLATE COLLECTION

R. HUDEC (1,2), C. POLASEK (2)

(1) Czech Technical University in Prague, FEL, Technicka 2, 160 00 Praha 6, Czech Republic (hudecren@fel.cvut.cz)

(2) Astronomical Institute AV CR, CZ-251 65 Ondrejov, Czech Republic

Introduction

In this contribution we describe the origin as well as current status of the historical Weinek Moon's photographic glass plate collection, captured with at that time the biggest Lick refractor of the World. This was based on agreement with Eduard Holden, director of Lick Observatory at Mt. Hamilton in 1890. Ladislaus Weinek has published prints of these plates, finally as the first photographic atlas of the Moon, based quite on really photographic nature of Moon research, enabled by mastership of Weinek to draw the tiniest details caught within those already called as "dry emulsions". Part of these Weinek plates are located at the Observatory in Ondrejov.

Weinek historical Moon photographic collection.

Prof. Weinek (former Director of Prague Observatory, 1883-1913) historical photographic archive of Moon images is located at the Ondrejov Observatory. It consists of 8 boxes with photographic plates, both originals and copies, taken nearly 130 years ago at the Lick Observatory in the USA.

Prof. Ladislaus Weinek was not observing with the Lick telescope himself, but rather received a set of positive photographic contact prints on glass from negatives taken in the late 1880s and early 1890s with the 36-inch refractor and
sent to him by then-Lick director E. S. Holden. Weinek, feeling that the plates could yield great detail on careful study, made painstakingly hand-drawn enlargements from close examination of the positives. These drawings then formed the basis for his "Photographischer Mond-Atlas, vornehmlich auf Grund von focalen Negativen der Lick Sternwarte . . ." and are now stored, together with many notes and remarks, at Historical archive of Academy of Sciences in Prague.

Weinek recorded also the 1st meteor photograph in the world in 1885, but we were unable to locate this negative so far.

Fig. 1 Historical Moon photographs (on glass plates) by Prof. Weinek at Astronomical Institute in Ondrejov.

At the Ondrejov observatory, there are ten black boxes of different cubature dimensions, signed by name Prof. Ladislaus Weinek either dated by ending years of XIX. century, or without any mark, missing as being lost, but evidently of such an origin. Their physical state was investigated by great detail recently, some plates were found affected by golden disease and some other degradation as well.

It is time to describe and investigate the whole collection by modern advanced methods and techniques. It remains to note, that it will show some level of meaning about chaotically mélange of notes written either in English (of
observer or clerk of Lick Observatory Postal Department) or in German notes (mainly done by L. Weinek personally and there were found a pairs of French ones as well with time stamps with names of months, Fevrier, Mars etc., i. e. on Paris Observatory. Very often there were used international abbreviations including noble words from time 130 years ago: The resulting photographic Moon atlas is available in the Library of the Ondrejov Observatory as well. In addition to that, numerous archival boxes are stored at Historical archive of Academy of Sciences of the Czech Republic in Prague, with all the Weineks historical Moon drawings etc.

Fig. 2 Moon surface examples from the Weineks Photographic Atlas of the Moon (Prague, 1897)

Fig. 3 Astronomical photographic plate collection at the Lick Observatory on Mt. Hamilton, USA. The collection includes fraction of historical Moon images as well.
We have visited and investigated numerous (nearly 50) worlds photographic astronomical archives with glass plates (and in smaller extend plastic negatives), and have found that archives with photographic Moon images are very rare as most of collections focus on stars, Sun, and planets. We note that major photographic plate collection with Moon images is located at the Engelhardt astronomical observatory (Nefedyev et al., 2016).

Fig. 4 The photographic Atlas of the Moon by L. Weinek, library of the Ondrejov Observatory

Conclusions
The historical Weinek Moon photographic archive represents collection of large historical value, worth detailed study by modern methods.

Acknowledgments
We acknowledge partial support (long term analyses of X ray sources with photographic records) by GA CR grant 13-33324S.

References

Introduction
The miniature satellites are recently in development at many institutes and universities, mostly with a participation of students (Schilling, 2006). The fast development of the related techniques and technologies enables to consider small scientific payloads for these satellites. Below we give a small summary of pico (cube) and nanosatellites.

The CubeSat standard size is 1 liter volume, i.e. 10x10x10 cm, and typical weight is 1.3 kg. Multiple modules are possible, i.e. 3U = 3 modules/units, i.e. 10x10x30 cm, typically up to 12U. The typical masses are as follows: femtosatellite – 10 to 100 g, picosatellite – 0.1 to 1 kg, nanosatellite – 1 to 10 kg, microsatellite – 10 to 100 kg. Recent technological progress allows to consider a use in various scientific applications including astrophysics.

Scientific payloads for pico and nanosatellite
In this paper, we focus on application of pico and cubesatellites in high-energy astronomy and astrophysics. Motivation for application of picosatellites in high-energy astrophysics is that the recent situation in experimental satellite high-energy astrophysics is not very promising due to funding constraints etc. Hence, minisatellites may provide valuable results.
However, there are the following strict requirements for the scientific payload for picosatellites. It must fit a small volume, typically 30x10x10 cm or less (3U, i.e. 3 cubesat modules). It must be low weight, less than 1 kg, with low power consumption of about 10 Watts or less. Clearly, minisats are suitable for technological tests: TRW increase, flight demonstration, etc. But nowadays we can propose reasonable science as well, as shown on the example of miniature Lobster Eye (LE) X-ray monitor onboard the VZLUSAT minisatellite.

Miniature X-ray/telescope – monitor

The Lobster Eye (LE) X-ray optics was originally proposed by Schmidt (1975) and Angel (1979). Since then, numerous test specimens of Lobster Eye telescopes were designed and tested (e.g. Inneman et al. 1999; Hudec et al. 2000, 2003, 2004; Tichý et al. 2009, 2011). The Lobster-Eye (LE) X-ray telescope can be miniaturized for an application in picosatellites. The LE telescopes are novel wide field X-ray telescopes with the field of view (FOV) of typically 100 sq. deg. A classical X-ray optics of Wolter type has the FOV of only 1 deg or less. The LE optics are based on a real analogy with the lobster eyes.

![Fig. 1 Lobster Eye X Ray Optics modules (left) and the suggested arrangements of multiple LE modules in order to obtain larger field of view (FOV).](image-url)
The first miniature 1 dimensional (1D) LE X-ray telescope is now ready for launch onboard the Czech VZLUSAT cube satellite mission (Pina et al., 2015). There is a Medipix pixel detector in the focal plane (Fig. 1). The working energy range, due to use of 1D LE optics, is 3 to 30 keV.

Fig.2 Czech 2U nanosatellite VZLUSAT with miniature X-ray telescope onboard. In the orbit, the satellite will be extended to 3U, using deployable structure.

Fig. 3 The 1D LE X-ray Optics module for the VZLUSAT cubesatellite.

Wide field X-ray monitors of Lobster Eye type were demonstrated to play an important role.
in modern astrophysics (e.g. Hudec et al. 2007; Švéda et al. 2004). The most important scientific cases are briefly summarized below. (1) A long-term (months) measurement of the light curves of bright persistent X-ray binaries in the direction toward the center of the Galaxy in the soft X-ray band, and (2) Detection and measurement of the light curves of bright transient events of X-ray binaries in the direction toward the center of the Galaxy in the soft X-ray band.

Acknowledgments
We acknowledge support by GA CR grant 13-33324S.

References
EXPLORING OBVIOUS LUNAR IONOSPHERE BASED ON THE SERVICE MODULE OF CIRCUMLUNAR RETURN AND REENTRY SPACECRAFT

WANG MingYuan1,3*, HAN SongTao1,2, PING JinSong1, TANG GeShi2, ZHANG Qiang2

1 Key Laboratory of Lunar and deep space exploration research, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;
2 Science and Technology on Aerospace Flight Dynamics Laboratory, Beijing Aerospace Control Center, Beijing 100094, China;
3 Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;

The existence of lunar ionosphere has been under debate for a long time. In Apollo 14 mission, the electron density detected by the charged particle lunar environment experiment (CPLEE) was 10^4 el/cm3 at several hundred meters high during lunar day time. In Luna-19/22 mission, the electron density profiles were detect and the peak densities were about 10^3 el/cm3. In the last decade, European mission SMART-1 and Japanese mission SELENE also performed radio occultation experiment for lunar ionosphere. The results of these missions don’t well-matched. In order to explore the lunar ionosphere, a very low frequency radio astronomical payload has been suggested to be sent to the surface of lunar far-side by the Chinese Chang’E-4 lunar lander mission in 2019. The payload will record the Type II solar burst, which may cover the frequency of electro-magnetic wave as low as several dozen kilo-Herz. The possible lunar ionosphere above the payload with certain electron density may truncate or block the solar burst signal as corresponding plasma frequency. To estimate the possible truncate frequencies for these observations by the new kind of payload, and to determine the lunar ionospheric distribution, an lunar
radio occultation experiment with the service module of Chinese circumlunar return and reentry spacecraft has been performing. The circumlunar return and reentry spacecraft is a Chinese precursor mission for the Chinese lunar sample return mission. It was launched on 23 October 2014. After the return and reentry experiments, the service module went back into a Lunar Orbit on 11 January 2015 to image the target landing zone for the Chinese lunar sample return mission which has not yet been disclosed. During this period, the radio occultation experiments have been performed to detect the lunar ionosphere. The service module provides a stable and reliable frequency source, whose short-term stability is \(n \times 10^{-9} \), for both X-band and S-band signal. The signals transmitted from the spacecraft in S and X band passed through lunar ionosphere, interplanetary plasma, Earth ionosphere and atmosphere, finally received by the ground tracking stations. According to the coherent ratio of the S/X signal, we convert the phase information of S-band signal to the frequency of X-band signal and calculate the difference of these two signal. Then, the extrapolation algorithm was used here to deduct the interference error of the earth ionosphere and the interplanetary plasma. Based on the above work, the electron column concentrations of lunar ionosphere was explored preliminary. The maximums of electron column concentrations are between \(0.4 \sim 0.5 \times 10^{16} \) el/m\(^2\), are two times of the maximum result from Luna 19/22, are 1~2 orders higher than the SELENE result, but well-matched with the result from CPLEE. These results show that the lunar ionosphere is clearly exist and much stronger than we expected. The result here gives a positive support and some dynamical constrains for the scientific objective of the very low frequency radio astronomical payload onboard the Chang’E-4 lander mission. But it also raises a new question that the characteristics and formation mechanism of a stronger lunar ionosphere is remain unknown. More observations will be performed for further scientific targets.
THE MECHANISM OF FRAGMENTATION OF PROTO-PLANETARY DISKS IN THE EARLY STAGES OF THEIR EVOLUTION

T. ABDULMYANOV

Kazan State Power Engineering University, Kazan, Russia
(abdulmyanov.tagir@yandex.ru / Fax: 007-843-519-43-73)

Abstract

One of the possible simplifications of the hydrodynamic equations is considered. As a result of the simplification has obtained the wave disturbances model of the surface density of proto-planetary disks at the early stages of their evolution. The developed model is used to analyze the problem of proto-planetary disks fragmentation at the early stages of evolution.

Introduction. The main method of investigation of the problem of formation and evolution of the proto-planetary disk is a numerical method of integration of the hydrodynamic and magneto-hydrodynamic equations. The most important advantage of the numerical methods is their versatility and the ability to account all the mechanisms that influence on the formation of the proto-planetary disk. However, the rapid accumulation of computation errors makes this method unusable in the case of integration into large periods of time. In such cases, approximate methods are used. The approximate methods of integration get exact solutions, but the approximate equations of hydrodynamics. In this paper we consider the fundamental equations of hydrodynamics and simplification for subsequent analytical solutions. The analytical solution obtained is used to discuss the problem of fragmentation of the proto-planetary disks.

The hydrodynamic equations and their simplification. Compression of proto-star cloud is usually accompanied by the formation of shock waves in the proto-planetary disk center. Such disk disturbances will disrupt the implementation of the conditions of gravitational instability on the disk surface. Assume that the radius and the average density of the proto-star cloud at time t were respectively R and ρ_0. Then the potential at the point with coordinates $(x,$
y, z) in the coordinate system with the origin at the center of the cloud will be equal to
$$U(x, y, z) = G M (3R^2 - r^2)/(2R^3), \quad 0 < r < R, \quad r^2 = x^2 + y^2 + z^2.$$ In this case, the potential U is a solution of the Poisson equation $\Delta U = -4\pi G \rho(x, y, z)$, where $\rho(x, y, z)$ is a continuous, differentiable function. Beyond the clouds ($r > R$) the potential U will be equal to $U(x, y, z) = GM/r$ and will be a solution of Laplace equation $\Delta U = 0$. Let us consider proto-planetary disk with a radius R_0 much larger than the thickness of the disk. We choose a rectangular coordinate system (x, y, z) with origin at the center of the disk so that the plane (x, y) is passed through the central plane of the disk ($z = 0$). Suppose that the plane (x, y) and proto-planetary disk rotate synchronously with the same constant speed and in the same direction. The equations of hydrodynamics considered as the initial equations of motion of gas and dust particles of the proto-planetary disk:

$$\frac{\partial \rho}{\partial t} + \rho \cdot \text{div}(\vec{V}) + \vec{V} \cdot \text{grad}(\rho) = 0, \quad \frac{\partial \vec{V}}{\partial t} + (\vec{V} \cdot \nabla) \vec{V} = \vec{F} - \frac{1}{\rho} \text{grad}(P),$$

where V is unit mass velocity, ρ – the density of disk, P – pressure, \vec{F} – the vector of gravitational attraction. In the undisturbed state proto-planetary disk will have a constant surface density ρ_0 which corresponds to the following approximation: $\vec{F} \approx (1/\rho) \cdot \text{grad}(P)$. For the motion near the equilibrium position instead of Eq. (1) will have the following simplified equations:

$$\frac{\partial \rho}{\partial t} + \rho \text{div}(\vec{V}) = 0, \quad \frac{\partial \vec{V}}{\partial t} = \vec{F} - \frac{1}{\rho} \text{grad}(P).$$

Any perturbation of this equilibrium state will lead to corresponding changes in the surface density $\rho(x, y, z)$. In order to determine these disturbances and the corresponding change in the density ρ, we introduce the function $s(x, y, z) = u(x, y, z) + s_{pl}(x, y)$, which satisfies the following equation: $\rho = \rho_0 [1 + s(x, y, z)]$. Surface disturbances can have both a flat and orthogonal component. The flat component $s_{pl}(x, y)$ was considered by [1]. Therefore, we will consider only the orthogonal component $u(x, y, z)$. Then $u \cdot \text{div}(\vec{V}) = O(u^2)$ and instead of Eq. (2) we obtain the following equation:
\[
\frac{\partial u}{\partial t} = -\text{div}(\vec{V}) + O(u^2), \quad |u| < 1. \quad (3)
\]

For a disk with the elastic coefficient \(c^2 \) is just the following equality: \(\text{grad}(P) = c^2 \rho_0 \text{grad}(u) \). Substituting this expression for the pressure gradient in the Eq. (2), for the same approach we obtain the following equation:

\[
\frac{\partial \vec{V}}{\partial t} = \vec{F} - c^2 \text{grad}(u) . \quad (4)
\]

By defining the divergence of the right and left side of the equation (4), we obtain:

\[
\frac{\partial}{\partial t} \text{div}(\vec{V}) = \text{div}(\vec{F}) - c^2 \text{div}(\text{grad}(u)),
\]

Taking into account Eq. (3) we will have the following wave equation. In a cylindrical coordinate system, the wave equation takes the following form:

\[
\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 u}{\partial z^2} \right) + 4\pi G \rho_0 u / 3 . \quad (5)
\]

The solution \(u(r, \phi, z, t) = R(r) \cdot \Phi(\phi) \cdot Z(z) \cdot T(t) \) of Eq. (5) is given by the following double series:

\[
u(r, \phi, z, t) = z_0 \exp(-\gamma z) \sum_{\nu=0}^{\infty} \Phi_{\nu}(\phi) \sum_{k=0}^{\infty} T_{\nu}(t) R_{\nu k}(r), \quad \text{were} \quad \Phi_{\nu}(\phi) = \cos(\nu\phi + \phi_0), \quad Z(z) = z_0 \exp(-\gamma z), \quad R_{\nu k}(r) = J_{\nu}(\lambda_{\nu k} r / R_0), \quad J_{\nu} \text{ – Bessel function of order } \nu, \lambda_{\nu k} \text{ – the zeros of the Bessel function } J_{\nu}; \quad R_0 \text{ – radius of the proto-planetary disk, } \phi_0 \text{ – an arbitrary constant, } a_{\nu k}, b_{\nu k} \text{ – coefficients determined by the initial data. If the value of the constant } \lambda = [\left(\lambda_{\nu k} / R_0\right)^2 - (4/3)\pi G \rho_0 / c^2 - \gamma^2] \geq 0, \text{ the function } T(t) \text{ is equal to } T_{\nu k}(t) = a_{\nu k} \exp(c \lambda_{\nu k}^{1/2} t) + b_{\nu k} \exp(-c \lambda_{\nu k}^{1/2} t). \text{ If the value of the constant } \lambda < 0, \text{ then } T_k(t) = a_{\nu k} \cos(c (-\lambda)^{1/2} t) + b_{\nu k} \sin(c (-\lambda)^{1/2} t).
\]

The solution of boundary value problem for the wave equation. For the solar system, according to Safronov [1], the ratio of \(\beta = h / r \) will increase the value of 0.019 in the Mercury level, to a value of 0.033 at the level of the giant planets, where \(h \) – half of the proto-planetary disk height at a distance \(r \) from the center of the disk. The average value of the parameter \(\beta \) is equal to 0.026.
Consequently, the increase in the height of the proto-planetary disk, to a first approximation, is a linear function of the polar radius \(r \): \(h = 0.012 + 0.026 \cdot r \). Assume that this dependence on the height \(h \) of radius \(r \) will be maintained in all directions from the center of the proto-planetary disk to its periphery, and use this data to determine the initial and boundary conditions. The initial and boundary conditions for the Eq. (5) defined as follows:
\[
\begin{align*}
 u(r, \varphi, z, 0) &= z_0 \cdot \exp(-\gamma_0 z) \cdot \cos(\varphi_0) \cdot f(r, \varphi),
 u_t(r, \varphi, 0) &= 0, \quad |u(0, \varphi, t)| < \infty, \quad u(R_0, \varphi, z, t) = 0.012 \cdot z_0 \cdot \exp(-\gamma_0 z) \cdot \cos(\varphi_0),
 z &= 0.012 + 0.026 \cdot r/R_0.
\end{align*}
\]
Using the orthogonal system of functions \(\{x^{1/2}J_0(\lambda_k r/R_0)\} \), we expand the function \(f(r) \) to a series of Bessel function \(J_0(\lambda_k r/R_0) \):
\[
f(r) = c_0 + c_1 \cdot r + c_2 \cdot r^2 + \ldots + c_k \cdot r^k = a_0 + a_1 \cdot J_0(\lambda_1 r/R_0) + a_2 \cdot J_0(\lambda_2 r/R_0) + \ldots + a_k \cdot J_0(\lambda_k r/R_0).
\]

Fig. 1. Approximation of the initial conditions: the graphs of straight 0.012 + 0.026 \(r \) (black line), approximating function for the first approximation (blue curve) and the new approximation function obtained by the estimation \(\lambda_k < 3k + 1 \) (red curve).

Fig. 1 shows approximating curve (red curve). When \(k > 20 \) the coefficients is equal to zero, \(a_k = 0 \). Substituting the coefficients \(a_k \) to the general solution of Eq. (5), we obtain the solution of the boundary problem:
\[
\begin{align*}
 u(r, z, t) &= z_0 \cdot \exp(-\gamma_0 z) \cdot \cos(\varphi_0) [0.012 + \\
+ H \cdot \sum_{k=1}^{20} c_k \cdot \cos(t \cdot c_k \sqrt{(\lambda_k / R_0)^2 - (4/3) \pi \rho / c_s^2 \cdot \gamma_0^2}) \cdot J_0(\lambda_k r / R_0)], c = c_s.
\end{align*}
\]
Fig. 2. 3-D profiles of the density $\rho(r, \varphi, t) = \rho_0[1 + u(r, \varphi, t)]$ for the parameter $R_0 = 5$ AU at the distance $1 \leq r \leq 40$ (AU). (a) The function $u(r, \varphi, t)$ at the time $t = 0$, (b) $u(r, \varphi, t)$ at the time $t = 5$, $r = (x^2 + y^2)^{1/2}$, $0.7 \leq x \leq 40$, $0.7 \leq y \leq 40$ (AU), $0 \leq \varphi \leq \pi/2$, $z = 0$, $z_0 = 1$.

Locations of density maxima (Fig. 2) will remain unchanged as long as the disk radius R_0 changes. These disk density maxima correspond to the maxima of the amplitude shock waves that act on the surface of the disk. In this case, the libration motions of shock waves will expand the zone of minimum density and clear the area from dust particles. As a result, on the periphery of the disk occurs separation of one or several circular fragments of the disk (proto-planetary rings).

References
Abstract

In this paper we consider the mechanism of the orbital resonance as the main mechanism for the formation of planets, asteroids and planetary satellites. To construct the orbits of the migration of dust particles used model of ideal resonance by B. Garfinkel. According to considered here the wave model of a proto-planetary disk fragmentation, the formation of small dense bodies is not at the initial stage of proto-planetary disk evolution, but at its final stage.

The libration orbits of asteroids near mean motion commensurability 1/1.

Ideal resonance model was developed by B. Garfinkel [3] in 1976 and used to study the long-period libration of Trojan asteroids. In 1986 by R. Zagretdinov was obtain a solution of the ideal problem for the Trojan asteroid orbits that have significant inclination. Let is consider the motion of the asteroid, the mass of which we assume infinitely small compared to the mass of Jupiter, by the gravitational perturbations of the Sun and Jupiter. For the reference coordinate system we take a rectangular heliocentric system, in which the orbit of Jupiter will be assumed to be circular. It is assume that the motion of the asteroid occurs near the mean motions commensurabilities 1/1, that is true the following inequality $|n - n_1| \leq O(n_1 \sqrt{m})$, where m – mass of Jupiter in the adopted system of units, n and n_1 mean motion of the asteroid and Jupiter. The solution of equations for the intermediate Hamiltonian has the following form [1, 3]:

$$G = G_0 + G_0^2 \rho_1 + 2G_0^3 \rho_1^2 / 3 + ..., \quad \rho_1 = -1/3\sqrt{6m} \left[\frac{\alpha^2}{f_0(\lambda')} \right]^{1/2} \text{sgn}(d\lambda'/dt),$$

(1)
The initial density of dust particles in the proto-planetary rings. The density distribution of dust particles in the rings, which is necessary to start of migration, was defined early in article [2]. It was shown that the formation of the libration points of the perturbing body requires the following redistribution of elementary mass \(m' dm = \frac{m^3}{2\pi ab} \cdot d \theta = \rho dl = \rho^* dl^* \), where \(dl^* \) – an element libration orbit, \(\rho^* \) – the required distribution of density, \(dl \) – an element of the elliptical orbit, \(\rho \) – density distribution in the ring of Gauss. Using the solution (1) we obtain the following density \(\rho^* \) of distribution:

\[
\rho^*(\theta) = \rho(\theta) \sqrt{r^2(\theta) + \frac{dr}{d\theta}^2} \sqrt{r^*(\theta)^2 + \frac{dr^*}{d\theta}^2}, \quad r(\theta) = a(1 - e^2) / [1 + e \cos \theta],
\]

\[
r^*(\theta) = \rho^2 + 2G_0 \rho^2 + G_0^2 + O(m^{3/2}), \quad \rho = G - G_0, G = G_0 + G_0^2 \rho_1 + 2G_0^3 \rho_1^2 / 3 + O(m^{3/2}),
\]

\[
\frac{dr^*}{d\theta} = G[G_0^2 + \frac{4}{3} G_0^3 \rho_1] [\alpha^2 - f_0(\theta)]^{-1/2} \frac{df_0}{d\theta} \text{sgn}(d\theta / dt) + O(m^{3/2}), \quad \text{where} \quad a, \; e \; \text{– semi-major axis and eccentricity of the perturbing orbit of the small body,} \; \theta \; \text{– polar angle.}
\]

At the initial stage of evolution of the Solar system the density of the proto-planetary rings could be close or equal to the density \(\rho^* \). Comparing Fig. 1a, Fig. 1b, Fig. 1c shows that with the increase of \(\alpha^2 \) and inclination \(i \) the small bodies and dust particles will be closer to Jupiter. Taking into account the actions of density waves it follows that at the stage of proto-planetary disk fragmentation of the influx of dust particles in the resonance zone \(\Delta_{l/1} \) [3] occurs through the horseshoe-shaped orbits (high \(\alpha^2 \)).
Fig. 1. Libration orbits of small bodies near 1/1 resonance for the resonance parameters $\alpha^2 = 0.6; 0.8; 1.7; 2.2$. (a) The orbits of the inclination $i = 25^\circ$; (b) The orbits of $i = 35^\circ$ and the polar coordinates (r^*, λ'), $r^* = r - 0.817$ (the projection onto the plane of the orbit of Jupiter); (c) Libration orbits of small bodies near 1/1 resonance for the parameters $\alpha^2 = 0.6; 1; 2$; (d) Distribution of polar coordinates (r, λ') numbered asteroids of the resonance 1/1.

References
1. Introduction

We can put a strong constraint upon the structure and property of the lunar deep interior if we observe libration parameters with an accuracy of better than 1 mas (milli-arc-second), since libration parameters related to dissipation in the lunar core have an amplitude of at most a few mas [1]. Simulation shows that we can determine the libration parameters with the accuracy better than 1 mas by positioning of stars for one year with an accuracy of 1 mas [2]. We proposed In-situ Lunar Orientation Measurement (ILOM) which consists of a small telescope like PZT (Photographic Zenith Tube) with a target accuracy of 1 mas to study lunar rotational dynamics by direct observations of the lunar rotation from the lunar surface [3].
The following technological problems must be solved in order to make precise observations of the lunar rotation on the Moon; 1) tilt of the tube, 2) centroid accuracy, 3) temperature change, 4) vibrations.

1) PZT can compensate the effect of tilt because it uses a mercury pool whose surface is always plane, and relative position of an objective and the mercury surface does not change. Ray tracing simulations show that the tilt of 80 arc-seconds is allowed for the positioning accuracy of 1 mas. We developed an attitude control system which can keep the vertical within about 20 arc-seconds.

2) Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE) project of NAOJ (National Astronomical Observatory of Japan) have been making experiments for improving centroid accuracy in cooperate with us, and attained an accuracy of about 1/300 of pixel size by developing an algorithm where the difference between the calculated and the real centers of a star image is a function of the distance from the center of the nearest pixel [4]. We can expect to determine the centroid position in 1 mas accuracy by statistical processing.

3) It is anticipated that the large temperature change on the Moon can affect the centroid position. Kashima et al. [5] showed that the objectives with DOE can reduce the effect of temperature change, and showed that the change of about 10 degrees is allowed for the observation of 1 mas accuracy by ray tracing simulations.

4) The mercury pool used as the reference of a plain can vibrate excited by ground vibrations. We found that the mercury pool of 0.5mm depth and 84mm diameter is most hardly affected by tilt and is not most sensitive to ground vibrations among the other pools with different depth. (Tsuruta et al., 2014).
We have completed a BBM (Bread Board Model) of the telescope like PZT and performed laboratory experiments and field observations using it. It has a tube of 0.1 m diameter with an objective having a focal length of 1m, and a CCD camera (Fig. 1). The accuracy of centroid obtained in the experiments is evaluated by comparing with the experiments by JASMINE in this paper.

2. Experiments using the BBM

2.1 Laboratory experiments

We performed experiments using the BBM of the telescope at the underground laboratory of Mizusawa VLBI Observatory of NAOJ in August of 2014 in order to evaluate the optical characteristics of the telescope. Artificial star images are focused from a tungsten lamp through a reticule with 21 pinholes and a collimator (CL-1000, Pearl Opt. Ind. Co.). Four star images are recorded on a video camera (MTV63-VTN, Mintron Enterprise Co. Ltd.) which can take pictures of stellar images at the rate of 30 frames/s (Fig. 2).

We find that the variations of centroid position of 4 stars in the field of view are similar, and the amplitude of the variations is reduced by subtracting the mean variation from each record, and only the random noises are remaining, which is regarded as the accuracy of centroid estimation (Fig. 3). This suggest that the effects of vibration of the mercury surface are almost common to all the stars in the field of view even if the incident angle is different. We know it also from the spectra of the variation of centroid position. The effects of the vibration of mercury surface
are strong in the frequency bands of 0 to 0.5 Hz and 5 to 6 Hz (Fig. 4). We can almost completely remove the effects of vibrations by subtracting the mean variation from each data.

![Residual of Centroid Position X (2014/8/19 15:23:30-15:24:00)](image)

![Variation of Centroid Position X (2014/8/19 15:23:30-15:24:00)](image)

Fig. 3. Variations of centroid positions of 4 star images (upper) and residuals after removing the mean of the variations (lower).

2.2. Field Observations

We performed field observations in the campus of Mizusawa VLBI Observatory of NAOJ in September of 2014, in order to check the total system of the telescope and the software for observations of real stars. Six stars of magnitude of 7 to 8 are visible in the field of view and CCD camera composed of an array of 512×512 pixels of 7.4μm×7.4μm (BJ-42L, Bitran Co.) recorded them every 1s. The centroid position varies more largely than the case of the laboratory experiments as shown in Fig. 5. There are seen also common variations although it is not obvious. The scatter of the variation is reduced by subtracting the mean variation from each record, but it does not become as small as the case of the laboratory experiments.
13. Relation between the SNR and SD

We calculated SNR in order to know the reason why the variation of centroid position in the field observations is larger than that of laboratory experiments. The SNR is here defined as the ratio of the maximum brightness of a star image to standard deviation (SD) of dispersion of brightness in the background around the star image.

