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FOR THE VACUUM EINSTEIN EQUATIONS
WITH NEAR-ROUND ANALYTIC DATA
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Abstract

A class of characteristic general relativistic initial data satisfying a mnear-roundness
condition at the tip of a light-cone is introduced. It is shown that for any such analytic data
there exists a corresponding solution of the vacuum Einstein equations defined in a future
neighborhood of the vertex.
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Introduction

In the paper [1] we studied the Cauchy problem for the Einstein equations with
data on a characteristic cone Co. We used the tensorial splitting of the Ricci tensor of
a Lorentzian metric g on a manifold V' as the sum of a quasidiagonal hyperbolic system
acting on ¢g and a linear first order operator acting on a vector H, called the wave-
gauge vector. The vector H vanishes if ¢ is in wave gauge; that is, if the identity map
is a wave map from (V,g) onto (V,g), with g being some given metric, which we have
chosen to be Minkowski. The data needed for the reduced PDEs is the trace, which we
denote by 7, of g on Cp. However, because of the constraints, the intrinsic, geometric,
data is a degenerate quadratic form g on Cp. Given g, the trace g is determined
through a hierarchical system of ordinary differential equations® along the rays of Co,
deduced from the contraction of the Einstein tensor with a tangent to the rays, which
we have written explicitly and solved. We have called these equations the wave map
gauge constraints and shown that they are necessary and sufficient conditions for the
solutions of the hyperbolic system to satisfy the full Einstein equations. We have also
proved local geometric uniqueness of a solution g of the vacuum Einstein equations
inducing a given g (for details see [1]). Further references to previous works on the
problem at hand can be found in [1].

Existence theorems known for quasilinear wave equations with data on a character-
istic cone give also existence theorems for the Einstein equations, if the initial data is
Minkowski in a neighbourhood of the vertex. For more general data problems arise due
to the apparent discrepancy between the functional requirements on the characteristic
data of the hyperbolic system and the properties of the solutions of the constraints,
due to the singularity of the cone C at its vertex O. The aim of this work is to make
progress towards resolving this issue, and provide a sufficient condition for the validity
of an existence theorem in a neighbourhood of O under conditions alternative to the
fast-decay conditions of [4]. More precisely, we prove that analytic initial data arising

IFor previous writing of these equations in the case of two intersecting surfaces in four-dimensional
spacetime, see Rendall [2] and Damour — Schmidt [3].
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from a metric satisfying (3.3), (3.4) together with the “near-roundness” condition of
Definition 6.1 lead to a solution of the vacuum Einstein equations to the future of the
light-cone.

1. Cauchy problem on a characteristic cone
for quasilinear wave equations

The reduced Einstein equations in wave-map gauge and Minkowski target are
a quasi-diagonal, quasi-linear second order system for a set v of scalar functions v’,
I=1,...,N,on R*"! of the form

A)‘“(y,v)Diuv + f(y,v,Dv) =0, y= ") eR"™, n>2 f=(f). (1.1

If the target is the Minkowski metric and takes in the coordinates y“ the canonical
form

n=—(dy°)? + Z(dyi)Q, (1.2)

then, , .,

v 0%v
o DS ey
We will underline components in these y® coordinates.

In the case of the Einstein equations the functions AM = g™ do not depend directly
on y, they are analytic in v in an open set W C R~ . For v € W the quadratic form g**
is of Lorentzian signature. The functions f are analyticin v € W and Dv € R(+DN
they do not depend directly on y in vacuum.

The characteristic cone Cp of vertex O for a Lorentzian metric g is the set covered
by future directed null geodesics issued from O. We choose coordinates y® such that
the coordinates of O are y® = 0 and the components A*(0,0) take the diagonal
Minkowskian values, (—1,1,...,1). If v is C*! in a neighbourhood U of O and takes
its values in W there is an eventually smaller neighbourhood of O, still denoted U,
such that Co NU is an n dimensional manifold, differentiable except at O, and there
exist in U coordinates y := (y*) = (y°, y*, i = 1,...,n) in which Cp is represented
by the equation of a Minkowskian cone with vertex O,