The SD of dispersion in measured centroid position is inversely proportional to SNR as also suggested from simulations.

The results of the three kinds of experiments are roughly on the straight line expressing the inverse...
3. Relation between the SNR and SD

We calculated SNR in order to know the reason why the variation of centroid position in the field observations is larger than that of laboratory experiments. The SNR is here defined as the ratio of the maximum brightness of a star image to standard deviation (SD) of dispersion of brightness in the background around the star image. The SD of variation in measured centroid position is inversely proportional to SNR as shown in Fig. 5. The results of centroid experiments by JASMINE (Apr. 1, 2015) as well as those of the laboratory and field experiments are shown here. We can say that the less centroid accuracy in the field observations is due to lower SNR.

4. Development for future missions

We developed the PZT type of small telescope for observation of the lunar rotation. It is, however, still large in the recent trend of lunar exploration with a small sized rocket. It is true that the opportunity of being onboard is increased in any case. Our goal is to develop a telescope as small as it even at the cost of accuracy in some degree.

We propose a new method to control the attitude of the tube by making it to be a reverse pendulum. 1) We put a tube with a conical bottom on a XY stage. 2) We surround the top of it by a ring putting 4 pressure gauges between them. 3)
If the tube deviates from the vertical direction, a force acts on the pressure gauges. 4) Then we move the bottom of the tube horizontally until the force becomes zero, and the tube is kept to be vertical.

Suppose a reverse pendulum with the mass m (kg) deviates from the vertical direction by angle θ. Then the force P acting horizontally is represented as

$$P = mgs\sin\theta.$$

Fig. 6. A reverse pendulum as a tube.

When $m = 1$ kg, $\theta = 1$ arc second (4.8×10^{-6} rad), P becomes 10^{-5} N (about 50 μN). We can detect the force of 0.005mN if we use the most sensitive pressure gauge. This means that we can control the attitude of a tube with the sensitivity of 0.1 milli-arc-second.

5. Concluding remarks

1) Element and laboratory experiments show that 1 mas accuracy is possible if SNR is high enough (~5000).
2) Accuracy of several arc-seconds was attained in the field observations
3) The difference can be explained mainly by the difference in SNR of stellar images.
4) Effects of vibration of mercury surface are almost common to stars in the view, and they can be corrected by removing mean motion of the stars.
5) To develop a small sized instrument is also important in order to increase opportunities of boarding.
6) We started to investigate a new method to keep a tube in vertical direction.
References

PROMOTING A LOW FREQUENCY RADIO OBSERVATORY IN THE LUNAR SPACE

J. S. PING¹, M. H. HUANG¹, Y. H. YAN¹, G. Y. FANG², Y. C. Jr², M. ZHANG¹, M. Y. WANG¹, L. J. CHEN¹, AND X. L. CHEN¹

¹National Astronomical Observatories of Chinese Academy of Sciences, Datun Rd. 20A, 100012, Beijing, China, jsping@bao.ac.cn.
²Electronic Research Institute of Chinese Academy of Sciences, Zhongguancun, Haidian, 100080, Beijing, China.

Abstract: Following the development of the Chinese lunar exploration program, astronomical facilities have been planned to set on the surface of the Moon so as to obtain new sciences from the Moon. The Chang’E 4 explorer (including a relay satellite, a lander and a rover, etc.) is a mission to the lunar far side, designed, assembled, and tested by CNSA. In Chang’E-4 lunar lander mission, a low frequency radio astronomical detector will be firstly settled on the far side surface of the Moon to detect the solar burst, and to investigate the lunar ionosphere. Additionally, it will be tested technically as a pathfinder mission for the future lunar surface low frequency radio observatory.
Abstract: Radio science experiments have been involved in all of the Chinese lunar missions with different research objectives. In Chang’E-3 landing mission, a 2- and 3-way lunar radio total-count-phase ranging and Doppler technique was developed and tested at X-band of 8470MHz by radio science experiment team of Chinese lunar and deep space mission. This method, called Lunar Radio-phase Ranging (LRR) can become a new space geodetic technique to measure the station position, earth tide and rotation, lunar orbit, tide and liberation. In Chinese Chang’E-3 lander mission, we successfully realized this new kind of space technique, and the preliminary result is presented here.
Historically a coordinate system for the Moon was established on the base of telescopic observations from the Earth. As the angular resolution of Earth-to-Space telescopic observations is limited by Earth atmosphere, and is ordinary worse then 1 ang. second, the mean accuracy of selenodetic coordinates is some angular minutes, which corresponds to errors about 900 meters for positions of lunar objects near center of visible lunar disk, and at least twice more when objects are near lunar poles.

Correct coordinate frame of the Lunar coordinates means very skilful analysis of a whole set of visible lunar movement as well as taking in account movements of observer during astrometrical observation. This extreme work has been done by Kazan' astronomers that measured visible positions of several hundreds features on the lunar surface and equalized them. No doubt, Kazan' Selenodetic Referent Frame is now the best one, and as Earth-based system will be never improved.

Nevertheless existing accuracy of lunar coordinates is times worse that we need for safety lunar navigation, especially close to the polar regions that are now most interesting for coming lunar investigations. A simplest way to improve lunar coordinates is placing astronomical instruments on the moon surface. Even this solution will not enough for desirable purposes, because astronomical observations have to be done in every point independently. An alternative idea is to construct some analogue of GPS near the Moon, but it will be too expensive.
As there are no Global Positioning System nor any astronomical observation instruments on the Moon, we proposed to use an autonomous light beacon on the Luna-Globe landing module to fix its position on the surface of the moon and to use it as refer point for fixation of spherical coordinates system for the Moon. The light beacon is designed to be surely visible by orbiting probe TV-camera. As any space probe has its own stars-orientation system, there is not a problem to calculate a set of directions to the beacon and to the referent stars in probe-centered coordinate system during its flight over the beacon.

Large number of measured angular positions and time of each observation will be enough to calculate both orbital parameters of the probe and selenodetic coordinates of the beacon by methods of geodesy. All this will allow fixing angular coordinates of any feature of lunar surface in one global coordinate system, referred to the beacon. The satellite's orbit plane contains ever the center mass of main body, so if the beacon will be placed closely to a lunar pole, we shall determine pole point position of the Moon with accuracy tens times better then it is known now. When angular accuracy of self-orientation by stars of the orbital module of Luna-Glob mission will be 6 angular seconds, then being in circular orbit with height of 200 km the on-board TV-camera will allow calculation of the beacon position as well as 6" corresponding to spatial resolution of the camera. In the case of circular orbit height of 100 km the resulting accuracy will be twice better. It means that coordinates of the beacon will be determined with accuracy not worse then 6 meters on the lunar surface.

Much more accuracy can be achieved if orbital probe will use as precise angular measurer as optical interferometer. Optical interferometer allows to measure angular positions of point-like sources with accuracy up to 0.0001 angular seconds, that will be enough to measure positions on the lunar surface with sub-millimeter accuracy.
The limiting accuracy of proposed method is far above any reasonable level, because it may be sub-millimeter one, if the dimension of light emitting body is about millimeter. Our project is based on 2-mm laser diode, so the light beacon placed to the Moon by "Luna-25" mission may be milestone for precise lunar coordinate system.

Theoretical analysis shows that for achievement of 1-meter accuracy of coordinate measuring over lunar globe it will be enough to disperse over it surface some 60 light beacons. Designed by Lavochkin Association light beacon is autonomous one, and it will work at least 10 years, so coordinate frame of any other lunar mission could use established selenodetic coordinates during this period. In the future same approach may be used for establishing of Martial coordinates system.

The second task we try to solve is improving of lunar movement theory. An additional light beacon will send its light to the Earth, so Earth-based telescopes will measure correct position of the lunar center of masses (determined by precise accuracy of beacon coordinates) relatively to background stars near the Moon. Besides that this second light beacon will allow pointing of Earth-based laser locators to the retro-reflector onboard landing module.

The second light beacon will use different of laser locator wavelength, so locator operators will be able simultaneous correction of very narrow emitting beam to the retro-reflector on the Moon. Proposed accuracy of measurements instant distance is about 1 mm.

Shining point near lunar pole on dark part of lunar disk will be seen closely to background stars which celestial coordinates are known very fine. Row of accurate measured angular distances between light beacon and these stars and precise distance measurements will be base for improving theory of lunar movement.
CALCULATION OF LOAD LOVE NUMBERS AND STATIC STRESSES
FOR THE INTERIOR STRUCTURE MODEL OF MARS WITH AN
ELASTIC MANTLE

A. BATOV (1), T. GUDKOVA (2) AND V. N. ZHARKOV (2)

(1) V. A. Trapeznikov Institute of Control Sciences RAS, Moscow, Russia
(batov@ipu.ru)
(2) Schmidt Institute of Physics of the Earth RAS, Moscow, Russia
(gudkova@ifz.ru)

Introduction

The recent progress in developing the gravity and topographic models of Mars [1-3] allows to study the stress field in detail and to recalculate previous estimates of static stresses [4]. It is of importance to identify areas of high values of shear and tension-compression stresses as possible marsquakes focuses, as in 2018 NASA’s Discovery Program mission InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) will place a single geophysical lander with a seismometer on Mars to study its deep interior. In this paper we will consider the case of an elastic mantle of Mars.

Method

Numerical simulation is based on a static approach, according to which the planet is modeled as an elastic, self-gravitational spherical body. It is assumed, that deformations and stresses which obey Hooke’s law are caused by the pressure of relief on the surface of the planet and anomalous density $\delta\rho(r,\theta,\phi)$, distributed by a certain way in the crust and the mantle. A self-consistent technique of the solutions of this problem (by way of the Green’s functions or loading factors technique) has been developed in [4-6]. The anomalous density field is represented in the form of weighted thin layers positioned at different characteristic depths. Imposing the anomalous density waves (ADW) on the surface or in the interior leads to the deformation of the planet interior and the
distortion of the surface and the boundary interfaces. The distribution of anomalous density in spherical coordinates \((r, \theta, \varphi)\) is expanded in a series of spherical functions:

\[
\delta \rho(r, \theta, \varphi) = \sum_{i,n,m} R_{i,n,m}(r) Y_{i,n,m}(\theta, \varphi) = \sum_{i=1}^{2} \sum_{n=1}^{m} \sum_{m=0}^{n} R_{i,n,m}(r) Y_{i,n,m}(\theta, \varphi),
\]

where \(Y_{i,n,m}(\theta, \varphi) = P_{i,n,m}(\cos \theta)\) \((\cos(m\varphi), i = 1\)

\(\sin(m\varphi), i = 2\) \(P_{i,n,m}(x)\) — “normalized” associated polynomials

\[
P_{i,n,m}(x) = \left(\frac{2(n-m)!(2n+1)}{(n+m)!}\right)^{1/2} P_{n}^{m}(x), m \neq 0; P_{n}^{m}(x) = \left(\frac{(n-m)!(2n+1)}{(n+m)!}\right)^{1/2} P_{n}^{m}(x), m = 0;
\]

\[
P_{i,n,m}(x) = (1-x^2)^{m/2} \frac{d^m}{dx^m}(P_n(x)), R_{i,n,m} \quad \text{— expansion coefficients (amplitudes)}.
\]

With the addition of ADW to the planet it goes to a new state of elastic equilibrium, that is, it “adjusts” to the ADW. So, the problem is reduced to the determination of Green’s response function for the case of a single ADW located at some depth level.

Stresses estimates

To avoid uncontrollable stresses and deformations in the mantle of the planet due to the significant deviation of Mars from hydrostatic equilibrium state, an outer surface of a hydrostatical model is taken as a reference surface [7, 8]. Only unequilibrium components of gravity and topography fields have been considered: they were obtained by subtracting the equilibrium component from the observed external field.

As a benchmark real model for the planetary interior we have used a model of Mars M7 from [9], which satisfies all the currently available geophysical and geochemical data. The density of the crust is 3000 kg m\(^{-3}\), the thickness of the crust is 50-100 km. In present paper we have started with a simple model – an elastic model. The model allows one to calculate all stresses (tension-compression stresses and shear stresses).
It is impossible to unambiguously determine ADW from the data on the gravitational field of a planet, therefore to solve the problem we assume that there are two levels of concentration of anomalies in Mars – on its surface and at the crust-mantle boundary. Loading coefficients for deeply buried density anomalies \(k_n \) and \(h_n \) of \(n \)-th harmonic of ADW located at depth \(r_j \) defines the total change in the gravitational potential on the surface of Mars and deformation of the planet’s surface under the action of load, respectively (Fig. 1).

Fig. 1. Load numbers \(k_n \) and \(h_n \) for various depths of the density anomaly as a function of the order \(n \). Values correspond the depths (in km) of loading.

Spherical expansion coefficients of the anomalous density waves on the surface \(R_{i,n,m}^1(\theta, \phi) \) and at the crust-mantle boundary \(R_{i,n,m}^2(\theta, \phi) \) are related to expansion coefficients \(C_{ginm} \) of the anomalous gravitational field and expansion coefficients \(C_{ginm} \) of the Mars topography by equations [4]:

\[
C_{ginm} = \frac{R_{i,n,m}^1}{R \rho_0} \frac{3(1 + k_n(R))}{(2n+1)} + \frac{R_{i,n,m}^2}{R \rho_0} \frac{3(1 + k_n(R))}{(2n+1)} \left(\frac{R}{R} \right)^{n+2},
\]

\[
C_{ginm} = \frac{R_{i,n,m}^1}{R \rho_0} \frac{3(1 + h_n(R))}{(2n+1)} + \frac{R_{i,n,m}^2}{R \rho_0} \frac{3(1 + h_n(R))}{(2n+1)} \left(\frac{R}{R} \right)^{n+2},
\]
\(\rho_0 \) is the mean density of Mars, \(\rho_c \) is the density at the core-mantle boundary, \(R \) is the radius of Mars, \(R_1 \) is the radius of the core-mantle boundary.

\[\text{Stress tensor } \mathbf{\sigma} = \sigma_{ij} = \begin{bmatrix} \sigma_{rr} & \sigma_{r\theta} & \sigma_{rp} \\ \sigma_{r\theta} & \sigma_{\theta\theta} & \sigma_{\theta p} \\ \sigma_{rp} & \sigma_{\theta p} & \sigma_{pp} \end{bmatrix}, \text{ where } \sigma_{rr} = \lambda \Delta + 2\mu \varepsilon_{rr}; \quad \sigma_{r\theta} = 2\mu \varepsilon_{r\theta}; \quad \sigma_{rp} = 2\mu \varepsilon_{rp}; \quad \sigma_{\theta\theta} = \lambda \Delta + 2\mu \varepsilon_{\theta\theta}; \quad \sigma_{\theta p} = 2\mu \varepsilon_{\theta p}; \quad \sigma_{pp} = \lambda \Delta + 2\mu \varepsilon_{pp} \]

\(\Delta \) – dilatation, \(\varepsilon_{ij} \) is the strain tensor, \(\lambda = K - 2/3\mu \), \(K \) is the compression modulus, \(\mu \) is the shear modulus.

Figure 2 shows the components of complete stress tensor \(\sigma_{ij} \) for a test model, calculated for the level beneath the 50km-crust. Then this tensor is reduced to diagonal form with the principal stresses \(\sigma_3 \leq \sigma_2 \leq \sigma_1 \), and the compression-tension stresses and maximum shear stresses are calculated as \((\sigma_1 + \sigma_2 + \sigma_3)/3\) and \((\sigma_1 - \sigma_2)/2\), respectively (Fig. 3). As seen in the fig. 2 and 3
most of stress intensity is accumulated in the Tharsis region, with maximum compression stresses at a location of Olympus Mons. Such topographic structures as Valles Marineris and Elisium region have much smaller values of stresses, but clearly visible in the figures. The presented sub-crustal stresses are somewhat lower than the values obtained in [10].

![Shear stresses and tension-compression stresses](image)

Fig. 3. Shear stresses (left) and tension-compression stresses (right) beneath the 50km-crust.

Acknowledgments: This work was undertaken during the preparation phase of the SEIS experiment on InSight mission. The work was supported by the Russian Foundation for Basic Research, project no. 15-02-00840.

References

Introduction:
The most striking geological feature of the Moon is the terrain and elevation dichotomy between the hemispheres: the nearside is low and flat, dominated by volcanic maria, whereas the farside is mountainous and deeply cratered. Associated with this geological dichotomy is a compositional and thermal variation with the nearside Procellarum KREEP (potassium/rare-earth element/phosphorus) Terrane interpreted as having thin, compositionally evolved crust in comparison with the massive feldspathic highlands. The lunar dichotomy may have been caused by internal effects (for example spatial variations in tidal heating, asymmetric convective processes or asymmetric crystallization of the magma ocean) or external effects (such as the event that formed the South Pole/Aitken basin or asymmetric cratering) [1]. In this study, we tried to consider this feature as a manifestation of the dynamics of tidal effects caused by Earth's geological evolution.

Approach:
At GEOKHI RAS, academician Galimov E.M. and prof. Krivtsov A.M. critically examined the giant impact model and indicated that the formation of the Moon through a catastrophic collision of the Earth with another planetary body comparable in mass (the giant-impact hypothesis) runs into fundamental difficulties [2]. At the same time, the hypothesis of the concurrent formation of
the Moon and the Earth during the collapse and fragmentation of a large dust clump is consistent with geochemical facts. The evaporation of 40% of a chondritic melt was shown to lead to a matter formation—which composition was close to that of the Moon, including low iron content. The evaporation of the volatile substances from the surface of particles in a contracting dust cloud is also a crucial factor providing the clump fragmentation. A computer dynamical model of this process has been developed.

Fig 1. Computer simulations of the rotational collapse of evaporating particles cloud. The successive frames correspond to the following instants of model times: (a) \(t = 0 \); (b) \(t = 0.21T_s \); (c) \(t = 0.41T_s \); (d) \(t = 0.58T_s \); (e) \(t = 0.80T_s \); (f) \(t = 1.07T_s \).

The idea of prof. Sorokhtin O.G, Moscow State University, is close to the above mentioned scenario. It implies a massive proto-moon captured from the near earth's orbit followed by its destruction at the Roche limit. The rigid-body Roche limit is a simplified calculation for a spherical satellite. Irregular shapes such as those of tidal deformation of the satellite’s body or the primary planet it orbits are neglected. The satellite is assumed to be in hydrostatic equilibrium. These assumptions, although unrealistic, greatly simplify the calculations. The Roche limit for a rigid spherical satellite is the distance, \(d \), from satellite to the primary at which the gravitational force on a test mass at the surface of the object is exactly equal to the tidal force pulling the mass away from the object [3].
\[
d = 1.26 \, R_p \left(\frac{\rho_p}{\rho_s} \right)^{1/3}
\]

where \(R_p \) is a radius of the primary planet, \(\rho_p \) is density of the primary, and \(\rho_s \) is density of the satellite. We have refined this result significantly taking into consideration the non-spherical figure, elastic properties of substance of the satellite and its rotation [4].

Approaching to the central planet, the massive satellite body becomes more and more deformed by tidal forces and is pulled along the longitudinal axis that connects the centers of gravity of the planets. To destruct a solid rigid body, the differences of these forces need to exceed the ultimate strength of the satellite rocks, \(T \). Only in this case the satellite loses its stability and begins to break down. Consequently, for destruction of a solid body it must be dived into the Roche radius on the depth at which the attraction of the central planet exceeds the own gravity of the satellite, a value equal to the strength of its rocks. In contrast, the destruction of the “liquid” satellite begins as soon as the satellite goes into orbit, is equal to the Roche limit.

The energy of the tidal interactions of planets strongly depends on the distance between their centers of gravity and inverses the sixth power of that distance! This means that any planet convergence not only significantly increases the tides themselves, but rapidly intensifies the processes related to tidal effects. A significant impact on the tidal interactions of the planets provides effective mechanical quality factor, \(Q \), of the central planet. It should be mentioned that the Q-factor is the approximation of the rheological properties of real bodies to perfect elasticity: the higher mechanical Q-factor of the body, the closer properties to perfectly elastic materials and, conversely, if the Q-factor is low, the body shows more viscous properties. Numerically, dimensionless Q-factor is equal to the ratio of the total energy expended on deformation of the body (for example, by tidal interactions of the planets) to the heat produced from the internal friction in the material of this body.
The theory of the tidal interactions between planets shows that if the angular velocity of the central planet axial rotation exceeds the angular velocity of the satellite orbital movement (as it is observed in the Earth–Moon system), the axial rotation of the central planet is inhibited and the satellite moves away. The velocity of recession of a satellite is proportional to its mass and inverses the Q-factor of the central planets and the distance between them by a factor of 5.5. Thus, in order to calculate the evolution of the Earth–Moon system and the changes in the distance between the planets, we need to find out the behavior of the effective mechanical quality factor (Q-factor) depending on time. In summary, the results (in billions of years ago) are shown in Figure 2 [5]:

![Figure 2](image)

Fig. 2. Time dependence of the Earth’s Q-factor (a) and the distance (b) between the centers of the Earth and the Moon (in thousands of km). Interval I is time development of anorthosite magmatism; interval II is time development of basaltic magmatism on the Moon.

Results and discussion:
Sorokhtin’s model propose that the Moon moved away from the Earth at the highest velocity of ca 12 – 10 km/year in the very beginning of its evolutionary path, about 4.6 billion years ago. However, then the velocity of recession of the Moon from the Earth sharply decreased and by the end of Hadean (about 4 billion years ago) it did not exceed 4.3 cm/year. The second significant sharp increase in the velocity (up to 90 cm/year) occurred at the turn of Hadean and Archean eons, about 3.9 billion years ago. The nature of this acceleration pulse
was caused by just Earth events. The Archean peak was associated with the formation of the asthenosphere followed by the ocean formation on the Earth. It is interesting to note that the process of differentiation of the lunar substance that gave rise to the basaltic flows in the early Archean eon occurred not during the basalt magmatism, but much earlier, about 4.6 billion years ago, i.e. during the formation of the Moon itself. This hypothesis was proved by investigation of U-Pb and Rb-Sr isotopic composition [6]. Therefore, the basalts of the lunar seas flowed on the surface due to the destruction of the lithospheric shell and opening of “magma ocean” that existed since the Moon formation period.

References:
CUTOFF FREQUENCY – MOMENTUM SCALING LAW INFERRED FROM THE ANALYSIS OF METEOROIDS IMPACTS RECORDED BY APOLLO SEISMIC STATIONS

T. GUDKOVA (1), PH. LOGNONNÉ (2), K. MILJKOVIĆ K. (3) AND J. GAGNEPAIN-BEYNEIX (2)

(1) Schmidt Institute of Physics of the Earth, Moscow, Russia (gudkova@ifz.ru)
(2) Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, F-75013 Paris, France
(3) Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Introduction

By using a proxy to the local porosity, based on the density of surface craters [1, 2] and well correlated to the most recent GRAIL observations [3], we demonstrate that the seismic cutoff frequencies for 40 selected impacts from the Apollo lunar seismic network correlate with this proxy and therefore likely with the porosity at the impacted areas. Our finding shows that lunar seismic records of meteoroid impacts represent unique geophysical data documenting medium to high-energy (0.1-1 kt TNT yield) impact processes, including the interaction of shock waves with porous media. This work can be applied to the analysis of the seismic data and the investigation of the lateral variations in the Martian regolith.

Analysis of meteoroid impacts recorded by the Apollo seismometers

Source spectra are typically characterized by a plateau at low frequencies and a roll-off slope for high frequency. The frequency corresponding to the intersection of the horizontal low-frequency asymptote and the sloping high-frequency asymptote is called the corner frequency (or cutoff frequency). The
cutoff frequency is determined by the source size and material properties of the impacted medium (e.g., porosity).

Meteoroid impacts are well explained by the seismic impulse approach method, which integrates both the impactor and the ejecta momentum [4, 5]. This model fits both impacts: an impact at a short distance and an impact at a long distance, and allows the analysis of meteoroid impacts events occurring in two geologically diverse regions: in the lunar maria and highlands regions.

Impact cutoff frequency - momentum relation

Let us compare the impact momentum and the cutoff frequency (or the time-duration of the seismic excitation process τ) on a log-log scale and determine the power law relationship between these two parameters, such that $\tau = \tau_0 (mv/10^7)^\beta$, where m, v are the mass (kg) and velocity of the impactor (m/s), τ (in s) is the cutoff time and β is the scaling power. The latter is obtained by least square fit of the data set for the momentum transfer of the impactor and seismic impact duration. We find that the values for the time-duration of the seismic excitation process for all data sets (black line, Fig. 1) are described reasonably well by a power law dependence on the seismic moment with $\tau_0 = 0.65$ s and a power of about 0.14.

Estimating the regolith porosity in the vicinity of the impacts

The impacts are sampling very different areas on the Moon, from mare basalts to highlands regions. Therefore, significant variations in the regolith properties can be expected to exist, depending on the surface impact cratering history.

Lunar porosity is a poorly known parameter. The latest porosity map derived from the GRAIL gravity measurements [3] provided estimates of porosity in the farside highlands but not in the nearside maria regions. In this study, we use an indirect proxy to the porosity, based on the impact history of
this region. Regolith is generated and sustained by the constant meteoroid bombardment, a process that fractures and ejects surface material. Mega-regolith has been continuously bombarded by smaller impact events, which contributed to the formation of the upper-most finely grained regolith layer.

We introduce a new function, impact-regolith function approximated to be proportional to the sum of the ejecta created by a number of successive impacts on the lunar surface. Areas with higher crater density are expected to have deeper regolith than the areas with lower crater density. The impact-regolith function used here is considered as a relative measure of the regolith maturity: it is correlated with the porosity and the thickness of regolith as well as the shear velocity of the subsurface layers. In our approach, this function is directly related to the final (present day) thickness of the regolith.

The impact-regolith function is calculated as the sum of the ejecta from the lunar craters between 20 and 500 km in diameter (see crater catalog [1, 2]). Our model assumes a uniform distribution of ejecta around each crater and no mixing of ejecta layers. We do not consider a small number of craters larger than 500 km under assumption that the ejecta from those impacts would have global effects to the Moon that formed the oldest and deepest mega-regolith, which have been buried and compacted by subsequent impacts.

We use the impact model of Housen et al and Holsapple and the HTML software [6-8], to calculate the crater diameter and depth for a range of impact parameters. The estimates of the radial deposition of the ejecta blanket produced by a single impact, and the ejection velocity are related by the ballistic equation. Our model for the ballistic deposition of impact ejecta for a single crater is represented by two components. The central component is defined as a cylindrical core around the impact point that contains 50% of ejecta volume (V_{ejecta}). Its radius is equal to twice the radius of the crater (or one crater diameter D). By applying this calculation to all lunar craters considered in this study and by rigidly stacking the ejecta layers without mixing, we approximated
the distribution of the global lunar regolith thickness. Considering the simplifications used in this approach, we defined the obtained distribution as a proxy estimates for the impact-regolith function that is proportional to the real regolith thickness over the entire Moon. Figure 2 shows the locations of the considered meteoroid impact events on the map of the proxy estimates for crustal porosity as described above, and the contour of the GRAIL coverage from [3]. Our porosity estimates [9] are consistent with the GRAIL-derived crustal porosity [3] (see Fig. 3).

Trade-off between seismic source parameters and the regolith maturity

By comparing impact momentum, its cutoff frequency (or the time-duration of the seismic excitation process) and the location of the events, we find that the larger the impact, the lower the cutoff frequency, for the impacts occurring in the same surface area. We assume that the difference between the source cutoff frequencies for the impacts with the same momentum are caused by excitation processes in different geologic regions (the lunar maria and highlands). Let us go back to Fig. 1 and analyze the relationship between the impact duration, the momentum transfer of the impactor and the thickness of the lunar regolith in the vicinity of the impact (or the impact-regolith function). As noted above, the seismic impact duration for all impacts under consideration can be approximated by a power law $\tau=\tau_0 (mv/10^7)^\beta$ with $\tau_0=0.65$ s and $\beta=0.14$ (black line). For our analyses, we divided the available data sets into three groups, depending on the regolith thickness in the vicinity of the impact: the minimum, the mean, and the maximum regolith thickness. The first group involves impact events located where the impact-regolith function is between 0 and 8, the second group between 8 and 13, and the third group between 13 and 20. Color lines display the least squares solution for the power law dependence of the cutoff frequency (or the time-duration of the seismic excitation process τ) for each group. The power law fit in the first group yields values of $\tau_0=0.6$ s and
Fig. 1. Trade-off between the impact duration, momentum transfer of the impactor and the impact-regolith thickness at the observed impact locations. The estimated impact-regolith thickness is shown by color. Color lines display the least squares solution for the cutoff frequency for three groups of impacts depending on the regolith thickness in the vicinity of the impact: (1) blue line, impact-regolith function is between 0 and 8; (2) green line, 8 - 13; (3) red line, 13 - 20. Black line is a fit for all Apollo-recorded impacts considered in this study.

Fig. 2. Locations of the meteoroid impacts are shown on the map of the modeled impact-regolith function. White points represent the contour of the GRAIL coverage from [3].

Fig. 3. The correlation between the porosity map of GRAIL and modelled impact-regolith function.
$\beta=0.04$ (blue line, impact-regolith function is between 0 and 8), the second group: $\tau_0=0.67$ s and $\beta=0.12$ (green line, impact-regolith function is between 8 and 13), and the third group: $\tau_0=0.64$ s and $\beta=0.21$ (red line, impact-regolith function is between 13 and 20). Our goal was mainly limited to modeling the variation in the cutoff frequency with the regolith porosity in the vicinity of the impact. Figure 1 shows that the larger the impact, the higher the impact duration, as well as the slopes of the lines increase with the increase of the regolith thickness (the scaling power β is increasing with the regolith thickness). An overlay of the observed seismic cutoff with the map of the lunar regolith distribution shows that there is indeed a correlation between the regolith depth and the seismic cutoff frequency of an impact event.

Acknowledgments: This work was undertaken during the preparation phase of the SEIS experiment on InSight mission. The work was supported by the Russian Foundation for Basic Research, project no. 15-02-00840.

References

Introduction

The areoid heights and gravity anomalies for the model of Mars are calculated. Mars deviates much more strongly from the hydrostatic equilibrium than the Earth. It is suggested that the average thickness of the Martian elastic lithosphere should exceed that of the Earth’s continental lithosphere. Our approach is as follows: we use the Martian interior structure model, which retains the values of M, R and ω – the mass, the average radius, and angular velocity of the planet’s rotation. The model [1, 2] satisfies the values of the mean moment of inertia, Love number k_2, and the weight ratio Fe/Si must be closed to the chondritic value.

Data analysis

We have used the detailed gravity and topography models: the high resolution MOLA (Mars Orbiter Laser Altimetry) global topography [3] and gravity field MRO110B2 and MRO110C models from Jet Propulsion Laboratory [4]. The definition of the “topography” needs the choice of a reference surface. An outer surface of a hydrostatical model is taken as a reference surface [5, 6]. Only nonequilibrium components of gravity and topography fields have been considered: surface relief (or topography) was referenced to the standard equilibrium spheroid in the first approximation, and the hydrostatically equilibrium field of the Martian spheroid was subtracted from the full potential [7].

Figure 1 shows a map based on the data for the heights of the surface relief of Mars after expansion to degree and order 90. The map demonstrates one of the main features of the Martian topography: the elevation of the southern, heavily cratered
regions relative to the northern planetary depression. One can see also the main geological structures such as the

![Contour map of heights of the surface relief of Mars to degree and order 90. The zero level (thick solid line) corresponds to the equilibrium figure. The solid lines correspond to positive heights; the dashed ones, to negative heights. The interval between contours is 1 km. The map legend: I – the Hellas basin, II – the Argyre basin, III – the Isidis basin, IV – Utopia Planitia, V – Acidalia Planitia, VI – Arcadia Planitia, VII – Amazonis Planitia, VIII – the Elysium uplift, IX – Alba Patera, X – the volcano Olympus Mons, XI – the volcano Ascreaus Mons, XII – the volcano Pavonis Mons, XIII – the volcano Arsia Mons, XIV – Valles Marineris, XV – Biblis Patera; the craters: XVI – Huygens, XVII – Cassini, XVIII – Schiaparelli, XIX – Darwin, XX – Galle, XXI – Gale, XXII – Phillips, XXIII – Lowell, XXIV – Schmidt, XXV – Newton.](image_url)
Fig. 2. Map of areoid heights for harmonics of degree 7 through 90 relative to the equilibrium figure. The solid lines correspond to positive heights, the dashed ones, to negative heights: the zero level is shown by a thick solid line. The interval between the contour lines is 50 m.

Tharsis and Elysium uplift, the Hellas, Argyre, and Isisdis circular basins, the volcano Olympus Mons, Alba Patera, etc.

Areoid heights

It is clear, that the Martian potential field is strongly dominated by long-wavelength components. The reason that the amplitudes of the harmonics of degrees $n = 2 - 6$ in the potential spectrum far exceed the amplitudes in the rest of the spectrum and carry information mainly on the global Tharsis anomalies. For the identification of the small-scale structure Fig. 2 shows the areoid heights starting from the seventh harmonic, i.e., after the elimination of the long-wavelength background. In Fig.2 along with the strong anomaly from Olympus Mons, one can clearly see a number of other local anomalies associated with such regions as Utopia Planitia, the Elysium uplift, Valles Marineris, the volcanoes Arsia Mons and Ascræus Mons, Alba Patera, etc. Noteworthily is the regions of negative areoid heights around Olympus Mons.
Gravity anomalies

Figure 3 shows a map of the δg contours on the surface of Mars. In addition to the pronounced global Tharsis anomaly, which is characterized by $\delta g \sim 200-300$ mGal, one can clearly see others, more local anomalies, corresponding to specific topographic structures. The Hellas basin has no substantial perturbations in gravity acceleration: within the basin δg varies from 130 to 50 mGal and the Hellas basin can be considered as an isostatically compensated structure, or in the case of a thick crust, even as a mascon.

Utopia Planitia (IV) is characterized by a vast anomaly of 150-330 mGal, which together with the 1 – 2 km lowering in the terrain, allows one to consider Utopia as a gigantic impact basin, perhaps, the most ancient one on Mars. It is a gigantic Martian mascon. To the northwest of the Hellas basin, there is the Isidis impact basin (III), which is an analogue of the lunar mascons and has a positive anomaly reaching a maximum of 600 mGal. To the east, the circular contours δg outline the Elysium uplift (VIII); at the center of the uplift, $\delta g = 850$ mGal.

A number of characteristic features of the gravity field are clearly seen in the neighborhood of the Tharsis uplift against the background of the associated global anomaly. The lowering of the relief along Valles Marineris (XIV) is indicated by negative values of δg down to -380 mGal. The somewhat attenuated anomaly with the amplitude of 500 mGal

Fig. 3. Map of the deviations of the gravity from the hydrostatic-equilibrium values δg on the Surface of Mars for harmonics of degree 2 through 90. The solid lines
correspond to positive values; the dashed lines, to negative ones. The interval between the contour lines is 100 mGal. The insets show the deviations of gravity from the hydrostatic-equilibrium values δg for the area of Olympus Mons and the Isidis and Elysium basin for harmonics of degree 7 through 90 corresponds to the Alba Patera (IX). There are distinct anomalies associated with two of the three central shield volcanoes on the Tharsis uplift – Ascreaus Mons (XI) and Arsia Mons (XIII), the tops of which have δg, of 2500 and 2000 mGal, respectively. Pavonis Mons (XII), located right between the two, has a δg value of 1700 mGal. Noteworthy is the area of Biblis Patera (XV), where, amidst values of \sim 300 mGal, there is a sharp drop in δg to zero and further, to negative values, which are seen around Olympus Mons (X) in the inset to Fig. 3 for harmonics n from 7 to 90.

This feature was already noted above when discussing the areoid heights and, together with the absence of lowering in the relief, may mean the presence at the Moho of a crust thickening, which is a part of an extended compensation «root» supporting Olympus Mons (X), above which the gravity anomaly reaches an amplitude of 3300 mGal. It is possible that the Elysium uplift and the Isidis mascon have a similar structure.

Also noteworthy are the negative anomalies corresponding to Amazonis Planitia (VII, -215 mGal), the Argyre impact basin (II, -280 mGal) and Acidalium mare (V, -215 mGal). The south pole is characterized by an almost zero value of δg, at the north pole, $\delta g = -145$ mGal.

Here we give values for several impact craters of the more ancient southern hemisphere with diameters of several hundreds of kilometers (see Fig.1). A part of the craters have negative anomalies: Galle (-267 mGal), Gale (-216 mgal), Lowell (-206 mgal), Schmidt (-67 mGal), Newton (-134 mGal); another part have positive values, close to zero: Huygens (57 mGal), Cassini (15 mGal), Schiaparelli (30 mGal), Darwin (19 mGal), Phillips (38 mGal), which is evidence of a state close to isostasy.

Acknowledgments: This work was undertaken during the preparation phase of the SEIS experiment on InSight mission. The work was supported by the Russian
Foundation for Basic Research, project no. 15-02-00840.

References

FIRST TOPOGRAPHIC PLAN OF A REGION OF “LUNA 9” PLACE OF SITE

ZH.F. RODIONOVA (1), V.V. SHEVCHENKO (1), G.G. MICHAEL (2)

(1) Sternberg Astronomical Institute of Lomonosov State University, Moscow, Russia
(jeanna@sai.msu.ru/Fax:495-932-88-41)
(2) Free University of Berlin, Germany

On February 3rd 1966, the Soviet spacecraft “Luna 9” made the first ever soft landing on the lunar surface at the western edge of Oceanus Procellarum. This successful experiment was the outcome of the vast effort of designers, engineers and workers, whose hands created the spacecraft. In December 1961, then unknown chief designer Sergei Pavlovich Korolev gathered the famous astronomers A.G. Masevich, D.Y. Martynov, Yu. N. Lipsky, M.M. Kobrin, A.A. Mikhailov, N.P. Barabashov and V.S. Troitskiy [1] in the Academy of Sciences to find out whether the surface of our natural satellite, the Moon, was hard, or whether it was covered in a thick layer of dust into which a spacecraft could sink [2]. Fig. 1a shows a document signed by Korolev in which he explained that the lunar surface is hard enough and looks like pumice-stone. Luna 9 made a soft landing at the edge of Oceanus Procellarum (at 7°8’N, 64°32’W) between craters Cavalerius and Galilaei. Fig. 1b shows a part of panorama of the site.
The original method of soft landing was proposed by Korolev (Fig. 2a). It was used for many spacecraft in Russia, the USA, and other countries [3].
The soft landing of the Soviet “Luna 9” and its transmission of unique panoramic images of the lunar microrelief opened a new epoch in the study of the cosmos. Inside the body of the probe, which consisted of two hemispheres, was a frame with the radio communication apparatus, a chemical battery, electronic program and timing devices and scientific instruments. A television system provided a direct transmission to Earth of a panoramic view of the lunar landscape. The petal and rod antennae and the mirrors were in a folded configuration on landing. After touchdown, the program-timer triggered the release of pyrotechnic bolts, opening up the antennae. The probe weighed 100 kg, with the antennae being 112 cm. The diameter of the probe after opening was 160 cm (Fig. 2.b). The transmission of a single panorama lasted 100 minutes: there were seven communication sessions in all, with a total duration of more than 8 hours.

The experiment revealed the microstructure of the lunar soil, discovered the presence of rocks at the surface and established that the Moon was not covered by a significant layer of dust [3]. Three complete panoramas of the vicinity were received with the Sun at 7°, 14° and 27° above the horizon, and a partial fourth panorama with the Sun at 42°. By comparing the images with differing illumination, it was possible to assess the microrelief and structure of the lunar soil from the changing shadow lengths [4, 5]. Additional data on the properties of the lunar soil were obtained by “Luna 13” which had special sensors mounted on a 1.5 m arm for measuring the mechanical properties of the soil: a stamping device and a density sensor using radiation.

The first topographic scheme for parts of the lunar surface using the data from “Luna 9” was compiled at MIIGAiK in 1966. A schematic map of the landing area was constructed at 1:40 and 1:20 scales (Fig.3). Contours marked the heights in centimetres with 5 cm intervals, and craters and rocks were numbered [6]. The heights ranged from -2 to -59 cm. The radial distance from the probe was marked at 1 m intervals, with azimuthal lines every 20° from the centre of the panoramas. 86 craters and 74 rocks were identified.
Fig. 3. Topographic plan of the landing area of Luna 9.

References:

PLANETARY GEODESY AND CARTOGRAPHY AS METHODS OF EXTRATERRESTRIAL EXPLORATION
KARACHEVTSEVA AND MIIGAIK EXTRATERRESTRIAL LABORATORY (MEXLAB)

Abstract
Remote sensing data obtained from various planetary missions provides possibilities for study of extraterrestrial territories by geodetic and cartographic methods. Images and maps are the common and the only possible way to explore the surface of planets and their satellites. Based on GIS and web-technologies we developed a modern approach for study of the Solar system bodies that combines various tasks (Fig.1): 1) photogrammetric image processing for creation of shape models and mosaics; 2) estimation of the basic geodetic parameters and establishment of the coordinate system on the celestial bodies; 3) analysis of the planetary surface based on cartographic measurements; 4) creation of printed and online maps to present the results of research. To solve these tasks special software has been created – from photogrammetric bundle block adjustment [1] to morphometric study and landing site selection [2] and to access the data via planetary Geoportal [3].

Basic Geodetic Parameters of Celestial Bodies
Control point networks (CPNs) are the main geodetic data for planetary study that provide coordinates for surface objects. The CPNs for different celestial bodies derived from photogrammetric processing, including bundle block adjustment of coordinate measurements using stereo images. Fundamental parameters of planets and their satellites like shape, size and forced libration can be measured on base of CPN and using special developed technique [4]. For example, for Phobos [5] and Galilean satellites [6] the shape parameters were recently updated as well as force
libration model of Enceladus [7]. These data are very important for understanding of interior structure of bodies as well as for accurate mapping that based on refined radii of spheres different from previously recommended by IAU (http://astrogeology.usgs.gov/groups/IAU-WGCCRE).

Figure 1. Geodesy and Cartography for study of the Solar system exploration

Automatic Morphological Analysis of Planetary Surface

As impact craters are the common objects on the planetary surfaces, we developed the automatic algorithm that calculates crater’s depth using special approach [8]. The technique, which avoids wrong depth calculation for small craters located at slopes, was applied to comparative analysis of morphometric parameter of lunar craters. The polar craters were found to be systematically shallower than craters at lower latitude. It is one of evidence of the actual presence of water ice or, possibly, organic volatile
materials in the polar areas that could be used for assessment of landing sites for future Russian lunar sample probe return mission like Luna-Grunt (https://www.laspace.ru/projects/planets/luna-grunt/). For studying of various factors, which influence on safety of spacecrafts landing, the integral algorithm for complex surface analysis has been created [9]. It includes crater’s depth calculation technique mentioned above and additional spatial tools: 1) automated calculation of surface parameters (slopes and roughness) on baselines defined by initial DEMs; 2) detection of visibility zones of Earth and Sun during the period of observation as well as the Sun illumination, sufficient for lander operations [1]; 3) overlay analysis for landing site selection. Estimation of surface suitability is carried out involving ephemerides of celestial bodies and different original data, for example, distribution of scientific interest factors such as LEND [10], results of geological mapping [11] or morphometric assessment [8] of South pole of the Moon. On base of user-defined range of suitable values for each of studied factors the algorithm implements overlay analysis and outlines zones satisfying the conditions of landing.

Planetary Mapping

Besides automatic tools, special maps are created to support the planetary study or planning of space missions based on surface analysis [12]: to characterize safety for spacecraft landing at selected potential site, to estimate topographic parameters which may affect the operation of the landing module, to demonstrate the absence of boulders and fresh small craters, which could be dangerous for the landing. Planetary maps allow to visualize the various parameters at different level of details, comparable to the lander’s size, and at the overview scales of study area, for example, maps of Lunar poles that help to detect the smoothest areas that safe for landing or permanently shadowed regions (Fig. 2). To test our methods of landing site characterization, we studied a reference area: Lunokhod-1 (Luna-17) and Lunokhod-2 (Luna-21) operation regions on the Moon (Fig. 3). Recently updated measurements of Lunokhods routes [13, 14] based on modern high resolution images provided by
Lunar Reconnaissance Orbiter (LRO) mission (http://www.lroc.asu.edu/) and involvement of new processed historical lunar panoramas embedded in spatial context [15] support evaluating the plausibility of the results and extrapolating their application to new landing site selection for future Russian missions to the Moon, as well as presentation of achievements of the Soviet space research. All created maps are bilingual (Russian / English) and can be used by international planetary community.

Figure 2. Layout of hypsometric map of Lunar Polar areas (MIIGAiK, 2016) in scale 1: 1 600 000, including special maps with relief parameters for one of the selected landing area (inset in bottom).
Figure 3. Layouts of new maps of Soviet Lunokhods routes (MIIGAiK, 2016): a) landing area of Luna-17 mission (1971) in scale 1: 6000 (new names for 12 small craters along route were improved by IAU in 2012 using Russian men names); b) landing area of Luna-21 mission (1973) in scale 1: 25 000 (new names for 23 small craters in studied area were suggested to IAU in 2016 using Russian women names).

Figure 4. Layouts of geomorphological planetary maps (MIIGAiK, 2016): a) relief parameters of the Moon – roughness and topographic maps in scale 1: 20 000 000; b) map of Phobos grooves (1: 150 000) based on created catalog of lineaments, that includes more than 1000 objects
(http://cartsrv.mexlab.ru/geoportal).
Geoportal and Online Laboratory

We use modern spatial and web-based technology to store and distribute the results of data processing of various planetary missions, including past Soviet Lunar program, with access via geoportal (http://cartsrv.mexlab.ru/geoportal). It is the practical implementation of the idea of a thematic node, stored geodetic and cartographic results of planetary research, proposed by Kira Shingareva (1938-2013) since 2003. Geoportal provides public access to the products of different processing levels: DEMs and orthomosaics of Phobos, Mercury, Moon, Ganymede and other Galilean satellites, Enceladus; catalogues of relief objects for studied celestial bodies; results of roughness calculation; control point networks, etc.

![Image](a.png) ![Image](b.png)

Figure 5. Results of Mercury cartography: a) first Mercury hypsometric globe (MIIGAiK, 2015), created using modern MESSENGER mission data (2011-2015); b) layout of hypsometric map in scale 1: 20 000 000 (MIIGAiK, 2016), including examples of small-scale maps (inset in bottom) demonstrated studied areas with hollows and flat-floored craters [16].

Based on conception of “online laboratory” [17], now we are developing new interactive web-tools, which can be widely used in planetary studies: crater
catalogization, morphometric measurements, landing site selection for planning of future missions. Planetary web-laboratory will provide collaborative research of international scientific community based on joint online meeting within common spatial context to share and discuss observations and results of measurements.

Conclusions
The modern spatial methodology that combines the developed tools and algorithms, results of surface analysis and online access to the planetary data was applied for studies of fundamental parameters and relief of Solar system celestial bodies. As a visual representation of the research various planetary maps were published by MIIGAiK, including Phobos atlas [18], geomorphological maps of the Moon (Fig. 4a) and Phobos (Fig. 4b), Mercury hypsometric globe (Fig. 5a) and map (Fig. 5b), and others. The results of work, presented on maps, are useful for Solar system research, including fundamental studies of planetary surfaces and their comparative analysis, as well as planning future Russian missions (https://www.laspace.ru/projects/planets/): Luna-Globe, Luna-Resource, Luna-Grunt, and Mars-Grunt (project Bumerang to Phobos).

Acknowledgment. The work was carried out in MIIGAiK and supported by Russian Science Foundation, project “Study of fundamental geodetic parameters and relief of planets and satellites”, No.14-22-00197.

References

In 1946, there was created the Council of Chief Designers on rocket technology in the Soviet Union that was headed by Sergey Pavlovich Korolev. In order to implement manned missions and launching of automatical space stations Sergey Korolev developed series of perfect three and four stage delivery vehicles based on battle ballistic missile [1, 2].

In 1959, unmanned spacecrafts were created and launched to the Moon. The USSR’s space mission consisted of 17 unmanned spacecrafts that were to reach the lunar surface and to collect samples of lunar rocks. During 8 years starting from 1966 to 1974, the program-providing human access to the moon was developing. Rocket-carrier H1 extra heavy class space launch vehicle was used as the main launch vehicle and man-related spacecraft, launching heavy (75 tons) on-orbit station into the low earth orbit. There were various scenarios of landing men on the Moon discussed by S.P. Korolev.

One of the projects called "Zvezda" was developed in 1963. The spacecraft weighing about 200 tons was drawn together on the Earth's orbit of the items displayed in three launches of rocket-carrier H-1 and "Soyuz" for making a soft landing without entering into lunar satellite orbit. Spacecraft "Soyuz" with a crew of 2 - 3 people in the final stages of assembly docked with the space complex. "Soyuz" was meant to be used for returning the astronauts to the Earth.
In March of the same year under auspices of Sergei Korolev there were started the preparations for the establishment of a new spacecraft designed for near-Earth missions and missions to the Moon using a new type of launch vehicle. As a preliminary stage, "Soyuz 7K-L1" program was conceived. The program included launching into the lunar orbit of two-passenger orbiter "Soyuz 7K-LOK" and single-seated lunar ship LK-T2K. One of the astronauts had to move through the open space into the lunar spacecraft in orbit with the use of the same block had to start landing on the Moon.

Soviet lunar program supposed staying on the Moon of one astronaut and one 5-kilometer-long transition to a reserve spacecraft in the case of failure to carry out a take-off from the Moon with the main spacecraft. An astronaut spacesuit of a system "Krechet" provided a record of human self-contained stay on the Moon – until 10 hours, during which the researcher could make researches with large physical workload. In December 1965, a project of a flyby of the Moon was fully transferred to the Development Design Office-1 headed by Sergei Korolev. A new scenario involved the use of a single series of "Soyuz" for flying around the Moon.
(modification "Soyuz 7K-LK1") and for landing on the Moon (modification "Soyuz 7K-LOK"). For a flyby, it had to be used a developed by the leading designer of OKB-52 by Vladimir Chelomey rocket "Proton", and for landing - rocket of Korolev H-1. On January 14, 1966 during the surgery Sergei Pavlovich Korolev was died in his place appointed Vasily Mishin.

Fig.4. Soviet spacesuit Krechet to exit on the lunar surface (left side view and front view).

In November 1966, it was started a phase of flight testing of spacecraft of series «Soyuz» and a preparation for the launch of a complex "Proton-K - Soyuz 7K-L1". Just a few days before the start of Saturn-V - Apollo-8 the complex "Proton-K - Soyuz 7K-L1" was prepared for the launch at Baykonur. Soviet astronauts were ready for the flight on December 8 but the high probability of disaster did not allow the management to make a decision earlier than the Americans. In December 21, 1968, astronauts Borman, Lovell and Anderson left for the Moon aboard of the spacecraft Apollo-8. For the first time, people left the near-Earth space. For the first time they did not observe sunrises and sunsets and for the first time they saw the backside of the Moon.
On July 13, the last attempt was made for overtake the Americans. With the help of the carrier rocket "Proton-K" to the Moon it was launched an automatic station of a new generation "Luna-15", which was supposed to deliver the first samples of lunar soil to the Earth. However, already on July 16 it was started a flight of American spacecraft Apollo-11 with a crew consisting of astronauts Armstrong, Collins and Aldrin. In the flight program it was listed a first landing of a man on the Moon. On July 20, 1969, almost simultaneously it was started a landing of automatic station "Luna-15" and the lunar module, manned by Armstrong and Aldrin. When landing the Soviet automatic station "Luna-15" crashed, and the lunar module did a successful landing. However, works at the Soviet lunar program did not stop at that point. On August 7, it was successfully launched and after 5 days, making a flyby and photographing of the Moon an unmanned "Zond-7." It was the first and the only flight program "Soyuz 7K-L1" held without comments.

Later (in 1970 and 1973) there were delivered to the Moon and successfully operated for several weeks, the first in the world remote-controlled from the Earth Soviet lunar self-propelled machines "Lunokhod". With a station "Luna 17", launched on 10 November 1970, to the Moon, it was delivered a self-propelled machine "Lunokhod-1", representing a complex laboratory. On the surface of the Earth's satellite the machine did a path with a length of 10 540 meters. "Lunokhod-2" was delivered on January 16, 1973, with the station "Soyuz -21". Soviet stations "Zond" held a variety of research in the near the moon space and returned to the Earth [3].

In 1974, the director and the general designer of the space systems Research and Production Association (RPA)"Energy" was appointed Valentin Petrovich Glushko [4, 5]. Under his leadership, it was created a whole family of aircraft rockets (RLA), working on cryogenic fuel and six lateral accelerators operating at the old exhaust components hydrogen and kerosene, and by which the heaviest of them, was RLA-150 "Vulkan". The project involved a development of a set of equipment for the establishment of the lunar base on a regular basis. At the end of 1974 it were
developed technical proposals for lunar expeditionary complex "Zvezda" that was based on a lunar expedition ship, delivered to the Moon and back to the Earth with a straight scheme. By the end of 1975 RPA "Energy" program boosted a program MKTS and created a reusable space transportation system "Energy-Buran". The projects of the moon expeditionary complex "Zvezda" and a space system "Energy-Buran" were not implemented [5]. The last lunar probe was an automatic interplanetary station (AIS) "Luna-24", delivered in to Earth two-meter column of the lunar soil, 170 g of the new lunar rocks in August 1976.

After a long pause in the research of the Moon by the spacecrafts, 18 years later, in 1994, it was sent to the Moon an American spacecraft "Clementine" for shooting the Moon's surface with a high resolution. Spacecraft "Clementine" transmitted to the Earth about 1.8 million of the Moon’s images.

References:
ANALYSIS OF EPITHERMAL NEUTRON FLUX FROM BOUGUER ANOMALIES REVEALED BY GRAIL

M.P. SINITSYN

Sternberg Astronomical Institute, Moscow State University, Moscow, Russia

(msinitsyn.sai@gmail.com / Fax: +7-495-9328841)

Abstract

Recently GRAIL spacecraft recognized a large number of gravity anomalies located concentrically inside of the ring and multi-ring basins of the Moon. In addition with well-known basins gravity anomalies located in so called probable impact formations, which arranged under any layers of lava or ejections from neighboring impact processes. As a result, some reliable information has appeared for identification of new impact structures that not have enough any clear external signs. Investigations of the same shock formations using LEND neutron spectrometer data have shown that these structures are characterized by a relative increased epithermal neutron (EN) flux in comparison with areas located just outside the outer ring. Furthermore, directly in the field of gravity Bouguer anomalies, even more increasing EN fluxes has observed in any case. The neutron flux also tends to increase from the barely distinguishable or completely unknown ring basins that can’t be identified visually. Finally, according to changing of EN flux it is possible to confirm the existence of some invisible circular basins that have no gravitational anomalies.

The results of lunar impact basins identifications by GRAIL spacecraft

According to GRAIL data, there are positive Bouguer gravity anomalies in impact basins with diameters greater than 200 km. (fig.1) in the center and negative at the
outer ring boundary [1,2]. The positive anomaly formed due to process of reducing
the crust thickness within the inner ring and the raising of upper mantle. A negative
Bouguer anomaly is recognized at the vicinity of outer ring as a consequence of
increasing the crust thickness. Such phenomena occur due to development of impact
process [3,4].

Fig.1 (left) Mare Oriental is multi-ring basin on the far side, contains of few rings.
The wide red line denotes so-called gravitational Bouguer anomaly. Its size is
approximately equal the size of inner ring. Inside the gravity anomaly located one
more, smaller ring (left). Mare Imbrium is near side multi-ring basin with ring
structures which had been hidden under the later lava flows (right).

Thus, according to GRAIL data the gravitational Bouguer anomalies have been
calculated for lunar ring structures with a diameter of more than 200 km. [1].Together
with well-known basins like mare Oriental and mare Imbrium, both requiring
confirmation and unknown ring structures are included in this list. Such basins are
Balmer-Kapteyn, Fitzger-Jackson, Szilard-North and others [5,6,7]. Visually the ring
structures may be indistinguishable, as they are under the later impacts and volcanic
formations. These structures are particularly numerous on the far side due to its
greater age. The age of ones is mainly attributable to Pre-Nectarian. It should be said
that the gravitational method of identifying of new impact basins allows to release their structures from the later accretions and recover their actual number.

Analysis of epithermal neutron flux, coming from lunar impact basins

For analysis of neutron flux the epithermal neutron count rates, obtained by spectrometer LEND have been used [8]. To quantify the EN flow from the surface of the selected area it is necessary to choose a so-called reference zone. The estimation of neutron flux has been produced in comparison with one. In this case, the reference area located immediately behind the outer ring and encompasses the entire ring structure. We estimate the relative changing of neutron flux δ (suppression factor) [9] inside the ring or multi-ring basin compared to these outer reference zone. If the neutron flux is reduced then $\delta > 0$, otherwise the suppression factor is negative. We give preliminary results concerning suppression factors for some impact basins commonly for near and far sides (tab.1).

<table>
<thead>
<tr>
<th>Impact basin</th>
<th>lat.</th>
<th>long.</th>
<th>outer ring suppr. (δ)</th>
<th>inner ring suppr. (δ)</th>
<th>Bouguer anomaly suppr. (δ)</th>
<th>Bouguer anomaly (mGal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.d’Alembert</td>
<td>51.1</td>
<td>164.8</td>
<td>-0.020</td>
<td>-0.025</td>
<td>-0.027</td>
<td>46</td>
</tr>
<tr>
<td>2.Bailly</td>
<td>-67.1</td>
<td>-68.9</td>
<td>-0.020</td>
<td>-0.021</td>
<td>-0.024</td>
<td>94</td>
</tr>
<tr>
<td>3.Campbell</td>
<td>45.5</td>
<td>153.0</td>
<td>-0.019</td>
<td>-</td>
<td>-0.028</td>
<td>39</td>
</tr>
<tr>
<td>4.Hamboldt.</td>
<td>57.3</td>
<td>82.0</td>
<td>-0.016</td>
<td>-0.017</td>
<td>-0.022</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>Imbrium</td>
<td>Leibnitz</td>
<td>Moscoviens</td>
<td>Oriental</td>
<td>Fitzger-Jackson</td>
<td>Fowler-Charlier</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>37.0</td>
<td>-38.2</td>
<td>26.1</td>
<td>-20.1</td>
<td>25.1</td>
<td>-39.3</td>
</tr>
<tr>
<td></td>
<td>-18.5</td>
<td>179.2</td>
<td>147.</td>
<td>-94.8</td>
<td>-169.4</td>
<td>-142.0</td>
</tr>
<tr>
<td></td>
<td>+0.003</td>
<td>-0.020</td>
<td>-0.017</td>
<td>-0.014</td>
<td>-0.008</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>-0.011</td>
<td>-</td>
<td>-0.028</td>
<td>-0.021</td>
<td>-0.012</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-0.011</td>
<td>-0.038</td>
<td>66</td>
<td>-0.023</td>
<td>-0.013</td>
<td>156</td>
</tr>
</tbody>
</table>

probable and previously unknown basins with Bouguer anomaly by GRAIL

<table>
<thead>
<tr>
<th></th>
<th>Al-Khwarizmi King</th>
<th>Bailly-Newton</th>
<th>Flemsteed Billy</th>
<th>Keller Hearvside</th>
<th>Schreding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>-73</td>
<td>-7.5</td>
<td>-10</td>
<td>-81</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>-57</td>
<td>-45.0</td>
<td>162</td>
<td>-165</td>
</tr>
<tr>
<td></td>
<td>-0.012</td>
<td>+0.008</td>
<td>+0.01</td>
<td>-0.003</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>-0.015</td>
<td>-</td>
<td>-</td>
<td>-0.003</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tab.1 The suppression factors for some lunar impact basins both with Bouguer gravity anomalies and without ones. Most standard errors of δ are not less than 3σ.