Co=fr—y' =0}, r={30}" (1.4

and the null rays of Co represented by the generators of the Minkowskian cone, i.e.
tangent to the vector ¢ with components £° =1, ¢! = r~!y¢. Inspired by this result and
following previous authors we will set the Cauchy problem for the equations (1.1) on
a characteristic cone as the search of a solution which takes given values on a manifold
represented by an equation of the form (1.4), that is, a set v such that

T =, (1.5)

where overlining means restriction to Co. The function ¢ takes its values in W and

is such that ¢ is a null vector for A, i.e. when A=7

Dv A p=0,1,...,n. (1.3)

% =Joo + 2r_1yi@ + r_2yiyj@ =0. (1.6)
We use the following notations:
Ch=Confo<t:=y° <T},
Yo :={y" >r}, the interior of Co,
VS =Yon{0<y® <T}.
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and we set

¥, :=Con{y’ =7}, diffeomorphic to S" ',
S, :=Yon{y’ =7}, diffeomorphic to the ball B"~! .

We recall the following theorem, which applies in particular to the reduced Einstein
equations.

Theorem 1.1. Consider the problem (1.1), (1.5). Suppose that:

1. There is an open set U x W C R"*1 x RN | Y2 C U where the functions g™
are smooth in y and v. The function f is smooth?> in y € U and v € W and in
Dy € RN,

2. For (y,v) € Ux W the quadratic form g** has Lorentzian signature; it takes the
Minkowskian values for y =0 and v =0. It holds that ¢(O) =0.

3a. The function ¢ takes its values in W. The cone Ck is null for the metric
M (y, p)-

8b. ¢ is the trace on C} of a smooth function in U .

Then there is a number 0 < To < T < +o0o such that the problem (1.1), (1.5) has
one and only one solution v in Yg" which can be extended by continuity to a smooth
function defined on a neighbourhood of the origin in R"1.

If ¢ is small enough in appropriate norms, then Ty =T .

2. Null adapted coordinates

It has been shown (see [1] and references therein) that the constraints are easier to
solve in coordinates x® adapted to the null structure of Co, defined by

P =r—y° 2'=r and 2 =AYy, (2.1)

where A = 2,...,n, local coordinates on the sphere S”~!, or angular polar coordinates.
Conversely

n
P =t — 20 i =r0iz?) with z:@i(ycA)2 =1.
i=1

In the z coordinates the Minkowski metric (1.2) reads
n = —(dz®)? + 2d2dz' + (2)%s, 1, (2.2)
with
Sn_1 :=sapdz?dz? | the metric of the round sphere S™~!.

Recall that in these coordinates the non zero Christoffel symbols of the Minkowski
metric are, with SBAC, the Christoffel symbols of the metric s,

A 1 N ~ N
'8, = ;55 , B =88, T%p=-a'sap, Tip=—a'sap. (2.3)
In the general case, the null geodesics issued from O have still equation 20 = 0,

x4 =constant, so that ¢ := is tangent to those geodesics. The trace g on Co of

2l
the spacetime metric g that we are going to construct is such that g;; =0 and g; 4 = 0;
we use the notation

T = Goo(dz®)? + 2vpda’dat + 2v4dada? + G 4 gda?dz?, (2.4)

2Smooth means C™, with m being some integer depending on the problem at hand and the
considered function. In particular C°° and C“ (real analytic functions) are smooth.
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We emphasize that our assumption that g is given by (2.4) is no geometric restriction
for a metric g to have such a trace on a null cone z° = 0.

The Lorentzian metric g induces on Cp a degenerate quadratic form g which reads
in coordinates z', z*

g= gABCMAde, (2.5)

i.e. g11 = gia = 0 while ﬁAgdxAd:cB = EABd:cAd:cB is an 2'-dependent Riemannian
metric on S"~! induced on each ¥; by ¢, we denote it by gs. While ¢ is intrinsically
defined, it is not so for gy, 1o, va, they are gauge-dependent quantities.