In case of absence the gravity anomaly the epithermal neutron suppression factor can confirm the existence of hidden impact basin. These ones are, for example, Al-Khwarizmi King, Bailly-Newton and others.

Discussion

It should be noted that EN neutron flux coming from the upper layer of the surface (up to 2 meters) and it is mainly determined by the hydrogen content and, perhaps, additional absorbers [10]. However, the crust thickness in gravity Bouguer anomaly is about 10 km. and more [11]. Therefore, the question remains about the reason of the neutron flux changes within the anomaly. Note that the suppression factor is mostly negative for ring structures on the far side, while it is positive on the near side. This may be due to really different hydrogen content in lavas on the different sides of the moon.

References:

THE POSSIBLE EXISTENCE OF DEPOSITS OF VOLATILE COMPOUNDS IN THE NSR S5 AREA IN THE AREA OF SCOTT CRATER ON THE MOON

PUGACHEVA S. G., FEOKTISTOVA E.A., SHEVCHENKO V.V.
Sternberg State Astronomical Institute, Moscow State University, Moscow, Russia
katk@sai.msu.ru

The six statistically most stable spots with the lowered neutron flow were revealed by the LEND neutron spectrometer installed on board the LRO spacecraft in the both lunar polar regions [1]. Five spots are located near the South Pole of the Moon and one - near the North Pole. Only one of the above spots - NSR S5 (center coordinates ~ 83° S, 30° E) - is located in the Luna - Glob spacecraft landing area (sector boundary 70° S - 85° S, 0° E - 60° E [2], planned by Roscosmos in 2019. In vicinity the area of NSR S5 there are a large crater Scott (82.2 ° S, 48.3 ° E, D = 107.8 km) and its satellite craters: Scott E (81.2 ° S, 35.7 ° E, D = 29 km), Scott M (83.9 ° S, 34.7 ° E, D = 18 km), Vapovsky (83.1 ° S, 53.5 ° E, D = 11.5 km), located on the inner slope of the crater Scott.

In the present study, we investigated the illumination conditions, temperature regime and the possibility of existence of deposits of volatile compounds, similar to those found at the site of LCROSS probe fall in the crater Cabeus (85.2 ° S, 42.1 ° E, D = 100.6 km), such as H2O, H2S, NH3, SO2, C2H4, CO2, CH3OH, CH4 and CO [3] in vicinity NSR S5 spot. The data from laser altimeter LOLA onboard the LRO spacecraft was used to obtain the illumination condition in this region. The approach of Zevenbergen and Thorne (1987) [4] was used to construct digital elevation map. We modeled diurnal variations of illumination according to the variations of altitude of the sun above the horizon. Our calculation shows that the permanently shaded areas are exist in the north parts of the inner slope of such craters as Scott, Scott E and Vapovsky and in the area coinciding with the NSR S5 spot (Fig.1) (their area is
up to 74 km2). According to our estimates the total area is permanently shaded areas in this region is 1500 km².

Figure 1. The illumination conditions in vicinity of crater Scott and NSR S5 area. Area NSR S5 shown by an arrow.

We used the currently accepted model of two-layer soil of the moon [5] to calculate the thermal conditions of the lunar surface. According to this model the lunar regolith composed of two layers: the top dust layer with a thickness of 2-3 cm and characterized by low density (1000 – 1300 kg/m³) and low thermal conductivity (~ 10⁻⁴ W/mK) and the second layer with a thickness of 3-5 m, higher density (1800 \(\text{kg/m}^3 \)) and thermal conductivity (10⁻³ W/mK) [5]. According to [5] the deposits of some volatiles remain stable over a long time if the evaporation rate is less than 1m/1 billion years.

Fig. 2 shows the distribution of the maximal temperature in this region. The values of maximum temperatures here are ranges from 100 to 390 K. The highest values of maximum temperatures observed in the southern part of the inner slopes of craters Scott (250 - 300 K), the Scott E (250 - 390 K), Vapovsky (250 - 390 K), as well as on the slope of a hill northwest of the crater Nobile (200 - 390 K). The maximum temperature at the bottom of craters Scott and Scott E are in the range 200
- 300 K. The lowest values of maximum temperatures observed on the northern slopes of the crater Scott (45 - 100 K), Scott E (40 - 60 K) (45 - 60 K) and Vapovsky (45 - 100 K), as well as in the area coinciding with NSR S5 (40 - 100 K) (Fig. 2). Minimum temperatures in the bottoms of Scott and Scott E craters do not exceed 80 K. On the northern slopes of the crater at night the temperature dropped to 40 - 60 the K, on the southern - 80 - 90 K. The night temperature area, which coincides with the NSR S5 area are in the range 40 - 80 K.

We found that in the vicinity of the crater Scott and spot NSR S5 there are areas that are not shaded constantly, but the temperature conditions in which allows several volatiles, such as CH3OH, SO2, NH3, CO2, H2S, C2H4 and water, to remain stable on the surface against thermal evaporation for a long time (≥1 billion years).

We found that in the vicinity of the crater Scott and spot NSR S5 there are areas that are not shaded constantly, but the temperature conditions in which allows several volatiles, such as CH3OH, SO2, NH3, CO2, H2S, C2H4 and water, to remain stable on the surface against thermal evaporation for a long time (≥1 billion years).

Figure 2. Maximal temperature in vicinity of crater Scott and NSR S5. Area NSR S5 shown by an arrow.

Figure 3. The location of the areas in which the water ice deposits can exist on the surface during the long time.
However, according to our results, in this region there are no areas where it is possible the existence of a stable on the surface and under the surface deposits of such compounds as CO and CH4.

According to our results high concentrations of hydrogen in the NSR S5 and around the crater Scott may be due to the presence of volatiles deposits. This finding allows us to assume that the area of Scott and field NSR S5 crater may be suitable for the landing of the descent module of automatic future lunar missions.

References:
TIDAL-LIBRATIONAL DISSIPATIVE DYNAMICS OF THE MULTI-LAYERS MOON

A.GUSEV¹, H.HANADA², ZH.MENG³, J.PING⁴

¹Kazan federal university, Kazan, Russia; ²RISE, NAOJ, Mizusawa, Japan; ³Jilin university, Changchun, China; ⁴Key Laboratory of Lunar and deep space exploration research, NAOC CAS, Beijing, China. Contact: agusev33@gmail.com

The problem of rotation, physical libration and interior of the multi-layer Moon will remain a central problem for selenodesy, selenodynamics and selenophysics (Gusev, Hanada, Petrova, 2015). Its actuality increases with an increase of accuracy of different kind observations of the Moon. Now the laser ranging measurements of distances to the lunar reflectors achieves some millimeter level of accuracy. The LRO, GRAIL, ChangE-3, Luna-Resource-1, ILOM projects are focused on even more precision description of a gravitational field, physical librations and tides of the Moon (Hanada H., et al., 2014).

Tidal phenomena play a key role in the spin-orbital evolution of the moons. The gravitational force exerted by planets deforms the moons (tides) and periodically changes their rotation and space orientation (librations). As a result of tidal dissipation, the Moon and Deimos that form beyond the synchronous radius will move gradually outwards with time, and moons within the synchronous radius will move inwards (Phobos). Early analyses of the effect of tides and tidal dissipation on physical librations by Yoder (1981) and Eckhardt (1981) found a few of the largest terms. Tidal deformations of lunar surface are described by the sum of periodic terms. The maximum of vertical tidal displacement is characterized by amplitude about 100 mm and by anomalistic period in 27.555d (period of mean anomaly). Other significant tidal term has the period 27.212 d (period of node crossing of lunar orbit on ecliptic). Others tidal deformations of the elastic Moon with amplitudes about 10 mm are characterized by the periods in 1 and 1/2 months, and amplitudes about millimeters are characterized by the periods: 1/3, 7 months, 1 year and 6 years.
Horizontal tidal displacements of lunar surface are characterized by amplitudes approximately twice smaller in comparison with mentioned above. Solar tides on the Moon has amplitude 2 mm. Librations also little changes the tides (Williams, et al., 2014).

The influence of a liquid core results in decreasing of the period of librations in longitude on 0.316 day, and in change of the period of free wandering a pole of the Moon on 25.8 days. In the first approximation the liquid core does not render influence on the value of Cassini’s inclination and on the period of precession of the angular momentum vector. However, it causes an additional "quasi-diurnal" librations with period about 27.165 days. In comparison with model of rigid nonspherical of the Moon the presence of a liquid core should result in increase of amplitudes of the Moon librations on 0.06 % (Barkin et al., 2011).

The new prospects for establishment of a liquid/rigid core model and for studying its contribution in physical librations of the full Moon for direct studies of tidal and non-tidal "breath" of the Moon with new multi-parametric rheological interior (Maxwell, Voigt-Kelvin, SAS, Burgers, Andrade models) will be viewed. New differential radio (VLBI/SBI, LRR) and optical (one way of LLR) technologies have been proposed for measurements of Lunar physical librations and Lunar dissipative tides. For this a new big size corner cubes reflectors (bCCR) and a stable long-lived radio beacons should be located on new Lunar landers. Sensitivities to a dissipative physical libration and tidal displacements would be enhanced by a broad geographical spread of the CCR, radio beacons, seismometers, optical telescope on Lunar poles at ChangE-4/5/6, Luna-25,26,27, ILOM projects.

References:

On average Phobos shows always the same face to Mars. Phobos images show, that this skew field have the wrong form which can be approximately approximated an ellipsoid which sizes for a Phobos make 13,00 x 11,39 x 9,07 km (Willner et al, 2010; Oberst et al., 2014), the major axis of an ellipsoid of the moon is directed to Mars, and it are rotated synchronously round of Mars. A moon orbit practically circular with radius-vector 9.375 km. The orbital plane of the moon is close to an equatorial plane of Mars and is inclined under an angle of 240 to an ecliptic plane. A cycle time of a Phobos round of Mars is 7 h. 39 min. Phobos is located well inside the corotation radius of 5.9 Martian radii, and Deimos is just outside this radius. The tides raised on Mars thus cause Phobos to be spiraling toward Mars and Deimos to be spiraling away. The inward drift of Phobos results from dissipation associated with tides raised by Phobos on Mars. Owing to tidal dissipation, the orbit of Phobos evolves in wards and the spin period of Phobos is approximately equal to the mean orbital angular velocity Tidal effects can modify the orbits of the satellites, eventually bringing them closer to those of Phobos and Deimos. Analysis of long-term tidal evolution shows that the orbit of Deimos and Phobos can be reached after 4Gyr (Rosenblatt et al., 2016). This dissipation is most sensitive to the Love number (k2) and the tidal quality factor (Q) of Mars. Measurements of the rate at which Phobos is moving inwards to Mars have been used to receive k2=0.148±0.017 and Q=88±16 for Mars (Black, Mittal, 2016). One of the most interesting characteristics of a Phobos are a physical librations. The Phobos has the big amplitude physical librations among known synchronously rotating a moons of planets of Solar system (Duxbury et al., 2014).
In the report will be presented the review of Phobos physical librations. We give the basic parameters of the Phobos’s rotation and some scientific problems to be solved with the help of the scientific instruments installed on the spacecraft “Phobos-Grunt-II” (2025). Measurement of the Phobos’s libration parameters will allow to study features of rotation of this insignificant body for definition of its internal structure and of its dissipation evolution in future. Yoder (1982) has calculated the dissipation in the Phobos accounting for both the tidal dissipation caused by the eccentric orbit and that caused by the forced libration of the very asymmetric satellite. This libration has an amplitude of 3.9° and causes twice the tidal dissipation in Phobos that would occur if Phobos were nearly axially symmetric in the same eccentric orbit. Both the dissipation in Phobos and that in Mars from tides raised by Phobos damp the eccentricity. Even though Phobos is in a synchronous orbit around Mars, a free libration can be observed due to the varying angular speeds along an elliptical orbit. Phobos pronounced non-spherical body interacts with the gravitational field of Mars causing a large forced libration, a superimposed sinusoidal oscillation. Principal cause of it is that fact, that period of a free libration of this moon (~10 hour.) it is close to period of orbit rotation (~7,7 hour.). On exact measurements of amplitude of a libration it is possible to determine a Phobos moment of inertia that is important for mass distribution researches (interior structure) of Phobos. The free libration period could be better constrained by an estimate of dynamical ellipticity from a more accurate determination of the shape of Phobos along with an accurate measure of its physical libration amplitude.

Essential improvements in our knowledge of Phobos orbit, shape, rotation, librations, and interior geochemical composition are expected, when a high precision images and tracking data from spacecraft, captured in Phobos orbit, become possible (ExoMars, 2020; PhoDEx, 2024; Phobos – Grunt-II project, 2025). The ephemeris of Phobos has to be known at the centimeter level to allow measuring the tidal surface deformation with enough precision to conclude on the nature of Phobos' interior (rubble pile versus monolithic, Le Maistre et al., 2013). The importance of high-
precision orbit determination for investigations in radio-science and planetary research, for example, such as physical librations of Phobos, is well-known (Gusev, 2015). The interest in high-precision Interplanetary Laser Ranging (ILR; Smith, 2006) to Mars is motivated by: i) studies of Martian interior – via the range’s sensitivity to Mars precession, nutations, polar motion; ii) planetary science – via improvement of basic dynamical model parameters for the solar system; iii) tests of relativistic gravitation (Turyshev, 2010; Dirkx et al., 2014).

References:

117
Objectives of the study of Martian/Lunar meteorites, lunar samples, space dust to KFU [2].

Purposes:

1) The study of the internal structure of the multilayer early moon, the planets and moons of the solar system within the stationary and volcanic dissipation of tidal energy budget.

2) Reconstruction of the spin-orbit Earth's history (for paleontological specimens) as a way of understanding and interpreting the sequence-stratigraphic constructions, laying the groundwork for a new geological time scale and the development of ideas about the early evolution of tidal Earth-Moon system.

3) The study of the isotope Fe60, cosmic dust and micrometeorites in the rocks of the Earth's magnetic methods. Isolation of extraterrestrial material from the rock and further studying of-mineralogical, elemental, isotopic composition, origin determination.

4) The study of lunar samples (meteorites and lunar samples of accomplished and future lunar space missions return, isotopes of hydrogen, He3, Fe60.) With
the help of modern NMR and EPR, mineralogical, physical and chemical, elemental, isotopic and paleomagnetic analyzes for the reconstruction of the thermodynamic and (paleo) magnetic evolution of the early Earth and the Moon.
5) Detection of sample signs of generation (clay) in a favorable for the emergence of micro-organisms in the aquatic environment on Earth and Mars with the help of modern methods of mineralogical, physical and chemical, elemental, isotopic and magnetic and paleomagnetic analyzes.
6) Detection of biomarkers in the Martian samples of primitive organisms at different stages of development, conservation and generation of paleosamples.
7) Search of radiogenic pseudomorphisms periclase and spinel by corundum in the substance of ancient meteorites to estimate the contribution of short-lived isotopes in the energy protoplanets and differentiation substance parent bodies of meteorites.

How many the Martian/Lunar meteorites? Now – 132/80

![Graph](image)

Fig. 2. The bulk FeO/MnO ratios for the freshest rocks at Gusev crater are very similar to the bulk FeO/MnO ratios for shergottites, providing another very strong link and proof [3].
What are a geochemical composition of Martian/Lunar meteorites?

A Martian meteorite is a rock that formed on the planet Mars and was then ejected from Mars by the impact of an asteroid or comet, and finally landed on the Earth. Of over 61,000 meteorites that have been found on Earth, 132 were identified as Martian in 2014 yr. These meteorites are thought to be from Mars because they have elemental and isotopic compositions that are similar to rocks and atmosphere gases analyzed by spacecraft on Mars [2].

Fig.3 Composition of Lunar and Martian meteorites [4]
How create the Lunar and Martian meteorites?

The amount of time spent in transit from Mars to Earth can be estimated by measurements of the effect of cosmic radiation on the meteorites, particularly on isotope ratios of noble gases. The meteorites all originate in relatively few impacts every few million years on Mars. The impactors would be kilometer in diameter and the craters they form on Mars tens of kilometers in diameter.

How do we know that they are Martian?

Other diagnostic criteria: (1) they all contain iron-rich oxide minerals (magnetite, chromite, ilmenite) and no iron in metallic form, (2) they all contain an iron sulfide mineral called pyrrhotite, instead of troilite (as found typically in iron metal-bearing meteorites), (3) the pyroxene and olivine minerals within them have ratios of Fe (iron) to Mn (manganese) that are distinctive (see plot
(below), and mostly significantly, (4) they have a narrow range of oxygen isotopic compositions different from those of any other achondritic meteorites

How big they are?

Fig. 6. Photos © T. Bunch; Photo © T. Mikouchi; Northwest Africa 4480. Photo © G. Hupé. The largest Martian meteorite is Zagami at 18.0 kg (40 lbs), followed by Yamato 000593 and paired stones at 15.0 kg (33 lbs), Tissint at >12 kg (>26 lbs), Sayh al Uhaymir 005 and paired stones at 11.2 kg (25 lbs), Dar al Gani 476 and paired stones at 10.4 kg (23 lbs), and the numerous stones of Nakhla at 9.9 kg (22 lbs). The smallest unpaired Martian meteorites are Grove Mountains 020090 (7.5 gr.), Grove Mountains 99027 (10 gr.), Queen Alexandria Range 94201 (12 gr.), Northwest Africa 4480 (13 gr.) and Lewis Cliff 88516 (13.2 gr.).

How to recognize the Martian meteorites?

Fig. 7. In fact none are truly red or even brown (except for parts of some that have been weathered after they landed on Earth). Some Martian meteorites really are dark green (the nakhlites) and a few have pale greenish parts (some ultramafic shergottites), but most are gray or khaki-gray in color, and others are brown or even black (as a result of shock darkening).
What is the age of Martian meteorites?

Fig. 8. The majority of SNC meteorites are quite young compared to most other meteorites and seem to imply that volcanic activity was present on Mars only a few hundred million years ago. The overwhelming body of evidence based on careful radiometric dating studies utilizing Rb-Sr, Sm-Nd, Lu-Hf and Ar-Ar systems applied to whole rocks and separated minerals, as well as the U-Pb system applied to baddeleyite, is that all of the shergoottites have relatively young crystallization ages ranging from 150 to 590 Ma ago. The nakhlites and chassignites have crystallization ages near 1.3 Ga, and Allan Hills 84001 has a Sm-Nd formation age >4.5 Ga and contains carbonates that were added at 3.9 Ga.[3]

What is the ejection time of meteorites from Mars?

Fig. 9. From 0.73 to 20 Ma years.[3]

Comparison of the composition of the crust of Mars, Earth, and the composition of Martian meteorites.
Fig.10. Perfectly matching the relative elemental composition [4].

Classification of Martian meteorites:

Fig.11. Five subgroups of SNC meteorites: Shergottite, Nakhilite, Chassignite, Orthopyroxenite, Basaltic Breccia [3,4].
Why we study the classification of Martian and Lunar meteorites?

Fig. 12. It is difficult to be sure where on Mars the Martian meteorites come from different Martian places. Unlike the situation with lunar meteorites, they probably do not come from different sites, but instead more like 6 to 8 separate sites [3].

Is there life on Mars?

Several Martian meteorites have been found to contain what some think is evidence for fossilized Martian life forms. The Allan Hills 84001 meteorite caused a sensation because of claims made in 1996 by David McKay [1,2] that it contained a preponderance of proposed evidentiary markers for life on Mars about 3.6 Ga ago. Ejection from Mars seems to have taken place about 16 million years ago. Arrival on Earth was about 13 000 years ago. Over a decade later this evidence has nearly all been refuted, although not everything in this remarkable meteorite has been fully explained. One intriguing aspect that has
resisted full explanation is the morphology of tiny magnetite grains, which resemble those produced by magnetotactic bacteria on Earth. Recent study suggests that magnetite in the meteorite could have been produced by Martian microbes.

![Magnetite grains](image)

Fig.13. Nakhla meteorite (BM1911369): Microbial life on Mars?! [1]

Shock characteristics of "native" Martian/Lunar meteorites and Earth’s tektites.

All Martian/Lunar meteorites have been shocked to varying extents. They experienced shock upon ejection from Mars/Moon, and some may have experienced shock from impacts onto the surface of Mars/Moon before that. The peak shock pressures and temperatures can be estimated from mineralogical criteria calibrated by experimental studies, and range from about 25 GPa for nakhlites to 60-80 GPa and up to 2000°C for some shergottites (e.g., Allan Hills 77005, Northwest Africa 4797, Northwest Africa 6342). Of special importance in this field of inquiry are phases such as maskelynite, “post-stishovite” (after shocked silica), various types of melt glasses, injection veins, and even vapor bubbles and vugs. The black or dark brown color of olivine in some Martian meteorites (notably chassignite Northwest Africa 2737, shergottite Northwest
Africa 1195 and shergottite Northwest Africa 5990) is now understood to be caused by shock-induced, solid-state precipitation of nanometer-sized particles of metallic iron [4].

Zhamanshin meteoritic crater and its tektites

Tektites (from the Greek tektós - molten) - green, yellow or black glass natural body of various shapes and sizes, is entirely melted, having a characteristic sculptural surface. The tektites which have been found on land have traditionally been subdivided into three groups: (1) splash-form (normal) tektites, (2) aerodynamically shaped tektites, and (3) Muong Nong-type tektites. Fig.15. Tektites can content a SiO2 up to 88.5%, Al2O3 - 20.5%, FeO - 11.5%, CaO - 8.5%; as also the essential presence of Ni element and relatively low water content compared to the other glasses (obsidians). The difference in water content can used to distinguish tektites from terrestrial volcanic glasses.

Fig.14. Zhamanshin crater. Zhamanshin is the meteorite crater of Kazakhstan, 200 kilometers north of the Aral sea, next to the river Irgiz, 60 kilometers east of the southern end of the Ural Mountains. The crater is as follows: relatively low hills form a ring, the outer diameter of which is 10 kilometers away, and the inner – 5 kilometers. In the center of the ring lies flat basin, which is precisely called Zhamanshin. From the bottom of the crater to the upper points of the shaft - 150-250 meters. Slopes - relatively flat, cut by ravines. We investigated a tektites from the Zhamanshin crater of different geophysical methods. The
chemical (oxide) composition was determined by X-ray fluorescence analysis on a portable analyzer TURBO S2. Fig.15. Tektites.

Fig.15 Zhamanshin tektites of three subtypes.

Tab.1 Geochemical analysis of acidic Zhamanshinite tektites.

Based on the data obtained by electron microscopy, we can be concluded that the samples of each group (classification by morphology and appearance) similar to each other in chemical composition. Tektites 1 ("porous, isometric form"), 2 ("elongated, bubble") and 3 ("breaking the mold") groups are almost identical in chemical composition and it are acidic zhamanshinite on Koeberl classification, 1986, and samples 4 ("elongated, with a glass luster") belong to the group average zhamanshinite the same classification. Consequently, there is a possibility that the chemical composition depends on the morphology of tektites.
Age of tektites. One of the most important problems is the paradox age in elucidating the genesis of tektites: age of tektites much longer than the age stratigraphic horizon from which they are selected. Age of Zhamanshinite tektites varies from 0.68 to 0.99 million years. The age of Zhamanshinite ten samples are averaged 0.81 million years, which corresponds to the most common dating of Asian-Australian tektites. Really, tektites samples were selected from the stratigraphic horizon from the age of 5-10 thousand years! Age of acidic Zhamanshinite tektites similar tektites Muong Nong type (Vietnam), its ranges from 0.73 to 1.01 million years. Age of five Zhamanshinite samples is averaged 0.84 million years, emphasizing their similarities with Vietnam tektites [5].

References:
Abstract

Today on the basis of Engelhardt astronomical observatory (EAO) the Centre of cosmic researches and techniques and Astropark within the framework of Program of the Kazan Federal University development is being created. The Center has the following missions: education, science, astronomical tourism. In EAO there is a big glass library containing the photographic plates as well. Many plates are the pictures of stars, planets, the Moon with stars etc. It is scheduled to perform digital scanning and processing these plates.

Keywords: cosmic researches and techniques, astropark, education, science, astronomical tourism, astronomical photography observations, glass plates library,

Introduction

The Engelhardt Astronomycal observatory was founded in September 21, 1901 and for 115 years it is one of the leading observatories in Russia. The development of astronomy in Kazan has come to the new millennium with traditional directions of EAO astronomy. They are astrophysics, astrometry and celestial mechanics, which includes planetology and meteor astronomy, cosmic astrometry and celestial mechanics. There are two main projects: observation program with the telescope RTT-150 which has been installed in Turkey and the creation of Center of space researches and technologies based on the Engelhardt Astronomical Observatory.
1. Center of space researches and technologies

The project requires formation and development of two radio-physical polygons which are associated with the observatory’s territory, using the available resources of the observatory and astronomy, radiophysics, radioastronomy, radioelectronics departments [1]. The aim of this project is creation of an unique educational-scientific, scientific and technological world-class complex in the study of near and far space. Educational activities in the field of practical work and retraining, educational-industrial and scientific practice for students and graduates of the Kazan University and other educational and scientific institutions of Russia, the near and far abroad will be implemented on the basis of EAO. There are the following practice areas: astronomy, geodesy and remote sensing, radio physics.

There are departments of scientific and technological programs realization: space astronomy and geodesy, applied astrophysics, radioastronomy.

The practice base in astronomy, terrestrial and satellite geodesy, topography, radiophysics and radioastronomy fields are supposed to be the main component. The activities of all departments will be coordinated in a single center of near and far space study.

Research and Educational Center on the basis of the Astronomical Observatory will be the first world’s educational-academic complex, which will combine the existing Astronomical Observatory with the modern planetarium. Such approach will allow to add the planetarium operation with real observations, using the existing telescopes, celestial bodies and astronomical phenomena (planets, stars, galaxies and nebulae, comets and asteroids, meteor streams, solar and lunar eclipses, satellites, etc.) and provide with “immersion” of Astropark visitors in a professional environment of the universe knowledge, the expansion and motivation of public’s interest in historical and modern scientific thought.

Metrological polygon, which is used by Russian cosmos for testing the navigational equipment on the data of satellite GLONASS grouping observations,
was built at the EAO in 2010 by the inter-regional centre for applied navigation technologies and services, and the polygon of the satellite navigation technologies and services processing.

The creation of the complex of scientific equipments, the Center of near and far space research, involves the design and installation of the most accurate high-tech devices which interconnected with it and with each other in scientific and productive terms in addition to the existing observational database of the KFU: 13 m radio telescope for radio interferometer with a very long observations bases (VLBI) in conjunction with the Institute of Applied Astronomy RAS; Quantum-optical system “Sazhen TM” for specifying the satellite’s orbit elements and supporting the GLONASS system; The system of optical widefield monitoring of the celestial sphere with subsecond temporal resolution “Mini-Mega TORTORA” together with the special Astronomical Observatory of RAS. It is going to provide detection and investigation fly phenomena with previously unknown location in the near and far space. The main way of getting information is the wide optical monitoring of the celestial sphere with a high temporal resolution. The main task is finding the new and study of the known non-stationary objects of different nature and localization and the task requires the monitoring process. The continuously updated dynamical picture of the near and far space with subsecond temporal resolution is going to be obtained for the first time in the world. Robotic multi-channel (9 lenses) optical complex with the visual field of about 900 square degrees and a time resolution of 0,1 second has been made for the constant observations. This complex accumulates information about all the stationary and transient (in time and space) sources of the optical radiation, localized in the celestial hemisphere (20000 square degrees) with the glitter up to 17,5 stellar magnitude. The single complex of monitoring and on-line analysis of the observed events which is equipped with IT-center (with the display system, processing and keeping the obtained observational data) is set up in EAO on the basis of the system of wide-angled monitors.
The Planetarium is the main element of the educational components of the center for the near and far space study. Today, there are more than 2500 planetariums including 1200 in the USA, 540 – in Europe, 400 – in Japan (today there is no planetarium which combined with the existing astronomical observatories, so it confines their effectiveness). Russia is significantly behind developed countries in terms of this parameter. Today, there are only 32 planetariums in Russia (all these planetariums are located within the cities). Most of them have become technically and morally out of date. There are some attempts to modernize the planetarium’s network (Moscow and Kaluga planetariums were reconstructed, the modern planetarium was built in Yaroslavl for the last two years), but they are not systematic.

The complex of future Kazan planetarium is going to include both the planetarium and the Astropark. The creation of the first in the world planetarium with the Astropark is technologically, methodologically and geographically integrated with the existing world-class astronomical observatories at EAO will promote Kazan astronomy development to a new qualitative level. The planetarium will show: the position and motion of stars and planets at any latitude and in any time in past or present, or future; astral sky for an imaginary observer on the Moon, Mars, Venus; audio-visual simulation of the space flight; travelling to other planets, etc. in fact, it is a high-tech interactive experimental educational laboratory which makes a significant contribution to the development of innovative capacity, training and education.

Planetarium at EAO consists of dome room, laboratory building, demonstration telescope with a lookout area and auxiliary facilities. Full dome system project including the star ball and a system for the projection of high resolution will be set in the planetarium; they will perform a demonstration of research and educational astronomical programs in landscape mode and perform audio-visual simulation of space travel and events. Planetarium’s hall accommodates more than 100 people and can be transformed for scientific conferences, lectures and other events (up to 150 seats).
Astropark territory which is located around the planetarium is going to include a park and architectural complex consisting of alleys system, small architectural forms, decorative sculptures and recreation areas with individual landscape beautification.

The project also involves the construction of an industrial complex to accommodate up to 400 people (students, graduates, trainees, teachers and researchers) which according to modern international standard will provide the accommodation, practice sessions, research activities, food and rest.

2. EAO Glass library

At EAO there is a glass library that contains a large archive of photographic plates, covering the period of more than 90 years, and obtained by different telescopes [2, 3, 4]:

1) A photographic survey of the sky (FON) 30X30 - 1746 plates;
2) Photographic catalogy (size 30X30) - 700 plates;
3) The Moon with Stars - 612 plates;
4) Positive images - 272 plates;
5) Comets, asteroids, moons - 159 plates;

Schmidt Telescope:
6) Selected Areas of Kapteyn - 1500 plates;
7) Comets and asteroids - 950 plates;
8) Radio sources - 253 plates;
9) Variable Stars - 350 plates;
10) New and supernovae - 300 plates;
11) Random objects - 250 plates;

Meniscus telescope:
12) Selected Areas of Kapteyn - 1070 (2130) plates.

Total: 10292 plates.

It is planned to convert the astronomical photographic plates into digital form. In order to get an acceptable size of final data (tens of MB) and no loss of
astronomical data some compression methods with resolution up to 20 microns will be used.

3. Conclusion

Today the development of astronomy and space geodesy in Kazan takes a new qualitative level and in the future we are expecting a lot of important discoveries. Work was supported by grants RFBR 15-02-01638-a, 16-32-60071- mol-dk-a and 16-02-00496-a.

References

Abstract

Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions:

- EDUCATION
- SCIENCE
- ASTRONOMICAL TOURISM

1. Introduction

Today there are in EAO territory [1]: 1) Complex 12 telescopes; 2) Security systems; 3) Communications; 4) Autonomous life support systems. Space research and technology center will be: 1) Building first in Russia of the multisectoral cosmic astrometry observatory. It will serve for effective using cosmic results and education skills; 2) Making the effective support for cosmic program GLONASS, Luna-Glob, Phobos - grunt etc. 3) Development of the metrological polygon for testing satellite equipment. Multisectoral cosmic astrometry observatory will include: 1) GPS/GLONASS systems; 2) 12 meters antenna for Long Baseline Interferometry (VLBI); Systems of satellite laser ranging (SLR) for a global network of observation stations measure the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors.; 4) Wideangled Space Debris Scanner “Megatartora”; 5) Seismic Systems in 10 meters EAO seismic vault. Education part will be Astropark and Planetarium: 1) Making base of geodesic and astronomy practice; 2) Complex high-tech equipment for working students and postgraduate; 2. SLR/LLR station in EAO Known that Satellite Laser Ranging give precise range measurement between an SLR ground station and a retroreflector - equipped satellite using ultrashort laser pulses corrected for refraction, satellite center of mass, and the internal delay of the ranging system [2]. We plan to have a 60cm – 1 meter class telescope integrated into
a precision pointing, low jitter, and fast tracking ALT/AZ gimbal designed for tracking low earth orbiting and higher satellites. Similar systems of this size and design have been deployed to various international customers and are listed among the most accurate SLR sites according to International Laser Ranging Service (ILRS) data. We plan to construct an open slit, rotating type dome to provide protection against weather when closed and to provide wind and sun loading protection when open. It should provide full viewing of the sky throughout all observation angles of the telescope and be free of azimuth rotation limits.

In accordance with recent technology trends within the ILRS SLR network, we plan to construct a kHz rate, low energy laser transmitter. Such a laser would have the ability to track a wide range of satellites from Low Earth Orbiters (LEOs) to Geosynchronous Satellites (GEOs) equipped with retroreflector arrays conforming with ILRS optical cross-section standards. We plan to have a microchannel plate photomultiplier tube (MCP/PMT) to detect the received laser energy from the retroreflector target. The MCP/PMT provides low transit time jitter and fast recovery times following a photon event due to the fact that a very small percentage of the microchannels respond to a single photon event leaving thousands of other channels. We plan to have that the temporal positioning and width of the range gates (both PMT and electronic) be controlled by a precision programmable range gate generator (RGG). We propose that the base frequency for the station will be derived from a GPS steered frequency standard. The output from the frequency standard will be provided to system equipment using a frequency distribution unity gain amplifier. A GPS receiver with a 1 pulse per second output in conjunction with the time interval counter should be Road map of Kazan SLR/LLR station: SLR station will be at 2013yr, LLR station - 2017yr. The Kazan SLR/LLR station will meet all requirements of ILRS 2010.

References

Archeological monuments allow to reveal a role of the Moon, as well as the Sun, in life of ancient nomads of Siberia in 2-1 millenium B.C.

The Great Salbyk Barrow is the best known of the megalithic monuments in Siberia. Archaeologist S.V. Kiselev excavated the Salbyk-barrow, the largest barrow in Khakasia in 1954-1956. The expedition of the State Hermitage Museum researched Salbyk valley in 1992-2010 (with breaks). On the basis of the new analyses, the Great Salbyk barrow is dated to the 7th century B.C.

A barrow height is more than 20 m and originally it was pyramid-shaped. Under the mound was a square “fence” (71 x 71 metres) made of huge stone slabs placed vertically and horizontally and weighting some tonnes (the average size was about 5 metres). The installation of the fence slabs is connected with the main moments of the rising and setting of the Moon and Sun on astronomically significant days (Fig. 1-2). Signs in the form of circles, crescents, Moon, Sun and other figures situated on significant astronomical direction lines were discovered on the barrow's slabs (Fig. 2-3). The investigation revealed that the solar directions were connected with vertical stone slabs, the moon directions – with corners of a barrow, but the entrance was oriented on sunrise in days of an equinox (Fig. 1-2). The “chain” of barrows in the Salbyk valley is oriented on a line northwest to southeast, the line of the extreme positions for moonrise and moonset [1].

The expedition of State Hermitage Museum researched the archaeological monuments in central part of Mountain Altai in Semisart in 1980-2005 (with breaks). The expedition of the excavated 5 barrows, “settlement”, lines of stones, astronomical posts of observations and rock images were discovered. Semisart dated to the second part of the 8th – first part of the 7th century B.C. The observation post is situated on the south mountainside. This post consists of three-four rocky niches with smoothed edges and lateral walls (Fig. 4). Every of these niches is strictly specialised
and is determined by its position on the rock. Niches have vertical lateral walls, which were probably adjusted and made even occasionally by man. One could fix positions of the Sun during the day time and of the Moon in night. According to the results of astronomical measurements, one could observe both the sunrise and sunset during the equinoctial dates and winter solstice, as well as during the high and low Moon in its limiting positions in the sky in astronomically significant dates by performing observations along the lines set by the edges of cliff niches of the observing posts (Fig. 5) [2].

The Sayany-Altaic archaeological expedition of the State Hermitage Museum in 1997-2006 studied some sites in the Eastern Kazakhstan, near town Ust-Kamenogorsk. New copy of the rock-drawings was made in grotto at the foot of the mountain Ak-Baur (WesternAltai) and all rock drawings and dimensions between them were measured again. On the walls of the grotto made with red colour the images of a goat, a chariot, crosses, geometrical figurines of 12-11 cent. B.C. and etc. were discovered. It is possible, that a permanent astronomical observation point existed in Ak-Baur. The importance of the central point of a square with a cross on the wall of the grotto was emphasized by a drawing of “a man lying down”. It is possible that the composition of drawings reflected a special part of the night sky, in which there were the constellations of the Ursa Major, Dragon (partly), Capricorn, Cepheus, Taurus, Gemeni etc. (Fig. 6). From a platform of grotto it is possible to observe of the Moonset and the Sunset in astronomically important days (Fig. 7).

The grottos-sanctuaries are known also in nearby regions of Western Altai and North-Western China, where there are the rock outputs of mountains with analog use structures and the rock drawings with red and black colours. The sanctuaries in Semisart and Ak-Baur in Altai is located more or less at the same latitude (52° ± 1–2° northern latitude) as the site Malta in Baikal region, the barrow-temple of Arzhan in Tuva, sanctuaries upon the mountain Ocharovatelnaja, the complex of the Arkaim objects in Trans-Ural region and Stonehenge in England.

Figure 1. Archeological monuments of Sayan-Altai: 1-2 - the barrow Salkyrk, 4-6 - sanctuary in Semisart, 9-10 - sanctuary in Ak-kute; 1-2, 5-7 - the rising and setting of the Moon and Sun on astronomically significant days; 3, 4, 6 - petroglyphs on stone; 4 - astronomical points of observations.

Abbreviations: Moon N = North, S = South; MS = Moonrise; MA = major standstill; Mi = minor standstill; NMRA - northern summer; major standstill; NMRA - northern summer; minor standstill; NRS - northern summer; major standstill; SNSR - southern summer; major standstill; SSMR - southern summer; minor standstill; SS - Summer Solstice; HWS - Winter Solstice; Equ. EQR - equinox, EWS - equinox, EWB - equinox, EWB.
EVALUATION OF THE ACCURACY OF THE MODERN PLANETARY GRAVITY FIELD MODELS

R. KASCHEEV, I. NOVLYANSKAYA

Kazan Federal University, Kazan, Russia (novlyanskaya_inna_kfu@rambler.ru / Fax: 8-843-2927797)

Since the successful implementation a series of low-altitude satellites CHAMP, GRACE, GOCE, GRAIL being modern SST and SGG technologies used, a new generation of global terrestrial and lunar gravity potential models describing the fine gravity field structure of the Earth and the Moon have been constructed. It is an appropriate time to give a deeper insight into the precision of these models. For this reason, an external validation needs to be done in order to produce homogeneous, highly accurate, near-global models of planetary gravity fields.

As a criterion, reflecting the internal accuracy of the each individual model was chose the power spectrum of the errors of harmonic coefficients, represented as displacement of equipotential surface by relation:

\[d_n = R \sqrt{\sum_{m=0}^{n} (\delta C_{nm}^2 + \delta S_{nm}^2)}. \]

\(R \) is here the mean radius of the planet.

The calculation showed high quality of modern combined geopotential and modern selenopotential models obtained from new high-precision observational data. In that case, errors of the models expressed in terms of equipotential surface position do not exceed of several centimeters. In contrast to combined models only satellite geopotential models have a lower quality, errors of the models may exceed of several tens centimeters. [1] The gravity field models of Venus are only slightly lower to the quality than only-satellite models of the Earth. The maximum of errors value can also reach several tens of centimeters. The results evaluation of
accuracy of areopotential models as well old selenopotential models showed an increase of error values (more than 1 m) with increasing the index of degree \(n \).

Comparison of models with each other may performed using three complementary ways:

- paired comparison of individual values for each harmonic coefficient;
- comparison of sets of coefficients of different orders and the fixed degree;
- comparison of the gravity functional values, calculated from the summation of all the members of the corresponding series. In most cases, it is convenient to carry out the comparison in terms of changes of the equipotential surface level heights.

In the article we discuss the comparison of models of gravity fields separately for Earth, Moon, Mars and Venus in the framework of the first two methods of comparison.

Results of pairwise comparison the values of individual coefficients of identical degree and orders by the integral criterion of change the height of the equipotential surface showed differences of about 1 mm for each harmonic coefficient combined models of the Earth and modern models of the Moon. For other geopotential models contribution of individual differences in the coefficients reaches a value of 5 mm for only satellite models, 1 cm for models of the Venus and a few meters for models of the Mars.

In the second method of comparison of the models performed by a consent power criterion \(r_n \), that make sense of the linear correlation coefficient, and a power criterion \(\Delta_n \), characterizing the RMS differences of the coefficients of the same degree of the pair models:

\[
\begin{align*}
 r_n & = \frac{\sum_{m=0}^{n} C_{nm} C'_{nm} + \sum_{m=0}^{n} S_{nm} S'_{nm}}{\sqrt{\sum_{m=0}^{n} (C_{nm}^2 + S_{nm}^2) \sum_{m=0}^{n} (C'_{nm}^2 + S'_{nm}^2)}}, \\
 \Delta_n & = \sqrt{\frac{1}{2M} \sum_{m=0}^{n} \left((C_{nm} - C'_{nm})^2 + (S_{nm} - S'_{nm})^2 \right)}.
\end{align*}
\]

The results confirmed previous conclusion about high level similarity of models to combined geopotential models as well as to new selenopotential models. Also pay attention to the fact, that to each object the differences in models increase according
to the degree of index n. The oscillating shape of all graphs represents, apparently, the effect the component of noise gravity fields of models. [2]

Comparison models by criteria, describing the relevance of models to different types of symmetries, showed the most pronounced symmetry relatively to the equatorial plane of all objects except the Moon. The lunar models most correspond of symmetry relatively to the Prime Meridian. According to the results possible to distinguish two groups of celestial bodies, having similar properties of planetary axial, specular and rotational symmetry: more symmetrical are Venus and Earth, and less symmetrical are Moon and Mars.

References.
СИСТЕМА УПРАВЛЕНИЯ ЗНАНИЯМИ – НЕОТЪЕМЛЕМАЯ ЧАСТЬ РЕШЕНИЯ ПРОБЛЕМ СОХРАНЕНИЯ КОСМИЧЕСКОГО ТЕХНОЛОГИЧЕСКОГО НАСЛЕДИЯ

А.К. ЗАВАЛИШИНА, Б.М. ЛЕЙФЕРОВ, П.Ю. ЛЕОНОВ, Д.А. ПЕНЬКОВ, Г.М. ПОЛИЩУК, Е.В. ПОКОЛОДИНА, В.Р. ШАРИПОВ

Завалишина А.К., старший консультант ООО «А-УНИВЕРСАЛ КОНСАЛИТИНГ»

Zavalishina A.K., senior consultant LLC “A-UNIVERSAL CONSULTING”

Лейферов Б.М., кандидат физико-математических наук, генеральный директор ООО «А-УНИВЕРСАЛ КОНСАЛИТИНГ»

Leiferov B.M., Candidate of Physico-Mathematical Sciences, CEO LLC “A-UNIVERSAL CONSULTING”

Леонов П.Ю., доцент кафедры № 75 «Финансовый мониторинг», Национальный исследовательский ядерный университет «МИФИ»

Leonov P.Y., assistant professor at the department №75 “Financial monitoring”, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Пеньков Д.А., начальник первого научно-исследовательского управления Военной академии РВСН им. Петра Великого, кандидат технических наук

Penkov D.A., chief of the first research Department of the Military Academy RVSN RF named after Peter the Great, Candidate of Technical Sciences

Полищук Г.М., доктор технических наук, профессор, Заслуженный деятель науки Российской Федерации.

Поколодина Е.В., кандидат экономических наук, доцент кафедры информационно-коммуникационных технологий имени В.В. Дика, университет «Синергия»
Pokolodina E.V., Candidate of Economic Sciences, assistant professor at the department of information and communication technologies named after V.V. Dick, Synergy University

Шарипов В.Р., заслуженный испытатель космической техники
Sharipov V.R., Honored Space Technology Test Engineer

Проблематика «Управления знаниями» в последние 15-20 лет является одной из наиболее активно обсуждаемых тем среди теоретиков и практиков управления во всем мире. Несмотря на то, что знания и необходимость управления ими сопутствовали человечеству на протяжении всего периода его существования, сам термин «Управления знаниями» появился только в 1986 благодаря одному из ведущих специалистов по искусственному интеллекту Карлу Виигу [1].

По мнению экспертного сообщества столь «позднее» формирование понятия «Управление знаниями» обусловлено тем, что именно в условиях постиндустриальной экономики навыки управления знаниями становятся мощным ключевым ресурсом для поддержания конкурентного преимущества. Таким образом, лишь относительно недавно, знания стали ресурсом, в экономическом смысле этого слова.

На сегодняшний день понятие «Управление знаниями» - междисциплинарный подход к достижению организационных целей через наиболее эффективное использование знаний. При этом, задачи управления знаниями можно сформулировать следующим образом:

- уяснить какие знания необходимы организации;
- где и как их можно приобрести;
- где и как эффективно применить знания для достижения целей организации.

Модель системы управления знаниями (СУЗ) представлена на рисунке 1. Формат модели продиктован циклом Деминга.
Анализируя представленную систему, можно резюмировать, что СУЗ является диалектическим единством:

- концепции по управлению знаниями;
- участников системы;
- процесса «Управление знаниями»;
- системы регламентов СУЗ;
- баз данных;
- системы мотивации.

В свою очередь процесс управления знаниями, как составная часть СУЗ является естественным продолжением процессного подхода к управлению знаниями, реализуемого в рамках системы управления качеством ИСО 9001. Модель процесса представлена на рис.2 [2].
Структура процесса управления знаниями

Структура представляет собой упрощенную схему того, как организации создают, поддерживают и размещают стратегически важный запас знаний, необходимый для создания стоимости. Очевидно, что для того, чтобы получить в конечном счете нужный состав и объем знаний, которые организация сможет достаточно эффективно использовать, необходимо создать взаимосвязанное управление всеми элементами.

С точки зрения тактики реализации процесса управления знаниями состоит из четырех этапов. Он начинается со сбора данных, нужных для повседневной деятельности, затем, используя эту информацию, создается новая стоимость и получается доход. Далее в ходе производственного процесса происходит обучение персонала. Наконец, новые данные вносятся обратно в систему, где они становятся доступны другим работником при решении стоящих перед ними задач. Каждый этап затрагивает, в той или иной мере, каждого сотрудника организации. В то же время деятельность, возникающая на каждом из этапов, не имеет четко выраженных границ, и поэтому представляется целесообразным представить ее в виде континуума. Однако, на каждом этапе есть определенный
ключевой набор связанных между собой действий, характеризующих данный этап.

На правой стороне схемы процесса управления знаниями показаны рычаги управления на стратегическом уровне. Основной задачей организации является умелое сочетание стратегии управления знаниями с общей стратегией компании. Управление знаниями на стратегическом уровне требует постоянной переоценки существующего интеллектуального капитала в соответствии с будущими потребностями компании. Хотя отдельные работники или группы сотрудников так или иначе участвуют в выработке информации, которая в дальнейшем окажет заметное влияние на распределение производственных ресурсов, эта часть процесса управления знаниями связана в основном с деятельностью специализированных групп и лидеров компании. Оценивая организацию через призму управления знаниями, приходится признать необходимость создания кардинально новой модели бизнеса, требующей новых форм менеджмента и новых типов контрактов с работниками, которые являются неотъемлемой частью системы в целом и решающим образом определяют успех компании. При этом лидеры компании выступают уже не в привычной роли управленца, а в качестве партнера менеджеров среднего звена или рядовых работников компании.

Важно подчеркнуть, что управление знаниями является неотъемлемым элементом комплекса столпов организационного совершенства наряду с управлением процессами, проектами, ресурсами и изменениями [3].

Принимая во внимание вышеизложенное, актуальность совершенствования СУЗ для высокотехнологичных и наукоемких производств не нуждается в комментариях.

В космической отрасли проблема сохранения знаний приобрела особую актуальность в девяностые годы прошлого века, когда начался исход первых поколений специалистов, создававших космическую отрасль. Причем, проблема имела международный характер (утрата «скрытых или неявных
знаний» заставила руководство NASA всерьез поставить вопрос о создании системы по управлению знаниями. Одновременно, в отрасли полной мере сформировалась проблема утраты критических знаний. (Под неявными знаниями, в настоящей работе, понимаются неформализованные знания, носителями которых являются сотрудники организации. Критическими знаниями являются знания, утрата которых ставит под угрозу успешную деятельность организации). В настоящее время СУЗ в NASA представляет собой системный, динамично развивающийся комплекс, оширная информация о котором представлена на сайте km.nasa.gov

К сожалению, информация о управлении знаниями в Российской космической отрасли в открытых источниках представлена весьма скудно. Тем не менее, имеющаяся открытая информация позволяет сформировать предварительное мнение о СУЗ на отдельных предприятиях отрасли.

В 2016 году отмечаются пятидесятилетние юбилеи знаменательных событий в истории исследования Луны (первая в мире мягкая посадка 3 февраля 1966 г. на поверхность Луны космической автоматической станции «Луна-9» и вывод 31 марта 1966 г. на орбиту искусственного спутника Луны космического аппарата «Луна-10»). Коллектив НПО им. С.А. Лавочкина, которое с 1965 года является одним из головных предприятий по направлению непилотируемой космонавтики в СССР, внес доминирующий вклад в эти выдающиеся достижения науки и техники.

Сегодня, спустя пятьдесят лет интерес к межпланетным исследованиям переживает ренессанс. По этой причине анализ накопленного опыта, его переосмысление и использование становятся актуальной задачей. В настоящей работе предприятия попытка оценить состояние СУЗ в ФГУП «НПО им. С.А.Лавочкина» на основе открытой информации.

В качестве источников информации использовались следующие первоисточники: журналы «Авиация и космонавтика» [4], «Новости космонавтики», «Российский Космос» [5], Вестник ФГУП «НПО им. С.А.
Лавочкина». Изучение публикаций проводилось на предмет выявления влияния элементов СУЗ на содержание текстов публикаций. Для анализа выбирались публикации в большей или меньшей степени, посвященные описанию определяющей роли НПО им. С.А. Лавочкина в изучении естественного спутника Земли в ходе реализации программы изучения Луны в период с 1965 по 1976 года.

Разумеется, наиболее информативным является материал, содержащийся в Вестнике «НПО им. С.А. Лавочкина». В ходе подготовки публикации было проанализировано содержание всех номеров журнала, начиная с первого номера, вышедшего в первом квартале 2009 года и, заканчивая номерами 2016 года. Установлено, что в указанный период лунной тематике было посвящено двадцать одна публикация, перечень которых представлен в приложении №1. По нашему мнению, тематика содержания этих публикаций может быть классифицирована на 5 групп:

1. юбилейные статьи, посвященные эпохальным датам деятельности НПО им. Лавочкина и юбилейным датам жизни ведущих специалистов в НПО им. Лавочкина (группа «а»);
2. статьи, посвящённые созданию «Лунохода» (группа «б»);
3. статьи, посвящённые исследованиям состава лунной породы (группа «в»);
4. публикации, посвященные строительству лунных станций (группа «г»);
5. статьи, посвященные изучению траектории полёта к Луне и процессам мягкой посадки на поверхность Луны (группа «д»).

Следует отметить, что тематику ряда статей не представляется возможным отнести однозначно к какому-либо разделу нашей классификации, поскольку их тематика затрагивает несколько разделов. На рис.3 представлена информация по распределению количества статей по описанным выше тематикам.
Рис.3. Распределение количества статей по тематикам

Как видно из приведённых данных наиболее часто в последние годы публиковались статьи, посвящённые баллистическому обеспечению полётов на Луну, а также вопросам осуществления мягкой посадки на лунную поверхность.

Далее по частоте появления следуют статьи, посвящённые перемещению по лунной поверхности («Луноход») и геологическим исследованиям доставленных на Землю проб лунной поверхности.

По нашему мнению, выявленное статистическое распределение обусловлено тем фактом, что в настоящее время ФГУП «НПО имени С.А.Лавочкина» принимает самое непосредственное участие в реализации следующих положений «Основ государственной политики Российской Федерации в области космической деятельности на период до 2030 года и дальнейшую перспективу» [6]:

- детальное изучение поверхности и недр Луны, применение автоматических средств для исследований и последующего освоения Луны с возможностью их обслуживания и ремонта;
• подготовка к пилотируемым полетам на Луну, развертывание на ней постоянно действующей базы и научных лабораторий;
• осуществление полетов с выполнением космических исследований и экспериментов на высоких околоземных орбитах, создание автоматических космических аппаратов (КА) и осуществление полетов на Луну, разработка элементов лунной инфраструктуры.

Конкретным подтверждением этого факта является содержание опытно-конструкторских работ по Лунной тематике, выполняемых ФГУП «НПО им. С.А. Лавочкина» с 2010 года по настоящее время.

(Тематика опытно-конструкторских была получена из данных информационных ресурсов по государственным закупкам [7].
– Дополнительная наземная экспериментальная отработка КА «Луна-Глоб» в части создания дополнительного стендового оборудования;
– Создание космического комплекса с орбитальным космическим аппаратом для проведения дистанционных исследований поверхности Луны;
– Создание космического комплекса для проведения контактных исследований поверхности Луны в околополярной области. Участие в проекте "Чандраяна-2" (Индия) в части доставки на поверхность Луны индийского минировера;
– Создание космического комплекса для исследований Луны;
– Создание космического комплекса для дистанционного зондирования поверхности, картографирования и контактных исследований Луны. Участие в проекте Чандраяна-2 (Индия) в части лунохода" на период 2011-2015 гг.;
– Создание космического комплекса для исследований Луны (в период 2010-2012).

Успешное решение представленных задач позволит существенно качественно и количественно расширить спектр задач, в том числе и социально-экономических, решаемых Российскими автоматическими космическими
аппаратами (КА) [8]. Естественно, требования к техническим возможностям КА диктуют необходимость инновационных решений при их разработке.

Очевидно, что решение столь масштабных задач создания инновационных КА невозможно без эффективного управления знаниями. В том числе и использования знаний, накопленных в ходе реализации первой программы исследования Луны в период с 1957 по 1976 г., а также изучения опыта исследователей зарубежных стран в данной области.

В тот период реализации первых шагов по исследованию космического пространства в НПО им. С.А. Лавочкина была в полной мере реализована концепция (разработана Бабакиным Г.К. [9]) «единой платформы для серии лунных аппаратов и межпланетных станций» [10].

Сегодня этого базового принципа продолжает придерживаться коллектив НПО, добавляя к нему принцип модульности конструкции. Этот подход продемонстрировал свою эффективность в ходе подготовки вывода на орбиту научных спутников «ЗОНД-ПП» и «ВЕРНОВ (РЭЛЕК)», созданные на унифицированной платформе «КАРАТ». На базе универсальной орбитальной платформы «НАВИГАТОР» и модуля полезной нагрузки осуществлены запуски гидрометеорологического спутника «ЭЛЕКТРО-Л» и астрофизическая обсерватория «СПЕКТР-Р-РАДИОАСТРОН». Более ста отечественных и зарубежных космических аппаратов выведены на высокоэнергетические орбиты с использованием разгонного блока «ФРЕГАТ». Подобный системный подход планируется применять при реализации проектов «ЛУНА-ГЛОБ» и «ЛУНА-РЕСУРС».

При этом НПО определило и продекларировало ряд ключевых принципов в достижении целей предприятия:

- постоянное повышение профессионального уровня работников: знание всех тонкостей и деталей своей профессии обеспечивает эффективное и качественное выполнение поставленных задач;
• сохранение и обеспечение преемственности и накопленного опыта и интеллектуального потенциала: создаваемые на нашем предприятии космические аппараты являются уникальными и часто изготавливаются в единственном экземпляре;
• создание команды единомышленников: без общих усилий невозможно поддержание репутации надежного и перспективного партнера на отечественном и международном рынках.

Вышеперечисленные ключевые принципы были озвучены в 2012г. на ежегодной конференции по управлению качеством в НПО («Качество – цель и ответственность каждого»). Но эти же принципы являются неотъемлемой частью системы управления знаниями [11].

Таким образом, на основании приведенных данных можно сделать следующие выводы о состоянии СУЗ в ФГУП «НПО им. С.А. Лавочкина»:
1. На предприятии бережно относятся к творческому заделу, сформированному за более чем полувековую историю.
2. Процесс управления знаниями в настоящее время реализуется в рамках концепции процессного подхода-основы идеологии управления качеством ИСО 9001.
3. Участниками процесса является весь коллектив предприятия.
4. В целях подготовки специалистов для предприятия НПО имени Лавочкина была создана базовая кафедра в Московском Авиационном Институте.
5. В целях развития научного потенциала НПО создана очная аспирантура.

Вместе с тем, несмотря на наличие элементов СУЗ, представленных выше, представляется целесообразным в рамках концепции непрерывного совершенствования управления реализовать комплекс мероприятий по развитию системы:
1. Провести диагностику эффективности СУЗ.
2. Реализовать программу по определению критических знаний и выявлению их носителей.

3. Разработать и реализовать программу по выявлению и формализации неявных знаний.

В рамках планов по развитию персонала, помимо вышеперечисленных мероприятий целесообразно разработать перспективные программы подготовки специалистов по следующим направлениям:

- проектировщик жизненного цикла космических сооружений;
- менеджер космтуризма;
- инженер-космодорожник;
- космогеолог;
- инженер систем жизнеобеспечения.

Именно эти специальности представлены в обзоре «Атлас Новых профессий» Агентства стратегических инициатив Сколково раздел «Космос» в качестве наиболее перспективных в ближайшем будущем [12].