Note that ¢ has a more complicated expression in coordinates 3* on Cp . Since the

) 0 %
inclusion mapping of Co in the coordinates y® is y° = r, hence il = y_, it holds
Y r
that o o ' _
g= @dyldyj, with ﬁi = riQyZy]@ + ril(y]@ + yZ&) + i (2.6)

For Theorem 1.1, to apply to the wave-gauge reduced Einstein equations, the com-
ponents of the initial data in the y coordinates must be the trace on Cp of smooth
spacetime functions. The solution of the reduced equations satisfy the full Einstein equa-
tions if and only if these initial data satisfy the wave-map gauge constraints. We have
constructed in [1] these data as solutions of ODE in adapted null z coordinates, which
are admissible coordinates for R"*1 only for 7 > 0. The change of coordinates from
x to y, smooth for r > 0, is recalled below; the components of a spacetime tensor T’
in the coordinates = are denoted by T,g, while in the coordinates y they are denoted
by Taﬁ-

Lemma 2.1. It holds that:

i i .
Too = Tog, Tir = Tog +25-Ths + =50y, Ty = —(Tho + 10,6"),
00! 00! , 00! 087
Toa = —r B ATO“ TlAf”I’a A(T0i+@jﬁ)’ TABsz]"Qa AaxB .
Conversely, if Tya =T11 =0, then
oz
Too = Too, Toi = —(Too + Tor)r ™'y’ *TOAa il
oz oz ozt 0B

T = (Too + 2T01)r 2y'y? + T, y’ T .
i = (Too + 2To1)r “y'y’ + Toar™ (ya]-i- 81)—’— AB T BT

Hereinafter, we shall often abbreviate partial derivatives as follows

) ) )
80:@7 alfw; aAial’—A’
_ 9 )
DG A gy

3. Characteristic data

3.1. Basic (intrinsic) characteristic data. The basic data on a characteristic
cone for the Einstein equation is a degenerate quadratic form. We will define this data
as the degenerate quadratic form C' induced by a given Lorentzian spacetime metric
C which admits this cone as a null cone. By Cp, as before, we denote the manifold

20 =7 — 9y = 0. If we take the y' as coordinates on Cp, it holds that, see (2.6),

5 = Qdyzdyj with 51']’ = Cij =+ Tﬁl(yj@ + y"%) + T*Qyiyj% , (31)
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where C, 5 are the components in the y coordinates of the trace C' of C on Cp (not

to be mistaken with the induced quadratic form C~’) Assuming that Cp is a null cone

for C' with generators E =1, z = y_, (1.6) implies that the quadratic form C is
r
degenerate, o _ o
3 J _ X3 _ X3 J _
YV G, =Cuw+2LCu+ 22T, -0 (3.2)
ror — r—  rr—

Lemma 3.1. Two spacetime metrics C and C' with components linked by

— — 7 —

— _ - . _
Cij = Cij +r aw; + aju) +r2ay’y’, Cio = Cio —ai, Coo

~ 1 ~

with arbitrary a; and o induce on Co the same quadratic form 6, ie. Cy = Cyj.

<

Proof. Elementary calculation using the identity written above. O

In what follows, to simplify computations we will make the restrictive condition that
Coi=0, Coo=-1, ie C:=—(dy°)*+ Cydy'dy’. (3.3)

i
The set {y° = r} is then a null cone for the metric C, with generator (° =1, (¢ = y_,
,

if and only if 4 4
yl Cij = y] (34)

(compare [5]).
The general relation between components in coordinates y and adapted null coor-
dinates 2!, 24 gives

555A3dxAd$B with éABEUAB, 61,4:511 =0,

with 5,43 being the components of a 2! = r-dependent Riemannian metric on the
sphere S™~1
0y’

Voo — _ 9y
(@Jrrﬁ)cml, Coa = DA

%:0, %EC()O:*]..

This metric C' is also such that
CoozcoAzclAEO 001501151

—AB
while C" are the elements of the inverse of the positive definite quadratic form with
components C' 4p.