По нашему мнению, этот перечень должен быть дополнен специалистами в области по управлению знаниями по космической тематике:

- менеджер по управлению знаниями в области космических технологий;
- эксперт-аналитик по управлению знаниями в области космических технологий;
- администратор по управлению знаниями в области космических технологий.

Уже сегодня необходимо приступить к формулированию трудовых функций и их обобщенных характеристик для данных специалистов, т.е. закладывать основы профессиональных стандартов. Для решения этих задач ФГУП «НПО им. С.А. Лавочкина» обладает всеми ресурсами.

Список литературы:

<table>
<thead>
<tr>
<th>№</th>
<th>Публикация</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Хартов В.В., Зеленый Л.М., Долгополов В.П., Ефанов В.В., Зайцева О.Н., Лукьяничиков А.В., Мартынов М.Б., Пичхадзе К.М. Новые российские лунные автоматические космические комплексы (К 45-летию космической деятельности НПО им. С.А. Лавочкина и 40-летию КА «Луна-16» и КА «Луна-17»).</td>
</tr>
<tr>
<td>2</td>
<td>Зеленый Л.М., Захаров А.В., Закутная О.В. Грядет ли лунный ренессанс?</td>
</tr>
<tr>
<td>3</td>
<td>Аким Э.Л. Забор и доставка на Землю образцов лунного грунта автоматическим космическим аппаратом «Луна-16»</td>
</tr>
<tr>
<td>4</td>
<td>Петрик В.А., Смирнов В.А. Двигатели для космических аппаратов «Луна-16», «Луна-17»</td>
</tr>
<tr>
<td>5</td>
<td>Сологуб П.С., Ивановский О.Г. Создание ходовой части первого в мире планетохода «Луноход-1»</td>
</tr>
<tr>
<td>6</td>
<td>Довгань В.Г. Экипаж лунохода</td>
</tr>
<tr>
<td>7</td>
<td>Маленков М.И. Создание «Лунохода-1» - выдающееся</td>
</tr>
<tr>
<td>№</td>
<td>Дата</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>04’2012</td>
</tr>
<tr>
<td>9</td>
<td>04’2012</td>
</tr>
<tr>
<td>10</td>
<td>04’2012</td>
</tr>
<tr>
<td>11</td>
<td>05’2012</td>
</tr>
<tr>
<td>12</td>
<td>05’2012</td>
</tr>
<tr>
<td>13</td>
<td>01’2013</td>
</tr>
<tr>
<td>№</td>
<td>Дата</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
</tr>
<tr>
<td>14</td>
<td>01’2013</td>
</tr>
<tr>
<td>15</td>
<td>02’2013</td>
</tr>
<tr>
<td>16</td>
<td>02’2013</td>
</tr>
<tr>
<td>17</td>
<td>04’2013</td>
</tr>
<tr>
<td>18</td>
<td>02’2014</td>
</tr>
</tbody>
</table>

159
<table>
<thead>
<tr>
<th>№</th>
<th>Дата</th>
<th>Авторы</th>
<th>Текст</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>04'2014</td>
<td>Багров А.В., Нестерин И.М., Пичхадзе К.М., Сысоев В.К., Сысоев А.К., Юдин А.Д.</td>
<td>Анализ методов строительства конструкций лунных станций.</td>
</tr>
<tr>
<td>20</td>
<td>03’2015</td>
<td>Хартов В.В.</td>
<td>От исследования к освоению ресурсов Луны. Вчера и завтра (к 50-летию космической деятельности НПО имени С.А. Лавочкина).</td>
</tr>
<tr>
<td>21</td>
<td>01’2016</td>
<td>Гордиенко Е.С., Худорожков П.А.</td>
<td>К вопросу выбора рациональной траектории полёта к Луне.</td>
</tr>
</tbody>
</table>
О БЕРЕГОВЫХ УСТУПАХ ДРЕВНЕГО ОКЕАНА МАРСА И СВИДЕТЕЛЬСТВАХ БОЛЕЕ ТЕПЛОГО КЛИМАТА В ПРОШЛОМ

Г.В. СОНИН
Казанский федеральный университет.

В статье Алексиса Родригеса с соавторами из Планетологического института США приводятся карты положения береговых линий на Марсе и связывается их происхождение с двумя гигантскими волнами цунами от падения метеоритов около 3 млрд лет назад [1]. Внимательно посмотрев снимки, приведенные авторами статьи и их аргументацию, я как геолог, думаю, что это не цунами, а обычные следы и последствия оледенения планеты. Медленное наступление оледенения планеты могло привести к переходу ранее существующего жидкого океана в ледниковые шапки на полюсах Марса и вызвать изостатические деформации коры. Надо признать, что весь объем океана при этом должен перейти в твердую фазу. Полярные области под тяжестью льда должны прогнуться, а бывшее ложе океана, освобожденное от тяжести воды приподняться. Только ледник мог вызвать такие деформации коры, чтобы береговые линии вокруг полярной области изменили свою высоту на 8км. Видимо, это максимальные амплитуды деформации коры Марса. Трудность доказательства была в том, что на Марсе пылевые бури заносили лед пылью и масштабы ледниковых накоплений плохо просматриваются, но рост ледниковых щитов обязательно приводит к прогибанию коры через механизм изостазии и отражается на уровнях береговых уступов. Эти уступы как раз и заметили исследователи под руководством Родригеса, закартировав два уровня стояния береговых линий на Марсе. Это означает, что океан на Марсе был не маленький, но в процессе оледенения он весь превратился в полярные льды типа нашей Антарктики и Гренландии. Последующее потепление климата или прогрев древней коры
эндогенным теплом вызывал медленное таяние льдов, что вело к разгрузке коры и сносу отложений пыли с ледниковой шапки потоками тающей воды, что показано на снимках. Осадочные отложения без следов метеоритной бомбардировки и древние русла рек с каньонами типа каньона Колорадо мы видим теперь на планете. Вторичный береговой уступ ограничивал более мелкий водоем, который просуществовал недолго, тоже превратился в ледники на полюсах.

Мне кажется, что авторы тут что-то не додумали, предложив гипотезу сверхцунами. Не было никаких цунами на высоту 8 км. Цунами это быстрый процесс, который не может дать береговых уступов и террас. Именно медленные процессы развития оледенения вызвали изостатические деформации коры и выработку соответствующей береговой линии и речных глубоких каньонов в межледниковое время. Стаивание льда процесс медленный и кора медленно всплывала как наш Балтийский щит на планете Земля. Марсианская кора, видимо более податливая, реагировала так, что поднятие береговой линии произошло на высоту 8км. Если точнее узнать время прошедшее между двумя стоянами уровня, то можно вычислить вязкость астеносферы Марса, как Бено Гутенберг когда-то вычислил вязкость астеносферы Земли, зная датировку и высоты береговых террас на побережье Балтики, на Великих американских озерах и вокруг Гудзонова залива. Эти исследования следует продолжить и получить те сведения о коре Марса, которые я назвал. Они продвинут наше понимание геологии красной планеты.

Ссылка на первоисточники:
1. http://www.nature.com/articles/srep25106,
2. http://www.gazeta.ru/science/2016/05/19_a_8250185.shtml ,
СРАВНЕНИЕ ГЛОБАЛЬНЫХ ОСОБЕННОСТЕЙ РЕЛЬЕФА ЛУНЫ И МАРСА

Е.А. ГРИШАКИНА

Московский государственный университет им. М.В. Ломоносова, геологический факультет, кафедра геокриологии

Рельеф Луны и Марса имеет как схожие, так и отличительные черты. Площади поверхностей Марса и Луны соответственно равны 144 371 391 км² (0,283 земной) и 37 932 327 км² (0,074 земной), т. е. поверхность Марса почти в 4 раза больше поверхности Луны. Распределение высот на поверхности Луны характеризуется одним максимумом (рис.1), в отличие от двухмодального распределения высот на Марсе (Илюхина, Родионова, 2004). При сравнении распределения высотных уровней между северным и южным лунными полушариями по графику видно, что различия выражены не ярко, в основном в присутствии в южном полушарии более низких высотных уровней и более четкого максимума (рис.2). Сравнивая рельеф видимой и обратной сторон Луны, увидим гораздо более заметные различия (рис.3). На видимой стороне представлены преимущественно относительно молодые равнины, на обратной – старые кратерированные возвышенности (рис.4). Море Восточное является примером пограничного объекта, разница между западными и восточными окрестностями составляет около 10 км (рис.5). Основная часть высот в видимом полушарии лежит в пределах от -3 до 1 км. На обратном полушарии распределение областей по высотным уровням более равномерное, здесь, в отличие от видимого полушария, есть весь перепад высот Луны от 10 7834 км (201.378°E, 5.401°N) до -9.117 км (187.5074°E, 70.360°S) в кратере Антониади (Smith, Zuber, 2010). Глобальные отличия в рельефе Марса зафиксированы в северном и южном полушариях (Илюхина, Родионова, 2004). Южная часть имеет в основном древнюю поверхность, сильно изрытую кратерами. В этом полушарии расположены главные ударные впадины - равнины Эллада, Аргир и Исиды. На севере доминирует более молодая и менее богатая кратерами

Рис.1. Зависимость распределения высотных уровней от занимаемых ими площадей

Рис.2. Распределение высотных уровней на видимой и обратной в северном и южном полушариях Луны

Рис.3. Распределение высотных уровней в северном и южном полушариях Луны (сплошной линией показано для видимой стороны, северного полушария, прерывистой - для обратной)
Рис.4. Гипсометрическая карта Луны (E.A. Grishakina, E.N. Lazarev, 2013)

Рис.1. Море Восточное (карта построена по данным LOLA с использованием ArcGIS)
Литература
Grishakina E.A., Lazarev E.N. Compiling the hypsometric map of the Moon for the atlas «Relief of terrestrial planets and their satellites» // Сборник «Abstracts of the 4th Moscow Solar System Symposium (4M-S3)», IKI, Moscow, Russia, тезисы, с. 163, 2013.
НОВЫЕ И ПЕРСПЕКТИВНЫЕ НАУЧНЫЕ АВТОМАТИЧЕСКИЕ КОСМИЧЕСКИЕ АППАРАТЫ, СОЗДАВАЕМЫЕ НПО имени СЕМЕНА АЛЕКСЕЕВИЧА ЛАВОЧКИНА
В.В. ЕФАНОВ, М.Б. МАРТЫНОВ
Научно-производственное объединение имени Семена Алексеевича Лавочкина
g. Химки, Московская обл., Россия
(vladimir_efanov@laspace.ru/fax: +7(495)5732361)

Запуск первого искусственного спутника Земли (4 октября 1957 года) не только стал первым днем космической эры, но и положил начало фундаментального исследования космоса автоматическими космическими аппаратами. Уже третий спутник (запуск 15 мая 1958 года) массой 1327 кг был первой внеатмосферной орбитальной научной станцией, оснащенной обширным комплексом приборов (18 экспериментов). Благодаря этому спутнику впервые был открыт внешний радиационный пояс Земли С.Н. Верновым и А.Е. Чудаковым. Упомянутые аппараты были созданы ОКБ-1 Сергея Павловича Королева.

В настоящее время нами реализуется обширная многоэтапная национальная космическая программа, в которой предусмотрены следующие направления фундаментальных научных исследований: астрофизика; планеты и малые тела Солнечной системы; физика Солнца и солнечно-земные связи.

В 2011 году была успешно введена в эксплуатацию уникальная астрофизическая обсерватория размерами почти от Земли до Луны –
«Радиоастрон», объединяющая 10-метровый российский космический радиотелескоп «Спектр-Р», созданный НПО имени С.А. Лавочкина, и крупнейшие мировые наземные телескопы в единый наземно-космический интерферометр [4].

Как отмечают ученые, этот в высшей степени успешный проект определяет сегодня мировой уровень радиоастрономических наблюдений из космоса. Этой обсерваторией удалось добиться рекордного пространственного разрешения (не более 8·10^{-6} угловых секунд). Стало возможным измерить размеры и построить радиоизображения тех объектов, которые казались точечными, изучить тонкую структуру джетов (струй вещества) с большой скоростью, истекающих из центров активных галактик в окрестности сверхмассивных черных дыр. Орбитальной обсерваторией осуществляется изучение кинематики и динамики компактных источников мазерного линейчатого радиоизлучения в областях звездообразования.

На спутнике «Спектр-Р» установлен также научный комплекс «Плазма-Ф», который обеспечивает непрерывное мониторирование параметров плазмы и энергичных частиц межпланетной среды (как часть «космической погоды»), кроме того ведет высококачественное изучение турбулентности этих параметров путем проведения измерений с уникально высоким временным разрешением.

Весьма существенно, что высокоапогейная орбита этого КА предоставляет большие преимущества для проведения длительных систематических измерений в межпланетной среде.

На ближайшую и среднесрочную перспективу нашим предприятием создаются другие космические обсерватории серии «Спектр».

Основные научные задачи: изучение переменности излучения сверхмассивных черных дыр; непрерывные наблюдения источников со слабой рентгеновской светимостью; наблюдение вспышек сверхновых с исследованием их эволюции; изучение черных дыр и нейтронных звезд в нашей Галактике; измерение расстояний и скоростей пульсаров и других галактических источников; обзор неба в режиме сканирования с высокой чувствительностью, угловым и энергетическим разрешением в рентгеновском диапазоне волн и др. Придет на смену орбитальной обсерватории «Интеграл».

«Всемирная космическая обсерватория ультрафиолет – Спектр-УФ» создается в России, работает в ультрафиолетовом диапазоне волн. Эта астрономия важна тем, что большая часть наблюдаемого вещества во Вселенной находится в состоянии, которое наиболее эффективно диагностируется методами ультрафиолетовой спектроскопии. Из указанного вытекают основные научные задачи: исследование эволюции Вселенной; физика аккреции; изучение ранней эволюции звезд типа Солнца и протопланетных дисков; изучение физико-химического состава атмосфер планет Солнечной системы и экзопланет [5, 6].

Линейка представленных современных космических обсерваторий, создаваемых НПО имени С.А. Лавочкина представлена на рисунке 1.

Рисунок 1.

Следует отметить, что все они создаются на нашей базовой многофunktциональной платформе «Навигатор», имеющей летную
квалификацию +трём+ успешными полетами. Также здесь важно, что такой подход снижает эксплуатационные, финансовые и экспериментальные риски.

Активно ведутся у нас работы и по созданию автоматических КА для планетных исследований. Это прежде всего российско-европейский комплекс «ЭкзоМарс». Первый аппарат этой серии запущен в 2016 году ракетой космического назначения «Протон-М». Сам аппарат создан европейской стороной с участием российских научных приборов. Он состоит из орбитального и посадочного модулей. Помимо научных задач перед этой миссией стоит проблема отработки посадки аппарата на планету для последующих экспедиций.

В настоящее время ведутся активные работы по созданию следующего аппарата «ЭкзоМарс-2020». Российская сторона создает посадочный модуль, доставляет на поверхность европейский Марсоход, создает научный комплекс и обеспечивает запуск. Суть этой экспедиции – подготовка к освоению планеты. Основные научные задачи: поиск следов прошлой и существующей жизни в подповерхностном слое; исследования состава атмосферы, проблема метана, поиск вулканических газов; изучение внутреннего строения и климата Марса; подготовка к освоению планеты. Марсоход будет снабжен аналитической лабораторией, панорамной камерой и буровой установкой.

На среднесрочную перспективу мы разрабатываем проект «Экспедиция-М», предусматривающий дальнейшие исследования Марса и его спутников Фобоса и Деймоса. Научные задачи по исследованию Фобоса с доставкой на Землю образцов его грунта весьма актуальны и пока за решение этого вопроса не берется ни одна космическая организация в мире [6].

На рисунке 2 представлены аппараты серии «ЭкзоМарс» и «Экспедиция-М» («Бумеранг»).
При проектировании новых марсианских аппаратов широко используются конструкторско-технологические решения, отработанные при создании наших инновационных лунных КА.

Помимо этого НПО имени С.А. Лавочкина создает малые научные КА на универсальной платформе типа «Карат». Были запущены «Зонд-ПП» и «Рэлек-Вернов».

Список литературы:
6. Хартов В.В., Ефанов В.В., Занин К.А. Основы проектирования орбитальных оптико-электронных комплексов. Учебное пособие / В.В. Хартов, В.В. Ефанов, К.А. Занин; М-во образования и науки РФ, МАИ. М. 2011.
Вторая половина XX века навсегда войдет в историю человечества, как время, когда люди победили земное тяготение и начали исследовать межпланетное пространство. Началом этих исследований был запуск первого искусственного спутника Земли в 1957 году. Вскоре были предприняты попытки запуска автоматических космических аппаратов на Луну и ближайшие планеты Солнечной системы (Марс и Венера).

Большая часть космических исследований XX века характеризуется интенсивным соревнованием между СССР и США за доминирующие позиции в космосе.

В отношении лунной программы основными были два направления: исследования автоматическими космическими аппаратами и пилотируемый полет на Луну. Первое направление было реализовано СССР 3 февраля 1966 года посадкой аппарата «Луна-9». Второе направление было реализовано США 20 июля 1969 года, когда «Аполлон-11» совершил посадку на Луну. «Луна-9» сначала создавалась в ОКБ-1 Сергея Павловича Королева. Данная тематика в 1965 году была передана в Научно-производственное объединение имени Семена Алексеевича Лавочкина. В нашей организации его конструкция претерпела ряд усовершенствований. Ключевым – была доработка посадочного устройства. На рисунке 1 представлен общий вид космической станции и посадочного аппарата «Луна-9».
Рисунок 1.
Стартовая масса – 1538 кг.
Масса научной аппаратуры – 5 кг.
Описываемым аппаратом были получены следующие научные и технические результаты:
– первая мягкая посадка на Луну;
– получение круговой панорамы поверхности;
– измерение интенсивности жесткой радиации, обусловленной космическими и солнечными лучами, а также радиоактивным излучением лунного грунта [1, 2].

Таблица 1. Посадочные станции, запущенные на Луну в 1966 году

<table>
<thead>
<tr>
<th></th>
<th>«Луна-9»</th>
<th>«Луна-13»</th>
</tr>
</thead>
<tbody>
<tr>
<td>Назначение станции</td>
<td>Лунный посадочный аппарат СССР, НПО имени С.А. Лавочкина</td>
<td>Лунный посадочный аппарат СССР, НПО имени С.А. Лавочкина</td>
</tr>
<tr>
<td>Ракета-носитель</td>
<td>«Молния-М»</td>
<td>«Молния-М»</td>
</tr>
<tr>
<td>Дата запуска (космодром)</td>
<td>31 января 1966 г. (Байконур)</td>
<td>21 декабря 1966 г. (Байконур)</td>
</tr>
<tr>
<td>Дата посадки</td>
<td>3 февраля 1966 г.</td>
<td>24 декабря 1966 г.</td>
</tr>
<tr>
<td>Результат</td>
<td>Успех, первая мягкая</td>
<td>Успех</td>
</tr>
</tbody>
</table>

Продолжением программы изучения Луны автоматическими космическими аппаратами стало создание и запуск впервые в мире искусственного спутника Луны (автоматический космический аппарат «Луна-10»).

Для реализации этой миссии за основу были приняты базовые, уже отработанные проектно-конструкторские решения на «Луне-9» с заменой посадочного аппарата на отделяемую от трекорного блока орбитальную станцию (искусственный спутник Луны).

На рисунке 2 представлен общий вид космической станции с искусственным спутником Луны.

Рисунок 2.
Стартовая масса – 1584 кг.

«Луна-10» провела обширные исследования Луны с окололунной орбиты, измерено содержание естественных радиоактивных элементов – калия, урана, тория в лунной коре, построена карта магнитного поля, напряженность которого составила 0,001 % от земного, и обнаружено, что у Луны, в отличие от
Земли, нет радиационных поясов. Она измерила поток микрометеоритов и космическое излучение на окололунной орбите.

Таблица 2. Орбитальные лунные станции, запущенные в 1966 году

<table>
<thead>
<tr>
<th>Назначение станции</th>
<th>«Луна-10»</th>
<th>«Луна-11»</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лунная орбитальная станция</td>
<td>Лунная орбитальная станция</td>
<td></td>
</tr>
<tr>
<td>Производитель</td>
<td>СССР, НПО имени С.А. Лавочкина</td>
<td>СССР, НПО имени С.А. Лавочкина</td>
</tr>
<tr>
<td>Ракета-носитель</td>
<td>«Молния-М»</td>
<td>«Молния-М»</td>
</tr>
<tr>
<td>Дата запуска</td>
<td>31 марта 1966 г.</td>
<td>1 октября 1966 г.</td>
</tr>
<tr>
<td>Результат</td>
<td>Успех, первый спутник Луны</td>
<td>Успех</td>
</tr>
</tbody>
</table>

В настоящее время интерес к Луне со стороны фундаментальной и прикладной науки становится актуальным в связи с возможностью освоения Луны в интересах человечества, благодаря наличию там полезных ископаемых, иссякаемых на Земле.
Естественный спутник Земли весьма привлекателен с точки зрения создания автоматизированного научного полигона для исследования Вселенной с краткосрочными экспедициями – посещения космонавтами для проведения ремонтных и профилактических работ научного оборудования. Также в отдаленной перспективе Луну целесообразно использовать, как промежуточную площадку для межпланетных пилотируемых экспедиций.

Как видно из приведенных выше описаний лунных миссий серии автоматических космических аппаратов в НПО имени С.А. Лавочкина строились на отработанных платформах, имеющих летную квалификацию. Эти платформы соответствовали лучшим достижениям космической техники соответствующего периода времени. Проектирование летных изделий с высокой степенью унификации и широким использованием ключевых конструкторско-технологических решений, имеющих летную квалификацию, сокращает сроки создания, наземной отработки всей серии аппаратов, уменьшает финансовые риски и в немалой степени повышает надежность выполнения миссии.

Теперь перейдем от успешного прошлого к ближайшему будущему.

В настоящее время Федеральной космической программой 2016-2025 годы определено, что освоение Луны автоматическими космическими аппаратами является приоритетным направлением в области исследования планет Солнечной системы. По мнению Российской Академии наук основным районом изучения является южный полюс, который будет исследоваться дистанционными и контактными методами, вплоть до доставки на Землю образцов грунта и лунного реликтового водяного льда с сохранением летучих веществ из заранее определенного района в исходном состоянии [2, 3, 4, 5].

Проведенный системно-проектный анализ создания перспективных аппаратов показал целесообразность итерационного подхода к реализации рассматриваемых проектов. Он подразумевает предварительную летную апробацию ключевых конструкторско-технологических решений с
последующим усложнением поставленных задач. Имеется в виду, что сначала осуществляется поэтапная отработка критических технологий (высокоточная, безопасная посадка, глубинный криогенный забор грунта с капсуляцией летучих и т.п.); поэтапное наращивание сложности экспедиций; привлечение международной кооперации; адаптация отработанных лунных платформ к дальнейшим планетным экспедициям на Марс, Фобос, к Юпитеру и др.

Сейчас нами создается серия лунных автоматических КА. Они будут проводить уникальные эксперименты в ранее недоступных районах Южного полюса.

На рисунке 3 представлена линейка упомянутых выше аппаратов. Их обозначения будут продолжением предыдущих серий, завершенных в 1976 году (КА «Луна-24»).

Рисунок 3.
Первым новым изделием будет аппарат «Луна-25» («Луна-Глоб»). Он доставит на поверхность научную аппаратуру для комплексных исследований в
околополярной области, отработает технологию мягкой посадки и обеспечит летную квалификацию отдельных ключевых служебных систем и устройств. Они будут использоваться в последующих лунных и межпланетных миссиях.

Основными научными задачами экспедиции будут:
– изучение внутреннего строения и разведка природных ресурсов в околоополярной области Луны;
– исследование воздействий на поверхность естественного спутника Земли космических лучей и электромагнитных излучений.

Старт планируется в 2019 году с космодрома «Байконур». Ракетно-носитель типа «Союз» с разгонным блоком Фрегат».

В настоящее время идут наземные испытания служебных и научных систем, а также аппарата в целом.

На рисунке 4 представлена модель КА «Луна-25», на которой проводятся конструкторские испытания.
На 2020 год намечен полет КА «Луна-26» («Луна-Ресурс-1» - орбитальный). Он предназначен для проведения комплекса дистанционных научных исследований Луны с орбиты ее искусственного спутника. В отличие от предыдущего аппарата, масса научного комплекса в несколько раз больше (≈160 кг), что позволит провести беспрецедентные по объему и эффективности эксперименты.

Основными научными задачами миссии будут:
– картографирование минералогического состава;
– картирование распределения водяного льда на поверхности;
– исследование структуры подповерхностных слоев;
– топография лунной поверхности;
– изучение экзосферы, плазменного окружения Луны и процессов взаимодействия плазмы с поверхностью;
– исследование космических лучей и нейтрино ультравысоких энергий (эксперимент ЛОРД).

Он доставит на поверхность по существу автоматизированную физико-химическую лабораторию для проведения широкого спектра контактных исследований в районе Южного полюса.

Основными научными задачами будут:
– исследование минералогического, химического, элементного и изотопного состава лунного реголита в образцах доставленных с различных глубин до 2 метров и поверхностного слоя;
– исследование физических свойств поверхностного лунного грунта;
– исследование ионной, нейтральной и пылевой составляющей экзосферы Луны и эффектов взаимодействия поверхности с межпланетной средой и солнечным ветром;
– изучение внутреннего строения Луны и ее движения методами сейсмологии и небесной механики.

В данном проекте интересным является организация посадки. В случае неподготовленности или отмены сеанса посадки в выбранный район в заданное время логика работы аппарата предусматривает посадку в другой район.

В настоящее время разрабатывается техническое предложение по проекту «Луна-Грунт», с реализацией после 2024 года.

Выполнение научных задач автоматическими КА представленной программы внесет значительный вклад в фундаментальные исследования Луны человечеством.

Список литературы:
2. Хартов В.В. От исследования к освоению ресурсов Луны. Вчера и завтра (к 50-летию космической деятельности НПО имени С.А. Лавочкина) // Вестник НПО имени С.А. Лавочкина. 2015. № 3 (29). С. 8-14.
3. Долгополов В.П., Зайцева О.Н., Зеленый Л.М. и др. Перспективные космические аппараты для фундаментальных и прикладных исследований Луны // Космонавтика и ракетостроение. 2011. № 3 (64). С. 52-65.
5. Хартов В.В., Зеленый Л.М., Ефанов В.В., Мартынов М.Б. и др. Новые российские лунные автоматические космические комплексы (к 45-летию космической деятельности НПО имени С.А. Лавочкина и 40-летию КА «Луна-16» и КА «Луна-17») // Вестник НПО имени С.А. Лавочкина. 2010. № 4. С. 5-12.
ПРИМЕНЕНИЕ ТЕПЛОВЫХ ТРУБ ПЕРЕМЕННОЙ ПРОВОДИМОСТИ
ДЛЯ СОТР КА
Ю. В. ПАНИН
НПО им. С.А. Лавочкина

Тепловая труба (ТТ) - это двухфазное теплопередающее устройство в котором теплоперенос осуществляется путем испарения и конденсации теплоносителя. Основными преимуществами ТТ по сравнению с существующими теплопередающими устройствами являются: передача значительных тепловых потоков на расстояние до нескольких метров без затрат электроэнергии на перемещение теплоносителя; простота конструкции; простота обслуживания и долговечность за счет отсутствия подвижных механизмов насосов. Преимущества ТТ особенно проявляются в космических условиях при практическом отсутствии массовых сил, поэтому уже более 50 лет ТТ успешно применяются в системах обеспечения тепловых режимов космических аппаратов (СОТР КА).

НПО им. С.А. Лавочкина (НПОЛ) является одним из ведущих предприятий нашей страны в области разработки и применения ТТ. Разработка ТТ на предприятии ведется с конца 60-х, а первые ТТ совместной разработки с НПО "Красная звезда" были запущены на борту КА "Око" уже в 1972 г. В области космического применения контурных ТТ (КНТТ) предприятие по праву считается первопроходцем. Первый в мире космический эксперимент с КНТТ разработки НПОЛ был получен на борту КА "Гранат" в 1989 году. [1]. Аналогичный опыт NASA получило только в 1997 году в ходе эксперимента с КНТТ на шаттле "Columbia". Таким образом КНТТ в сочетании с термостабилизованными панелями на основе ТТ буквально изменили облик современных КА. Позволили перейти к модульному построению компоновки и негерметичному исполнению приборных отсеков.
Однако, сегодня все чаще необходимы ТТ обладающие свойствами переменной проводимости, т.е. так называемые регулируемые ТТ. Они позволяют поддерживать температуру объекта в заданном интервале температур при изменении величины подводимой мощности. История их развития начинается практически с первых экспериментов над тепловыми трубами [2]. Одним из первых способов, позволяющим пассивно регулировать проводимость в ТТ, стало введение в неё неконденсирующегося газа (НГ), который при уменьшении тепловой нагрузки блокирует зону конденсации, тем самым поддерживая объект охлаждения в определенном интервале температур. Такие трубы получили название газорегулируемые (ГрТТ) [3] (рис.1).

В настоящее время на НПОЛ наибольшее распространение среди ТТ переменной проводимости получили регулируемые КНТТ. Эти устройства активно применяются на всех современных автоматических КА. В том числе используются для планетных станций и исследовательских зондов. Тепловой режим посадочного аппарата КА "Луна-Глоб" обеспечивается за счет непрерывного обогрева, установленным на приборной панели радиоизотопным теплоэлектрогенератором (РИТЭГ) и одновременного регулируемого отвода тепла с помощью двух пропиленовых КНТТ. [4].

Но это обстоятельство не говорит об исключительности КНТТ. Существует множество примеров применения других видов ТТ переменной проводимости, особенно на зарубежных КА (газорегулируемых, регулируемых избыtkом жидкости или модуляцией парового потока) [5], которые в нашей стране сейчас практически не разрабатываются. Отсутствие вариантности в исполнении ТТ переменной проводимости ограничивает возможности выбора.
проектного решения при формировании облика СОТР КА. Так например американские ученые провели сравнительный анализ применения контурных и газорегулируемых ТТ для посадочной лунной станции, где определили, что ГРТТ обладают рядом преимуществ по сравнению с КНТТ [6]. Ключевым преимуществом, позволяющим ГРТТ конкурировать с другими более совершенными конструкциями регулируемых ТТ, таких как КНТТ является простота и надежность конструкции связанные с тем, что управление в пассивных ГРТТ саморегулируемое, т.е. реализуется с использованием особенностей протекающих в них физических процессов без применения каких-либо специальных датчиков температуры, исполнительных механизмов и дополнительных источников энергии, чего нельзя сказать о КНТТ в которых используются механические клапаны-регуляторы и модули Пельтье.

Основываясь на этой особенности разработчики НПОЛ предложили применить концепцию ГРТТ для регулируемого охлаждения многоканального сканирующего устройства и термостабилизированной панели корректирующей двигательной установки малого КА "Канопус-В-ИК".

В результате были разработаны два типа аммиачных ГРТТ с неконденсирующимся газом - неоном, отличающиеся конструкцией резервуара. Выбор конструкции резервуаров был обусловлен ограничениями в компоновке малого КА и низкими требованиями по точности регулирования. Первый тип ГРТТ имеет резервуар конструктивно являющийся продолжением алюминиевого профиля, из которого изготовлен корпус. Второй тип ГРТТ имеет резервуар в виде баллона из нержавеющей стали, который присоединен к конденсатору ГРТТ через эксцентрический биметаллический переходник. Внутри резервуара расположена капиллярная структура из сетки. Ее задача обеспечивать возврат жидкого теплоносителя в аксиальные канавки ТТ, попавшего в резервуар при различных манипуляциях с ГРТТ и вследствие диффузии паров теплоносителя [7] и других манипуляций. На этапе разработки был проведен расчет точности регулирования по модели плоского фронта без
учета диффузии и теплопроводности, поэтому потребовалось более тщательное подтверждение заданных характеристик на испытаниях.

В результате серии испытаний были определены точности регулирования ТТ, которые составили от 5 до 10 градусов в зависимости от типа резервуара. [8]. Полученные данные подтвердили возможность применения ГРТТ в СТР малого КА, где зоны испарения и конденсации располагаются на небольших расстояниях друг от друга, а суммарные мощности СТР не превышают 100 Вт.

Применение ГРТТ позволило сэкономить до 10 Вт электрической мощности борта и сократить срок производства ТТ переменной проводимости на 2 месяца.

186
THE DEVELOPMENT EPHEMERIS SOFTWARE FOR ASTROMETRIC OBSERVATIONS FROM THE SURFACE OF THE MOON

B.A.EPISHIN, M.I.SHPEKIN

(1) Kazan Federal University, Kazan, Russia (MichaelS1@yandex.ru / Fax: +78432927797)

Territoria Luny izдавна привлекает внимание астрономов в качестве места для размещения обсерватории. Сегодня известны несколько проектов создания на Луне астрономической обсерватории. Так специалистами НАСА предлагался проект размещения радиотелескопа на днище кратера Циолковский на обратной стороне Луны Японские ученые разрабатывают проект лунной обсерватории на южном полюсе [1,2,3]. Часть теоретического сопровождения этого проекта обеспечивают российские ученые Казанского университета. При этом ставится задача изучения внутреннего строения и определения параметров физической либрации Луны. Мы также предложили свой вариант лунной обсерватории [4], в котором рассматривается определенный круг научных задач, а также проблема выбора места на Луне в зависимости от решаемой задачи. Независимо от места расположения лунной обсерватории, а также ее научной программы, одной из важных задач является подготовка эфемеридных расчетов для успешного проведения наблюдений.

Эфемеридное обеспечение «налунной» обсерватории в отличие от обсерватории наземной имеет существенные отличия. Во-первых, требуется автономное независимое от Астрономического Ежегодника [6] программное обеспечение. Во-вторых, компьютерные расчеты должны учитывать удаленный характер управления астрометрическими инструментами. Важную роль играет также точность самих расчетов, чтобы обеспечить гарантированное наведение на объекты. Независимо от научной программы лунной астрометрической обсерватории можно выделить три вида эфемеридных расчетов, которые будут сопровождать все другие эфемериды, связанные с наблюдением конкретных
астрономических объектов. Эти три вида включают эфемериды Солнца, эфемериды Земли (для обсерватории на видимой стороне или в краевой зоне), а также эфемериды звезд. Названные эфемериды потребуются для обеспечения надежности ориентации инструментов, а также с точки зрения безопасности их работы. Так положение Солнца необходимо отслеживать, чтобы не засветить светоприемные устройства инструментов обсерватории. Перечисленные три вида эфемеридных расчетов можно условно назвать базовыми в силу их особой роли в работе всей обсерватории.

Для решения задачи базовых эфемеридных расчетов мы разработали компьютерные программы, которые позволяют проводить расчеты для Солнца, Земли и звезд. Программы объединены единым графическим интерфейсом и позволяют вести расчеты, задавая в качестве аргумента единственный параметр – дату и время. На Рис. 1 представлен внешний вид меню управляющего работой программ. В Таблицах 1, 2 и 3 представлены примеры расчетов базовых эфемерид на период августа 2016 года. В качестве места для наблюдений выбрана область озера Весны в краевой зоне Луны. Эта область принадлежит району моря Восточного. Наблюдатель, расположенный на территории моря Весны видит Землю низко над лунным горизонтом. Селенографические координаты топоцентра составляют: долгота - минус 85° и широта - минус 15°.

Исходными данными в данной программе являются селенографические координаты заданного топоцентра (долгота, широта в градусах и высота в км над поверхностью Луны). Далее выбирается время начала эфемерид т. е. дата (год, месяц и число месяца) и конкретное время (часы, минуты и секунды). Конечно, учитывается поправка разности между эфемеридным и всемирным временем в секундах для того, чтобы получить эфемериды по всемирному времени. Далее выбирается количество моментов времени (или количество строк в таблице), затем выбирается единица интервала эфемерид (в сутках, в часах, в минутах или в секундах) и, наконец, сам интервал в выбранных
единицах. Для эфемерид Солнца и Земли этого достаточно, а для эфемериды звезды еще дополнительно следует ввести каталожные координаты для эпохи 2000.0.

Figure 1. View of the calculation program interface topocentric ephemeris for the observations of the lunar surface. Green and yellow areas of the screen reflects the controls.

Все результаты вычисленных эфемерид находятся в папке на диске D «Папка_Эфемерид», которая создается программой автоматически и содержит три файла вычислений.
В первом файле «_Эфемериды_Земли_Солнца.txt» – эфемериды Солнца и Земли т. е. горизонтальные координаты (азимут, который отсчитывается от точки Юга и высота), а также и угловое расстояние между ними в градусах и в десятых долях угловых минут.

В втором файле «_Фазы_Земли_с_Луны.txt» - конкретные данные положения Земли на лунном небе: это фаза Земли точностью до 0.00001. Так же угол наклона «серпа» относительно лунного полюса мира (даются три точки позиционных углов) и относительно местного лунного зенита (то же три точки позиционных углов). Позиционный угол отсчитывается при центре светила (Земли) от направления к полюсу мира (или к зениту до определенной точки против часовой стрелки. Точность позиционного угла 0.1 угловой минуты. Если соединить три точки позиционных углов от полюса мира (или от зенита) получим дугу освещенной части Земли, которая в свою очередь будет сориентирована относительно полюса мира (или зенита, что очень удобна при астрометрических наблюдениях).

В третьем файле «_Эфемериды_Звезды.txt» - эфемериды заданной звезды, то же азимут и высота. И угловые расстояния между звездой и Землей, а также между звездой и Солнцем в градусах и в десятых долях угловых минут.

Основные формулы для вычислений заимствованы из работ [5,6,7,8,9]. Точность эклиптических координат из этих формул: Солнца около 1 угловой секунды и точность Луны до 9 угловых секунд по долготе и по широте 4 секунд. При вычислении видимого места звезды учитывались прцессия, нутация и годичная аберрация. Из-за невысокой точности положения Луны не учитывались месячная аберрация, параллакс и пространственное движение звезды. При вычисления физической либрации Луны использовалась современная теория N. Rambaux J.G.Williams [5]. Для примера приводится эфемериды Земли, Солнца и звезды Тета Персея с 17 августа по 20 августа 2016 года в 0h 00m 00s по всемирному времени с интервалом через одни сутки.
Следует отметить 18 августа – полнолуние на Земле, в то же время на Луне будет «новоземелие». Это наглядно видно в трех таблицах.

Таблица 1. Эфемериды Земли и Солнца (топоцентр - озеро Весны)

<table>
<thead>
<tr>
<th>Дата по всемирному времени в 0 часов</th>
<th>Земля</th>
<th>Солнце</th>
<th>Угловое расстояние Земля-Солнце</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Азимут</td>
<td>Высота</td>
<td>Азимут</td>
</tr>
<tr>
<td>17 августа 2016 г.</td>
<td>-88° 42'.0</td>
<td>+10° 33'.5</td>
<td>-87° 32'.5</td>
</tr>
<tr>
<td>18 августа 2016 г.</td>
<td>-89° 58'.3</td>
<td>+9° 46'.0</td>
<td>-90° 44'.5</td>
</tr>
<tr>
<td>19 августа 2016 г.</td>
<td>-91° 20'.8</td>
<td>+8° 39'.5</td>
<td>-94° 01'.8</td>
</tr>
<tr>
<td>20 августа 2016 г.</td>
<td>-92° 44'.4</td>
<td>+7° 18'.5</td>
<td>-97° 43'.5</td>
</tr>
</tbody>
</table>

Таблица 2. Фазы Земли и положение «Серпа» на лунном небе (топоцентр - озеро Весны)

<table>
<thead>
<tr>
<th>Дата по всемирному времени в 0</th>
<th>Фаза Земли</th>
<th>Позиционные углы от P1</th>
<th>Позиционные углы от P2</th>
<th>Позиционные углы от P3</th>
<th>Позиционные углы от Z1</th>
<th>Позиционные углы от Z2</th>
<th>Позиционные углы от Z3</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 августа 2016 г.</td>
<td>0.02369</td>
<td>79°.2</td>
<td>349°.2</td>
<td>169°.2</td>
<td>209°.8</td>
<td>119°.8</td>
<td>299°.8</td>
</tr>
<tr>
<td>18 августа 2016 г.</td>
<td>0.00204</td>
<td>66.7</td>
<td>336.7</td>
<td>156.7</td>
<td>197.4</td>
<td>107.4</td>
<td>287.4</td>
</tr>
<tr>
<td>19 августа 2016 г.</td>
<td>0.00507</td>
<td>273.4</td>
<td>183.4</td>
<td>3.4</td>
<td>44.4</td>
<td>314.4</td>
<td>134.4</td>
</tr>
<tr>
<td>20 августа 2016 г.</td>
<td>0.03417</td>
<td>267.0</td>
<td>177.0</td>
<td>357.0</td>
<td>38.1</td>
<td>308.1</td>
<td>128.1</td>
</tr>
</tbody>
</table>
Таблица 3. Эфемериды звезды Тета Персея. Эпоха 2000.0, Альфа = 2ч 44м 11.986с, Дельта = +49° 13' 42.48'' , (тпц - озеро Весны)

<table>
<thead>
<tr>
<th>Дата по всемирному времени ОЗ</th>
<th>Координаты звезды</th>
<th>Угловое расстояние</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Азимут</td>
<td>Высота</td>
</tr>
<tr>
<td>17 августа 2016 г.</td>
<td>-170° 05'.0</td>
<td>+44° 08'.8</td>
</tr>
<tr>
<td>18 августа 2016 г.</td>
<td>+173 58 .4</td>
<td>+44 34 .8</td>
</tr>
<tr>
<td>19 августа 2016 г.</td>
<td>+158 54 .8</td>
<td>+41 34 .2</td>
</tr>
<tr>
<td>20 августа 2016 г.</td>
<td>+146 24 .4</td>
<td>+35 41 .2</td>
</tr>
</tbody>
</table>

References

The Fifth Moscow Solar System Symposium (5M-S3). IKI RAS 5M-S3, 2014, p. 207ab-208ab.

Введение

Детальное обследование строения лунных кратеров предполагает съемку с разных сторон, с разных высот и при различных условиях освещенности. Такой «разносторонний подход» можно обеспечить за счет построения 3D-моделей лунной поверхности, когда изучаемый район покрыт одиночными снимками с перекрытием. Для случая орбитальной съемки Луны предлагаемая технология имеет важное значение.

Это связано с тем, что материалы орбитальной съемки Луны, полученные разными миссиями, значительно отличаются между собой параметрами съемочной аппаратуры, масштабом съемки и орбитами, а также покрываемой территорией. Исключение составляют лишь две миссии. Это «Клементина» (1994) и современный спутник LRO (2009 – 2016), которые покрыли практически всю территорию Луны однородной съемкой. Однако, спутник «Клементина» работал на высокой орбите (500 км) и эти снимки не очень подходят для 3D-моделирования. А спутник LRO свою съемку еще не завершил. Другая важная причина состоит в том, что орбитальная съемка в отличие от аэрофотосъемки не позволяет так же просто обеспечить съемку в различных ракурсах, поскольку фотоаппарат движется во время съемки по законам небесной механики. Кроме того, лунный день в 30 раз длиннее земного и, чтобы добиться подходящих условий освещенности, требуется значительно
больше съемочного времени, чем при съемке земной территории. Есть еще один своеобразный фактор усложняющий съемку лунной территории. Отсутствие атмосферы на Луне приводит к тому, что области неосвещенные солнечными лучами напрямую, оказываются практически недоступными для съемки, так как атмосферное рассеяние отсутствует и теневые участки с орбиты просто не видны.
Для построения 3D-моделей мы воспользовались орбитальной съемкой с кораблей «Аполлон». При этом, в силу трудоемкости процесса трехмерной обработки, мы ограничились двумя районами, выбрав два молодых ударных кратера обратной стороны Луны - кратер Эйткен и кратер Циолковский. Эти два кратера выбраны не случайно. Во-первых, они входят в число регионов (Таблица 1), где обнаружены признаки геологической активности. Во-вторых, для этих двух кратеров накоплен значительный объем научных данных, причем значительный вклад в дело их изучения принадлежит исследователям из Казанского университета.

Table 1. List of lunar regions with the evidence of geology activity

<table>
<thead>
<tr>
<th>№</th>
<th>Region name and location</th>
<th>Latitude, Longitude</th>
<th>Evidence of activity</th>
<th>Data Source</th>
<th>Notes, diameter(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alphons crater</td>
<td>13.39°S 02.85°W</td>
<td>Gas emission and light phenomenon around central peak</td>
<td>[1]</td>
<td>Old impact crater, 154</td>
</tr>
<tr>
<td>2</td>
<td>Mare Orientale Marginal Zone</td>
<td>19.9°S 94.7°W</td>
<td>“Dark ring” at south part of Mare Orientale, diameter 150 km</td>
<td>[2, 3, 4]</td>
<td>Young impact basin, 930</td>
</tr>
</tbody>
</table>
| 3 | **Aitken crater**
Far side of Moon | 16.8°S 173.4°E | Ice-like tongue at the south-west of central peak, boulders emissions, albedo anomalies | [5] | Young impact crater, 130 |
|---|---|---|---|---|---|
| 4 | **Tsiolkovsky crater**
Far side of Moon | 20.4°S 129.1°E | Ice-like tongue at the south-west of central peak, boulders emissions, plume and volcano at bottom | [6,14] | Young impact crater, 180 |
| 5 | **Antoniadi crater**
Near the polar zone of Moon far side | 69.2°S 173.1°W | Impact melt, fresh bottom and second inner wall with central peak | [7] | Young impact crater-basin, 138 |

Orbital images and processing algorithms

In Table 2, images from the Apollo-15 and Apollo-17 missions are listed. All used images were captured using a metric camera on film, delivered to Earth by the crews of the spacecraft, and then digitized using a photogrammetric scanner. Part of the images were scanned in the center of piloted flights on the Goddard Center, and the other part on the scanner of the Arizona University. Digitized copies were made available on the Arizona University website [8], which we used for our research.

Three-dimensional models were created using the Photoscan program from Agisoft [9]. Trial and debugging variants of the models were performed on images...
Table 2. List of orbital images from the board of spacecrafts "Apollo-15" and "Apollo 17", included in the models (Credit: NASA / JSC / Arizona State University).

<table>
<thead>
<tr>
<th>Image name</th>
<th>Revolution number</th>
<th>Resolution on the Moon, Meters</th>
<th>File size, Mb</th>
<th>Image properties, Bits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS17-M-0475</td>
<td>14</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
<td>On approachin g</td>
</tr>
<tr>
<td>AS17-M-0476</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
<td>On approachin g</td>
</tr>
<tr>
<td>AS17-M-0477</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
<td>On approachin g</td>
</tr>
<tr>
<td>AS17-M-0478</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
<td>Above eastern wall</td>
</tr>
<tr>
<td>AS17-M-0479</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
<td>Above crater</td>
</tr>
<tr>
<td>AS17-M-0480</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
<td>Above crater</td>
</tr>
<tr>
<td>AS17-M-0475</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
<td>Above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0481</td>
<td>AS17-M-0482</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
</tr>
<tr>
<td>0482</td>
<td>AS17-M-0483</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
</tr>
<tr>
<td>0483</td>
<td>AS17-M-0484</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
</tr>
<tr>
<td></td>
<td>AS17-M-2796</td>
<td>15</td>
<td>6 ÷ 35</td>
<td>13 ÷ 1200</td>
<td>8 ÷ 16</td>
</tr>
</tbody>
</table>

Tsiolkovsky crater

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1029</td>
<td>AS15-M-1029</td>
<td>33</td>
<td>6 ÷ 9</td>
<td>500 ÷ 1200</td>
</tr>
<tr>
<td>1030</td>
<td>AS15-M-1030</td>
<td>33</td>
<td>6 ÷ 9</td>
<td>500 ÷ 1200</td>
</tr>
<tr>
<td>1031</td>
<td>AS15-M-1031</td>
<td>33</td>
<td>6 ÷ 9</td>
<td>500 ÷ 1200</td>
</tr>
<tr>
<td>2796</td>
<td>AS17-M-2796</td>
<td>74</td>
<td>6 ÷ 9</td>
<td>500 ÷ 1200</td>
</tr>
<tr>
<td>2797</td>
<td>AS17-M-2797</td>
<td>74</td>
<td>6 ÷ 9</td>
<td>500 ÷ 1200</td>
</tr>
<tr>
<td>2798</td>
<td>AS17-M-2798</td>
<td>74</td>
<td>6 ÷ 9</td>
<td>500 ÷ 1200</td>
</tr>
<tr>
<td>2799</td>
<td>AS17-M-2799</td>
<td>74</td>
<td>6 ÷ 9</td>
<td>500 ÷ 1200</td>
</tr>
</tbody>
</table>

Анализ результатов по кратеру Эйткен

Первую трехмерную модель кратера Эйткен опубликовал в 2015 году студент Казанского федерального университета Илья Ахманов[10]. В отличие от нашей модели, результат Ахманова касается не только самого кратера Эйткен, но и его
окрестностей. В него включены территории к востоку и западу от кратера вдоль маршрута 14 и 15 витков орбиты «Аполлона-17». За счет этого модель Ахманова включает значительное число снимков, но разрешение использованных снимков было невысокое, так как применялись снимки из набора учебного лабораторного практикума, где объем каждого снимка не превышал 12-13 мегабайт.

В итоге, несмотря на большую площадь покрытия, изображения рельефа на модели проигрывает в качестве и детального полноценного сравнения провести не удаётся.

В целом же модель Ахманова и наши модели имеют большое сходство между собой. Такого результата следовало ожидать, так как модели построены по материалам одной и той же съемки по одной и той же компьютерной программе.

В кратере Эйткен имеются элементы рельефа, которые не нашли пока что какого-то научного объяснения. По-видимому, наиболее интересной такой деталью служит центральная горка кратера. Она имеет форму длинного ломаного горного хребта, вытянутого в направлении север-юг. Выдающейся достопримечательностью центральной горки является ледиково-подобный язык, сползающий с юго-западного склона ее южной оконечности. Этот язык был обнаружен сравнительно недавно. Он по своей форме и динамике движения напоминает поведение земных ледников или марсианских грунтов, сползающих с горных склонов при их нагревании в летний период времени. Фронтальная часть языка содержит обширную россыпь валунов, при этом на снимках LRO хорошо виден эпицентр, из которого они были выброшены (Рис. 1). Перечисленные характеристики языка привели авторов работ [5,6] к предположению, что этот феномен связан с наличием в лунном грунте, из которого язык состоит, большого количества вмороженного водяного льда. Этот лед при нагревании придает грунту определенную вязкость, что и приводит его в движение. Что именно служит источником нагрева пока неясно.
Это может быть и солнечный прогрев в течении длинного лунного дня, а может и остаточная энергия процесса кратерообразования, поскольку кратер Эйткен довольно молодой и есть основания считать, что он еще не остыв [11,12].
К сожалению, разрешения построенных нами моделей недостаточно для детального обследования описанного языка центральной горки.

Другая интересная особенность кратера Эйткен – это аномалии альбедо на его обширном днище [13]. Указанные аномалии, несмотря на усилия многих исследователей, также не нашли убедительного объяснения. На наших моделях
хорошо видны участки днища, где аномальные районы расположены между центральной горкой кратера и его изолированными вершинами западнее центральной горки (Рис. 2). Особый интерес вызывает участок днища между вершиной номер 4 (см. Рис.2 и Рис.3) и центральной горкой. Поверхность данного участка, имеет светлый покров (аномалия альбедо) и простирается на значительное расстояние в полтора десятка км. На одиночных снимках кратера нельзя заметить каких-либо отклонений рельефа ровного днища в районе этого аномального участка. Внимательно рассмотрение нашей модели (см. Рис.3) позволяет заметить, что аномальный участок слегка возвышается над уровнем днища кратера. Такая на первый взгляд несущественная особенность аномальной области может иметь значение при изучении природы аномалий альбедо.

Рисунок 2. Фрагмент модели кратера Эйткен, включающий центральную часть кратера и северо-восточный склон его вала. В нижней части рисунка видны изолированные горные вершины (номера 1 ÷ 5). Вверху слева – кратер Эйткен Z.
Рисунок 3. Фрагмент модели кратера Эйткен, включающий вид центральной горки, вершины номер 4 и участка днища с аномальным альбедо. В правой части рисунка виден ледниково-подобный язык (номер 5), сползающий с юго-западного склона южной части центральной горки.

Анализ результатов по кратеру Циолковский

Кратер Циолковский уже более 40 лет изучается специалистами у нас в стране и за рубежом. В 2009 году в Интернете были опубликованы оцифрованные орбитальные снимки с кораблей «Аполлон», что привлекло к их изучению широкий круг исследователей.

Одной из самых интересных особенностей кратера Циолковский служит его выдающаяся центральная горка. Даже одиночные снимки центральной горки с высоты «аполлоновских» орбит (120 км) производят сильное впечатление [14]. В основе сильных впечатлений лежит возраст кратера Циолковский, который некоторые исследователи оценивают величиной 1-3 миллиона лет [11, 12]. В геологической шкале времени это «младенческий» возраст. То есть кратер и его центральная горка образовались совсем недавно. Вал кратера, его днище и сама центральная горка еще не успели за столь короткое время претерпеть сколь-нибудь заметных изменений в топографии и находятся практически в первозданном виде.
В связи с этим весьма любопытно посмотреть на топографию кратера Циолковский с разных сторон, а точнее с разных ракурсов. Именно это и позволяют сделать 3D-модели. Покажем это на примере нашей модели центральной горки кратера.

На Рис. 4 представлен общий вид центральной горки на скриншоте с 3D-модели кратера. Хорошо видно, что центральная горка кратера Циолковский имеет своеобразное и довольно сложное строение. Обращают на себя внимание крутое склоны южной части горки в отличие от пологих северных склонов.

Рисунок 4. Общий вид центральной горки кратера Циолковский на фрагменте 3D-модели (север – в левом нижнем углу)

В результате построения нашей модели, как это видно из Рис. 4, стал четко виден центральный хребет горки, проходящий в виде ломаной линии (на рисунке – сверху вниз, на Луне с запада на восток). Этот хребет либо не просматривается на одиночных снимках так четко, либо не виден вообще. Главный хребет горки прекрасно виден с другого ракурса на Рис. 5 в его верхней части. Здесь показан вид центральной горки с востока. Модель позволяет хорошо рассмотреть строение склонов центральной горки. Обращает
на себя внимание крутизна склонов, чего нельзя заметить на одиночных снимках.

Рисунок 5. Центральная горка кратера Циолковский. Вид с востока.

Кроме того, на крутых ярко освещенных склонах, обращенных к югу (на Рис. 5 эти склоны направлены влево) просматриваются отдельные детали их поверхности. На одиночных снимках таких деталей нет, поскольку эти склоны очень ярко освещены солнцем.

Интересно рассмотреть еще две необычных детали рельефа в районе центральной горки. Первая деталь – это ледниково-подобный язык, сползающий с юго-западного склона центральной горки. На Рис.6 этот язык показан в двух ракурсах. На первом – с юго-запада, на втором - с запада. Надо отметить, что на указанных рисунках виден не только сам язык, но и детали его строения, чего нельзя сказать об одиночных снимках.

Вторая деталь расположена к северу от центральной горки на участке, отделяющем саму горку от вала кратера. Этот участок днища кратера представляет собой наклонное плато, на территории которого разбросаны
валуны. Уникальный по своему внешнему виду фрагмент днища, аналогов которому не встречается ни в одном другом кратере. Полагаем, что дальнейшее изучение этого плато с помощью 3D-моделей может пролить свет на его загадочную природу.

Рисунок 7. Фрагмент днища кратера Циолковский, включающий наклонное плато (в центре) с разбросанными валунами (светлое пятно) на модели высокого разрешения. На снимках LRO, разрешение которых на порядок выше, видно, что светлое пятно состоит из отдельных валунов.

Заключение

Опыт построения моделей для двух ударных кратеров позволяет оценить возможности предложенного подхода. В частности можно утверждать, что совместный анализ одиночных орбитальных снимков кратеров в паре с их трехмерными моделями может привести к обнаружению новых, ранее неизвестных деталей их строения. Такая технология представляет особый интерес при изучении регионов с признаками геологической активности. Детальное изучение указанных регионов, активность которых обнаружена в последние годы, стало возможным благодаря орбитальной съемке высокого и сверхвысокого разрешения. Пространственные модели лунных территорий
позволяют исследовать их строение в новых ракурсах, что обеспечивает более полное извлечение сведений хранящихся в многочисленных материалах съемок с окололунных орбит.
Следует также отметить, что трехмерное моделирование представляет собой достаточно трудоемкую задачу. Решение таких задач предъявляет повышенные требования к мощности компьютера. Даже игровые компьютеры, имеющие, как правило, хорошую производительность, с трудом справляются с обработкой нескольких снимков высокого разрешения, полученных метрической широкоугольной камерой типа камер кораблей «Аполлон».
При наличии достаточно мощного компьютера открывается возможность создавать 3D-модели по снимкам с разных витков орбиты, а затем и по панорамным снимкам сверхвысокого разрешения. Такие модели приведут к более глубокому изучению строения лунных территорий, что в свою очередь, позволит по-новому взглянуть на природу лунного мира и, в частности, лучше подготовиться к предстоящим лунным миссиям.

Литература

[10] Ахманов И.В. Поверхность луны, 2015, URL: https://sketchfab.com/models/6de3bce9836d43bba4517dfd91b71a8e

СОВРЕМЕННЫЕ МЕТОДЫ В ТЕОРИИ И НАБЛЮДЕНИЯХ ФИЗИЧЕСКОЙ ЛИБРАЦИИ ЛУНЫ: АНАЛИЗ И РЕЗУЛЬТАТЫ

1,2 Н. ПЕТРОВА, 1 А. ЗАГИДУЛЛИН, 1 Ю. НЕФЕДЬЕВ, 1,2 В. КОСУЛИН

1. Казанский (Поволжский) федеральный университет
2. Казанский энергетический университет

e-mail: nk_petrova@mail.ru

1. Введение

Наблюдение физической либрации небесных тел и Луны, в частности, – это один из астрономических методов, позволяющих дистанционно оценивать внутреннее строение небесного тела без применения дорогостоящих космических экспериментов. Например, в начале первого десятилетия 21 века появилась серия статей, однозначно показывающих новое направление в изучении небесных - оценка внутреннего строения и последующее его моделирование привязаны к наблюдениям за вращением Луны, спутников Юпитера, Сатурна.

Естественно, что наибольших успехов в получении знаний о внутреннем строении достигнуто для Луны, близость которой к Земле позволяет применять для этого все разнообразие и астрономических, и геофизических методов. В сочетании с наземными наблюдениями – гелиометрические, фотографические, радио- и светолокация, – новейшие эксперименты, такие, как сейсмическое зондирование с помощью посадочных лунных модулей, теоретическое и компьютерное моделирование на основе комплексной обработки разного типа данных обеспечили надёжный наблюдательный базис для изучения деталей структуры лунного тела и его физико-химических свойств.

Среди всех методов изучения Луны, проблема развития теории физической либрации остается неизменно актуальной. Существенному прогрессу в изучении вращения нашего спутника способствовал ряд космических экспериментов по определению лунного гравитационного поля. В частности,
результаты миссии NASA GRAIL позволили построить модель селенопотенциала свыше 600-й степени разложения на сферические гармоники. Также повышена и точность коэффициентов низких порядков, оказывающих наибольшее влияние на вращение Луны. Эта улучшенная модель гравитационного поля на основе данных GRAIL, заложена в эфемериду DE430/431, которая соответствует субметровой точности при сравнении с данными лазерной локации и включает, помимо модели GRAIL для гравитационного поля, также эффекты затухания вращения вследствие трения на границе жидкого ядра и твердой мантии. Параметры ядра, заложенные в модель, получены в ходе многолетних исследований физической либрации на основе лазерной локации.

2. Анализ данных лазерной локации с целью оценки параметров внутреннего строения Луны

Одним из мощных методов изучения физической либрации и особенно её тонких эффектов является лазерная локация Луны (ЛЛЛ). Через наблюдение ФЛЛ лазерная локация позволяет, например, выявить три эффекта, указывающих на наличие у Луны жидкого ядра. Это – 1. наличие диссипации энергии на границе жидкое-ядро/твердая мантия (core-mantle boundary - CMB); 2. сжатие/сплюснутость области CMB, вследствие чего жидкость, текущая по этой сжатой поверхности создает дополнительное возмущение на вращение Луны; 3. изменение амплитуды некоторых членов в рядах физической либрации из-за наличия жидкого ядра.

Такой тонкий эффект, как свободные нутации ядра (Free Core Nutation – FCN), обусловленный несовпадением осей вращения жидкого ядра и твёрдой мантии, пока не обнаружен. Даже последние данные [1-2] по анализу лазерных наблюдений, основанному на теории DE421, не позволили выявить ни амплитуды, ни фазы FCN. Зато в ходе этого анализа было получена очень важная информация о сжатии жидкого ядра (2.46±1.4)×10⁻⁴. Вопрос о величине
сжатия области СМВ и самого ядра является актуальным, поскольку эти параметры определяют FCN-период.

Анализ ЛЛЛ-данных выявил тот факт, что вращение Луны до сих пор сохраняет колебания, вызванные какими-либо одномоментными возмущениями, например, возбуждением от столкновения с мощными метеоритами. Эти колебания называются свободными либрациями, которые существуют даже при отсутствии постоянно действующих возмущений со стороны других небесных тел. Осуществляются свободные либрации на частотах равных собственным частотам лунного тела, которые можно определить теоретически, исходя из используемых моделей распределения масс в лунном теле.

Для понимания природы и параметров свободной либрации необходимо точное определение амплитуд, периодов и фаз гармоник не только всех типов свободных либраций Луны, но и вынужденных либраций, которые имеют достаточно большие амплитуды. У твёрдой Луны три моды свободных либраций соответствуют динамически нормальным режимам Луны, пребывающей в стадии спин-орбитального резонанса. Это - долготная мода с периодом 2,9 года описывается вращением параллельным плоскости лунного экватора (рис. 1). Широтная, мода соответствует обратному движению оси вращения по небольшому конусу вокруг нормали к экватору с периодом около 81 года. Существует ещё один вид свободной либрации, который относится к движению оси фигуры относительно оси вращения. Если рассматривать движение в системе координат осей инерции, ось вращения описывает эллипс с периодом в 75 лет. Это движение аналогично Чандлеровым колебаниям на Земле, но если рассматривать это движение в инерциальной системе координат, то период будет около 27 дней. Эту моду часто называют модой качания (wobble) или чандлеро-подобные колебания.

Для моды качания частота и отношение полуосей эллиптической траектории оси фигуры отличаются в два раза от Эйлеровских. Причина – в
синхронизации лунного вращения с орбитальным движением, что фактически означает, что Луна, в принципе, не может рассматриваться как свободно вращающееся тело.

Рис. 1. Свободные либрации: по долготе \(\phi_{\text{free}} \) (параллельно экватору) с периодом ~2,9 года, по широте – обратное вращение с периодом ~81 год и амплитудой 0,032°, и качания (wobbles) - малый конус с полуосами 8×3 секунд дуги по отношению к полярной оси инерции С с периодом ~75 лет (рис. заимствован из Yoder, 1981).

Если периоды свободных мод могут быть рассчитаны теоретически, то вот для определения их амплитуд и фаз требуется привлечение наблюдаемых данных. К настоящему времени, наиболее полный анализ лазерных данных в плане уточнения всех параметров ФЛЛ, как свободной, так и вынужденной, представлен в работе [1]. Ценность их исследования заключается также и в достаточно подробном описании современной методики обработки ЛЛЛ-наблюдений, получении уточненных значений параметров в рядах либрации, интерпретации природы многих гармоник ФЛЛ. Важно и то, что в работе акцентировано внимание на способе извлечения свободных либраций из Эйлеровых углов, представленных в числовой теории, в данном случае - DE421.

3. Анализ долгопериодических изменений параметров физической либрации Луны на основе аналитической теории.

Современные методы анализа остаточных разностей, полученных при обработке высокоточных наблюдений с применением точнейших теорий спин-орбитального движения дали возможность не только выявлять тонкие эффекты в лунном вращении, но и уточнить параметры аналитического описания ФЛЛ.
Аналитическая форма решения позволяет строить, например, наблюдаемые треки звезд при моделировании наблюдений телескопа, который планируется установить на лунной поверхности [3]. Меняя параметры местоположения телескопа, используя разные модели гравитационного поля Луны, вводя эффекты деформируемости лунного тела, можно решать задачи оптимального расположения измерительной аппаратуры для наблюдения ФЛЛ, проверять чувствительность измеряемых координат звезд к тем или иным параметрам лунного тела. Аналитическая теория, используемая нами [4-5], построена для трёх самолетных углов, определяющих положение лунного тела относительно эклиптической системы координат, и трёх, сопряженных им канонических импульса, показывающих скорости изменения угловых переменных.

В ходе моделирования наблюдений ФЛЛ, нами было замечено необычное поведение одной из переменных либрации – импульса p3. На рис. 2 показано поведение со временем всех шести переменных на интервале времени один год.
Изменение 5 переменных имеет явный периодический характер. В широтных переменных φ и π, а также в импульсе p_2 превалирует гармоника F, соответствующая периоду в 27,3 дня. В либрации по долготе - μ и p_1 - хорошо заметно проявление совокупности большого числа гармоник с разными амплитудами. А вот поведение импульса p_3 принципиально отличается: на периоде в 1 год мы видим лишь небольшие периодические колебания на фоне мощного тренда в сторону увеличения импульса.

Подозревать вековое изменение скорости в либрационном угле π не имеет смысла: система устойчива и изменения в π ограничены во времени. Мы проанализировали аналитическую структуру функции p_3 и обнаружили, что
наиболее мощной гармоникой в ряде для р₃ является гармоника (1–F): её амплитуда на два порядка больше амплитуд других гармоник. Период этой гармоники почти 6 лет, поэтому, рассчитав поведение р₃ на этот период, мы увидели ожидаемое периодическое поведение импульса (рис 3).

Изменения в скоростях канонических переменных вызвано, как мы пониманием, в основном, балансом центробежной силы, определяющих резонансный характер спин-орбитального движения Луны. Из геометрической природы q₂ очевидно, что основное изменение её скорости обусловлено наклоном динамического экватора к эклиптике. А на изменение q₃ основное влияние оказывает разность между орбитальной и вращательной скоростью. В силу резонанса эта разница невелика, поэтому и период изменений оказывается столь долгим.

Это долгопериодическая компонента. Она описывает так называемую элонгацию — это угол между осью a динамической системы координат и средним направлением на центр (Землю), вокруг которого происходит обращение. Ось a либирует относительно среднего направления на Землю.

Этот простой пример наглядно демонстрирует возможности аналитической теории ФЛЛ для интерпретации различных, на первый взгляд, труднообъяснимых, явлений в спин-орбитальной динамике Луны.

Литература

3. Петрова Н., Ханада Х. «Компьютерное моделирование наблюдений звезд с поверхности Луны с помощью полярного зенит-телескопа японского проекта ILOM», Астрономический вестник, 2013, том 47, № 6, с. 504-517

ЧИСЛЕННЫЙ ПОДХОД К ПОСТРОЕНИЮ ФИЗИЧЕСКОЙ ЛИБРАЦИИ ЛУНЫ: РЕЗУЛЬТАТЫ ВТОРОГО ЭТАПА

А.А.ЗАГИДУЛЛИН ¹, Н.К. ПЕТРОВА ¹², В.С.УСАНИН ¹, Ю.А.НЕФЕДЬЕВ ¹, М.В.ГЛУШКОВ ¹

¹Казанский Федеральный Университет, arhtur.zagidullin@ya.ru
²Казанский Государственный Энергетический Университет

1. Постановка задачи

Разрабатывается численный подход к решению задачи о физической либрации Луны. Целями исследования являются: 1. Ввести параметры для описания положения тела Луны в пространстве. 2. Получить динамические уравнения, описывающие факторы, вызывающие ФЛЛ. 3. Получить выражения для потенциала Луны в рамках главной проблемы. 4. Разработать численный интегратор для решения полученных уравнений 5. Сравнить результаты с аналогичным аналитическим решением.

2. «Главная проблема Луны»

Физическая либрация Луны (далее ФЛЛ) – это малые колебания относительно равномерного вращения (по законам Кассини). Под главной проблемой задачи понимают следующие условия:

1. Орбита Луны задается теорией движения, разработанной в рамках теория Брауна – Шмидта [1], при этом орбитальная и вращательная задачи рассматриваются независимо друг от друга.
2. Тело Луны представляет собой абсолютно твердое тело, описываемое в разложении потенциала 2-й и 3-й гармоникой.

3. В качестве возмущающих функций рассматриваются точечные Земля и Солнце.

3. Система уравнений Гамильтона для ФЛЛ

В качестве канонических углов для построения системы уравнений Гамильтона выбираются самолетные углы \(\mu, \nu, \pi \), определяющие положение тела Луны относительно «инерциальной» системы отсчета. В нашем случае – это эклиптическая система эпохи J2000 (рис 1). Вращение луны рассматривается в динамической системе координат (ДКС) с началом в центре масс Луны и осями, сонаправленными с главными осями инерции (A<B<C). Задача – реализовать переход от инерциальной СК к динамической СК. Для этого нами были получены кинематические уравнения для углов либрации \(\mu, \nu, \pi \). В качестве канонических углов мы берем: \(q_1 = \mu, q_2 = \nu, q_3 = \pi \)

\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
= R_x(-\pi) \cdot R_y(\nu) \cdot R_z(\mu + L)
\begin{pmatrix}
 X \\
 Y \\
 Z
\end{pmatrix}
\]

Тогда выражение для кинетической энергии системы можно записать в следующем виде:

\[
T = \frac{1}{2} \left[(1+k_2) \cdot p_1^2 + (1+k_1) \cdot (p_2 \cdot \cos(q_3) - \sec(q_3)(n + p_1 - p_5 \cdot \sin(q_2)) \cdot \sin(q_3))^2 \right] +
\frac{1}{2} [p_2 \cdot \sin(q_3) + \cos(q_3) \cdot ((n + p_1) \sec(q_2) - p_3 \tan(q_2))]^2
\]

В силу аддитивности силовой функции, можно записать ее следующим образом:

\[
U = U_{2\text{ earth}} + U_{2\text{ sun}} + U_{3\text{ earth}} + ...
\]

Тогда уравнения Гамильтона:

\[
\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}
\]

\[
H = T + U
\]
После некоторых выкладок можно получить полную нелокиную систему Гамильтона для углов физической либрации Луны:

\[
\frac{d^n t}{dt} = n \cdot \tan^2(q_2) + \frac{\cos^2(q_3) \cdot p_1 - \cos^2(q_2) - k_1 \cdot n \cdot \sin^2(q_3) \cdot \frac{\sin(q_3)}{\cos(q_2)} + k_1 \cdot n \cdot \sin^2(q_3) \cdot \frac{\sin^2(q_3)}{\cos^2(q_2)} + k_1 \cdot p_1 \cdot \sin^2(q_3) - \cos^2(q_3)}{\cos^2(q_2)}
\]

\[
- p_3 \cdot \tan^2(q_2) - p_3 \cdot \frac{\sin^2(q_3) \cdot \tan(q_3)}{\cos(q_2)} - k_1 \cdot p_1 \cdot \sin^2(q_3)
\]

\[
\frac{d^2 q}{dt} = (1 + k_1) \cdot p_1 \cdot \cos^2(q_3) - k_1 \cdot \cos(q_3) \cdot \sec(q_2) \cdot (n + p_1 - p_3 \cdot \sin(q_3)) \cdot \sin(q_3) + p_2 \cdot \sin^2(q_3)
\]

\[
\frac{d^2 q}{dt} = \frac{1}{2} \left((1 + k_1) \cdot p_1 + 2 \cdot (1 + k_1) \cdot \sin(q_3) \cdot (p_2 \cdot \cos(q_3) - \sec(q_2) \cdot (n + p_1 - p_3 \cdot \sin(q_3)) \cdot \sin(q_3)) \right)
\]

\[
- \cos(q_3) \cdot \tan(q_2) \cdot \left[n + p_1 - p_3 \cdot \sin(q_3) \right] \cdot \sin(q_3) - p_3 \cdot \tan(q_2)
\]

4. Потенциал. Сравнение гармоник

Для получения потенциала введем следующие обозначения для направляющих косинусов радиуса вектора Земли или Солнца. Используя рисунок 2, выразим направляющие косинусы через сферический треугольник АОВ ОА =u_1, ОВ =u_3, u_2 = \sqrt{1 - u_1^2 - u_3^2}

В результате громоздких вычислений получен окончательный вид для гармоник в разложении селенопоенциала в ряд по сферическим функциям:

\[
U_2 = \frac{3}{2} \cdot \frac{G M_e}{a^{3/L-E}} \left(\frac{a_{L-E}}{\rho} \right)^3 \left[(C - A) u_1^2 - (B - C) u_2^2 \right]
\]

\[
\tilde{n}_{20} = \frac{1}{Ma^2} \left(\frac{A + B}{2} - C \right)
\]

\[
U_{2\text{sun}} = \frac{3}{2} \cdot \frac{G M_e}{a^{3/L-S}} \left(\frac{a_{L-S}}{\rho} \right)^3 \left[(C - A) u_1^2 - (B - C) u_2^2 \right]
\]

\[
\tilde{n}_{22} = \frac{1}{4Ma^2} (B - A)
\]

\[
U_3 = \frac{3}{2} \cdot \frac{G M_e}{a^{L-E}} \cdot M_n a_{\text{radius}} \left(\frac{a_{L-E}}{\rho} \right)^4 \left[c_{33} u_1^2 + s_{33} u_2^2 + c_{33} u_3^2 + 10 s_{33} u_1^2 - \frac{5}{3} \cdot c_{30} u_1^3 - 10 c_{33} u_2^3 - 5 c_{33} u_3^3 + 30 c_{33} u_1^2 u_2^2 - 30 s_{33} u_1 u_2 u_3 - 5 s_{33} u_2^3 + + 10 c_{33} u_1^2 u_2^2 + 10 c_{33} u_1 u_2 u_3 \right]
\]

\[
\frac{GM_e}{a^3}
\]

220
Заметим, что величина вычисляется на основе уточненного третьего закона Кеплера

\[
\frac{GM_e}{a^3} = n^2 \left(1 + \frac{n^2}{2n^2}\right) \frac{M_e}{M_e + M_m}
\]

Рассматривая гармоники разных степеней (рис 3, приведены только зональные компоненты), а – сжатие, b – грушевидность, c – квадратная, d – пятилепестковая, можно заметить на одну особенность.

Одним из первых, кто указал на особенность связанную с третьей гармоникой, был Хабибулин Ш.Т [2]: Третья гармоника селенопотенциала вызывает постоянное смещение оси направленной на среднее положении Земли, и таким образом существенно влияет только в либрации в долготе. Приведем сравнение гармоник разной степени нормированную на 2-ю гармонику:

Рис 3. Зональные гармоники

\[
\frac{U_3}{U_2} \approx 6 \cdot 10^{-3} \quad \frac{U_5}{U_2} \approx 4 \cdot 10^{-9} \quad \frac{U_7}{U_2} \approx 6 \cdot 10^{-7}
\]

\[
\frac{U_1}{U_2} \approx 3 \cdot 10^{-4} \quad \frac{U_4}{U_2} \approx 3 \cdot 10^{-6} \quad \frac{U_5}{U_2} \approx 2 \cdot 10^{-8}
\]

В соответствии с приведенными оценками, понятно, что в первую очередь (в рамках главной проблемы) необходимо учитывать взаимодействие Луны, описываемой второй и третьей гармоникой с Землей и Солнцем, которые рассматриваются как гравитационные точки. Этими условиями и определяются рамки главной проблемы.

5. Решение ФЛЛ (на 2 года)

Построив численный алгоритм на основе метода Рунге Кута 10 порядка [3], мы получил решение уравнений \(\mu_1 \pi\) (рис 4)
Рис 4. Приведено решение Ф.Л.Л в долготе (q₁, q₂) и широте (q₃)

Представленные графики показывают, что решение носит периодический характер, для q₁ имеется постоянный сдвиг вследствие действия U₃, имеется лидирующая частота F для q₂ и q₃ в соответствии с кинематикой движения.

6. Анализ результатов

Рис 5. Остаточные разности (Численное минус аналитическое решение)

На рис 5, показаны остаточные разности решений на интервале около 150 лет по сравнению с аналитической работы Н.К. Петровой. Амплитуда в долготе ограничена по модулю величиной 1.7 угловой секунды, а амплитуда в широте 0.7 угловой секунды на всем интервале интегрирования. Полученные границы остаточной разностей намного больше величины самой большой компоненты в ФЛЛ. Для выявления причины столь большой амплитуды, рассмотрим периодограмму Шустера (рис 6). На периодограмме показаны следующие периоды около 3 лет для долготы, около месяца и 68 лет для широты. Полученные периоды являются резонансными. Наличие этих периодов вызывают малые делители при аналитическом решении. Таким образом, полученная амплитуда остаточных разностей зависит каким образом находилось решение для близких к резонансным частотам в аналитической работе Н.К. Петровой.
Рис 6. Периодограмма Шустера для остаточных разностей

Построив остаточные разности с рядами Рамбо и Вильямса, мы получаем величину амплитуды примерно в 10 раз больше, чем при сравнении с данными Петровой. Столь большая амплитутда зависит от многих факторов: 1. Используемые постоянные 2. Больше количество гармоник 3. Внутренняя структура 4. Учет планет и другие факторы. Поэтому на данном этапе адекватное сравнение решения «главной проблемы» с данными Рамбо и Вильямса не может быть реализовано.

7 Выводы.

В представленной работе построено полное решение задачи физической либрации Луны в рамках «главной проблемы». Решение получено численным способом на основе метода Рунге Кутта 10 порядка. Внутренняя точность метода составляет 10^{-10} угловой секунды на интервале 27 лет. Сравнение с аналитическими рядах ФЛЛ Петровой показало различие на резонансных частотах, причина которого кроется, скорее всего, в нерешенных проблемах.
аналитического решения. В результате, амплитуда по модулю в долготе остаточных разностей составляет 1.7, а в широте 0.7 угловой секунды. Аналогичные выводы по поводу амплитуды остаточных разностей, делает Ерошкиным [6], что является независимым подтверждением правильности полученных нами результатов.

8 Литература

[6] Eroshkin G.I Comparison of a Numerical Model of the Physical Libration of the moon with two Semi-Analytical ones, 1986, Symp. Figure and Dynamics of the Earth, Moon, and Planets.
CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>SUMMARY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SCIENTIFIC PROGRAM</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>В.В. ШЕВЧЕНКО ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ЗАДАЧИ СОВРЕМЕННЫХ ИССЛЕДОВАНИЙ ЛУНЫ</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>R. HUDEC, C. POLASEK WEINEK FIRST PHOTOGRAPHIC MOON ATLAS AND MOON PHOTOGRAPHIC PLATE COLLECTION</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>R. HUDEC SPACE EXPLORATION WITH CUBESATELLITES & LOBSTER EYE SPACE TELESCOPES</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>WANG MINGYUAN, HAN SONGTAO, PING JINSONG, TANG GESHI, ZHANG QIANG EXPLORING OBVIOUS LUNAR IONOSPHERE BASED ON THE SERVICE MODULE OF CIRCUMLUNAR RETURN AND REENTRY SPACECRAFT</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>T. ABDULMYANOV THE MECHANISM OF FRAGMENTATION OF PROTO-PLANETARY DISKS IN THE EARLY STAGES OF THEIR EVOLUTION</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>T. ABDULMYANOV THE MIGRATION ORBITS OF DUST PARTICLES IN THE INNER REGIONS OF THE PROTO-PLANETARY RINGS: MECHANISM OF FORMATION OF THE PLANETS AND THEIR SATELLITES</td>
<td>46</td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>PING JINSONG, MENG QIAO, WU GONGYOU, LI WENXIAO, WANG MINGYUAN, CHEN CONGYAN, ZHANG TIANYI, WANG ZHEN</td>
<td>SPACE GEODETIC STUDY BY LUNAR RADIO RANGING IN CE-3 MISSION</td>
</tr>
<tr>
<td>12</td>
<td>A.V. BAGROV, V.A. LEONOV, V.K. SYSOEV</td>
<td>OPTICAL LIGHT BEACONS AS INSTRUMENTS FOR DEVELOPING SELENODEZY AND LUNAR MOVEMENT THEORY</td>
</tr>
<tr>
<td>13</td>
<td>A. BATOV, T. GUDKOVA AND V. N. ZHARKOV</td>
<td>CALCULATION OF LOAD LOVE NUMBERS AND STATIC STRESSES FOR THE INTERIOR STRUCTURE MODEL OF MARS WITH AN ELASTIC MANTLE</td>
</tr>
<tr>
<td>14</td>
<td>S. VOROPAEV</td>
<td>VALUE OF TIDAL EFFECTS ON THE EARLY TECTONICS OF MOON</td>
</tr>
<tr>
<td>15</td>
<td>T. GUDKOVA, PH. LOGNONNÉ, K. MILJKOVIĆ K. AND J. GAGNEPAIN-BEYNEIX</td>
<td>CUTOFF FREQUENCY – MOMENTUM SCALING LAW INFERRED FROM THE ANALYSIS OF METEOROIDS IMPACTS RECORDED BY APOLLO SEISMIC STATIONS</td>
</tr>
<tr>
<td>16</td>
<td>V. N. ZHARKOV AND T. GUDKOVA</td>
<td>ANALYSIS OF GRAVITY AND TOPOGRAPHY DATA FOR MARS</td>
</tr>
<tr>
<td>17</td>
<td>ZH.F. RODIONOVA, V.V. SHEVCHENKO, G.G. MICHAEL</td>
<td>FIRST TOPOGRAPHIC PLAN OF A REGION OF “LUNA 9” PLACE OF SITE</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>I.KARACHEVTSEVA AND MIIGAIK EXTRATERRESTRIAL LABORATORY (MEXLAB) PLANETARY GEODESY AND CARTOGRAPHY AS METHODS OF EXTRATERRESTRIAL EXPLORATION</td>
<td>I.Karachevtseva and M.Iigai</td>
</tr>
<tr>
<td>19</td>
<td>S.G. PUGACHEVA, E.A. FEOKTISTOVA, V.V.SHEVCHENKO THE SOVIET PROJECTS OF SPACE MISSIONS TO THE MOON</td>
<td>S.G. Pugacheva, E.A. Feoktistova, V.V. Shevchenko</td>
</tr>
<tr>
<td>20</td>
<td>M.P. SINITSYN ANALYSIS OF EPITHERMAL NEUTRON FLUX FROM BOUGUER ANOMALIES REVEALED BY GRAIL</td>
<td>M.P. Sinitsyn</td>
</tr>
<tr>
<td>21</td>
<td>PUGACHEVA S. G., FEOKTISTOVA E.A., SHEVCHENKO V.V. THE POSSIBLE EXISTENCE OF DEPOSITS OF VOLATILE COMPOUNDS IN THE NSR S5 AREA IN THE AREA OF SCOTT CRATER ON THE MOON</td>
<td>S.G. Pugacheva, E.A. Feoktistova, V.V. Shevchenko</td>
</tr>
<tr>
<td>23</td>
<td>A.GUSEV SPIN-ORBIT EVOLUTION AND PHYSICAL LIBRATIONS OF PHOBOS: MODERN STATUS AND PERSPECTIVES FOR EXOMARS, PHODEX AND PHOBOS-GRUNT-II MISSIONS</td>
<td>A. Gusev</td>
</tr>
<tr>
<td>25</td>
<td>A.O.ANDREEV, Y.A.NEFEDYEV CENTER OF SPACE RESEARCHES AND ASTRONOMICAL PHOTOGRAPHIC PLATES LIBRARY</td>
<td>A.O. Andreev, Y.A. Nefedyev</td>
</tr>
<tr>
<td>26</td>
<td>Y. NEFEDYEV, A. ANDREEV ENGELHARDT ASTRONOMICAL OBSERVATORY 115 YEARS</td>
<td>Y. Nefedyev, A. Andreev</td>
</tr>
<tr>
<td>№</td>
<td>Авторы</td>
<td>Название статьи</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>27</td>
<td>L. MARSADOLOV</td>
<td>THE MOON AND ANCIENT NOMADS OF SAYAN-ALTAI</td>
</tr>
<tr>
<td>28</td>
<td>R.KASCHEEV, I.NOVLYANSKAYA</td>
<td>EVALUATION OF THE ACCURACY OF THE MODERN PLANETARY GRAVITY FIELD MODELS</td>
</tr>
<tr>
<td>29</td>
<td>А.К. ЗАВАЛИШИНА, Б.М. ЛЕЙФЕРОВ, П.Ю. ЛЕОНОВ, Д.А. ПЕНЬКОВ, Г.М. ПОЛИЩУК, Е.В. ПОКОЛОДИНА, В.Р. ШАРИПОВ</td>
<td>СИСТЕМА УПРАВЛЕНИЯ ЗНАНИЯМИ – НЕОТЪЕМЛЕМАЯ ЧАСТЬ РЕШЕНИЯ ПРОБЛЕМ СОХРАНЕНИЯ КОСМИЧЕСКОГО ТЕХНОЛОГИЧЕСКОГО НАСЛЕДИЯ</td>
</tr>
<tr>
<td>30</td>
<td>Г.В. СОНИН</td>
<td>О БЕРЕГОВЫХ УСТУПАХ ДРЕВНЕГО ОКЕАНА МАРСА И СВИДЕТЕЛЬСТВАХ БОЛЕЕ ТЕПЛОГО КЛИМАТА В ПРОШЛОМ</td>
</tr>
<tr>
<td>31</td>
<td>Е.А. ГРИШАКИНА</td>
<td>СРАВНЕНИЕ ГЛОБАЛЬНЫХ ОСОБЕННОСТЕЙ РЕЛЬЕФА ЛУНЫ И МАРСА</td>
</tr>
<tr>
<td>32</td>
<td>В.В. ЕФАНОВ, М.Б. МАРТЫНОВ</td>
<td>НОВЫЕ И ПЕРСПЕКТИВНЫЕ НАУЧНЫЕ АВТОМАТИЧЕСКИЕ КОСМИЧЕСКИЕ АППАРАТЫ, СОЗДАВАЕМЫЕ НПО ИМЕНИ СЕМЕНА АЛЕКСЕЕВИЧА ЛАВОЧКИНА</td>
</tr>
<tr>
<td>33</td>
<td>С.А. ЛЕМЕШЕВСКИЙ</td>
<td>ИССЛЕДОВАНИЕ ЛУНЫ АВТОМАТИЧЕСКИМИ КОСМИЧЕСКИМИ АППАРАТАМИ. ИСТОРИЯ И БЛИЖАЙШАЯ ПЕРСПЕКТИВА</td>
</tr>
<tr>
<td>34</td>
<td>Ю. В. ПАНИН</td>
<td>ПРИМЕНЕНИЕ ТЕПЛОВЫХ ТРУБ ПЕРЕМЕННОЙ ПРОВОДИМОСТИ ДЛЯ СОТР КА</td>
</tr>
<tr>
<td>35</td>
<td>B.A. EPISHIN, M.I. SHPEKIN</td>
<td>THE DEVELOPMENT EPHEMERIS SOFTWARE FOR ASTROMETRIC OBSERVATIONS FROM THE SURFACE OF THE MOON</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>36</td>
<td>VISUAL 3D-STUDY LUNAR REGIONS WITH EVIDENCE OF GEOLOGICAL ACTIVITY ON THE BASIS OF THE HIGH RESOLUTION ORBITAL IMAGES</td>
<td>M.I. SHPEKIN, CH.R. MUKHAMESTSHIN, A.A.SEMENOV, T.F.RYSAYEV</td>
</tr>
<tr>
<td>37</td>
<td>Современные методы в теории и наблюдениях физической либрации Луны: анализ и результаты</td>
<td>Н. ПЕТРОВА, А. ЗАГИДУЛЛИН, Ю. НЕФЕДЬЕВ, В. КОСУЛИН</td>
</tr>
<tr>
<td>38</td>
<td>Численный подход к построению физической либрации Луны: результаты второго этапа</td>
<td>А. А. ЗАГИДУЛЛИН, Н. К. ПЕТРОВА, В. С. УСАНИН, Ю. А. НЕФЕДЬЕВ, М. В. ГЛУШКОВ</td>
</tr>
<tr>
<td>39</td>
<td>CONTENTS</td>
<td></td>
</tr>
</tbody>
</table>