3.2. Full characteristic data. We have seen in [1] that the trace g of
a Lorentzian metric g satisfying the reduced Einstein equations is a solution of the
full Einstein equations if and only if it satisfies the wave map gauge constraints. These
constraints C, = 0 are deduced in vacuum from the identity satisfied by the Einstein

tensor S : a
0" Sap=Co+ Lo

where L, is linear and homogeneous in the wave gauge vector H while C, depends only
on g and its derivatives among Cp and the given target g. Given g, i.e. g4 = Can,
J14 = g11 = 0, the remaining components vy = Go;, V4 = Joa, Joo are determined
by the constraints and limit conditions at the vertex O which can always be satisfied
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by choice of coordinates (see [1]). The Cagnac—Dossa theorem applies to components
in the y coordinates. Lemma 2.1 gives

1 . oz
Jo0o =005 Joi = —(Goo + Vo)r Lyt — vy, with v;:= VAa—yi ) (3.5)
_ _ 9 i 1 ; _ 0x? 02B
i = (Goo + 200)r 2"y + 7 (y'ys + vl v) + IAB g7 By
while, for the chosen metric C' and g 5 = Cap
_ - oz 0B
_ .2 _
Cii=ry'y + IAB 3T By
Therefore, . . 4 ‘
i = Cij + Goo + 200 — Vr2y'y? + 17 (y'y; + y'yy). (3.6)

4. Null second fundamental form

We have defined in I the null second fundamental form of (Co,g) as the tensor x
on Co defined by the Lie derivative? with respect to the vector ¢ of the degenerate

quadratic form §, namely in the coordinates z',z4 :
1 . 1. _
XAB = i(ﬁlg)AB = 5319,437 (4.1)
1, 1, .-
Xar = 5(Leg)ar =0, xu = 5(Leg)u = 0. (4.2)

In view of the application of the Cagnac—Dossa theorem, we look for smooth ex-
tensions. We define a smooth spacetime vector field L, vanishing at O and with trace

0
colinear with ¢ = Fs) on Cp, by its components in the z® and y® coordinates
x
respectively:
0 0 _
29 _ 0 Y9 1 9 N
=y 3 =755 +x ErsE hence L=axl=r/.

We assume that the metric C' is smooth in U, a neighbourhood of O in R™*!, i.e.
its components Cj; are of class C™, with m as large as necessary in the considered

context, functions of the y®. We define a symmetric C"™ ! 2-tensor X , identically zero
in the case where C = 7, the Minkowski metric, by:

1
Xi=2£,0-C. (4.3)
In y coordinates one has*, using y'Cy; = ¢/
1

with 4
y'0oCij =0,

3Recall that in arbitrary coordinates z! the Lie derivative reads

(LeC) e = 0'0;Chx + Crrdt’ + Crropt!.

4Recall that we underline components in the y coordinates and overline restrictions to Co.
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and, using Ipy’ = 4},
y'y" OnCij = y" (v Cij) — v CijOny" = 0, (4.5)

which imply 4 .
L'Xi; =y'Xi; = 0. (4.6)

In z coordinates we find, using the values of the components Cy, and Ci, of the
metric C', that the tensor X obeys the key properties

XuO = 07 X}tl = 0; (47)

while )
Xap = 5(:Eoc‘)ocAB +2'9:CaB) — Cas. (4.8)

Hence X 4p reduces on the null cone Co to
_ 1 _ _
XABE§m1810ABfCABEx1XABf§AB. (4.9)

By X we still denote the mized C™ ! tensor on spacetime obtained from X by lifting
an index with the contravariant associate of C; its y components are the C™~1 func-
tions

2X) = " {4°00Cop + y'0;Cup},

hence C being given by (3.3),

. 1 . .
X/ = 5C_Jh {°00Cin +v"0:Cin}, X = X] = X3 =0, (4.10)

and ‘
X/L; =0, (4.11)

where the index of L has been lowered with the metric C, so that this is equivalent to
(4.6). In 2 coordinates X§ are the only non-vanishing components of X . Their traces
on Cp are

—c 1 ,_ _
X = 20197005 — 0§ = 11§ - 65,
hence 1 1
_ _ —C
Xa =597 0gan = — (X4 +03), (4.12)
and
1_4p trX n-—1
== 0 = — 4+ —. 4.13
7= 597" 0gas = — = (4.13)

The trace of the tensor X is the C™! function
trX = X2 = X3 =0 X p. (4.14)

On the light cone Cp it holds that

P 00G45 — (n — 1), (4.15)

1 —a =0 -
IXI? = xGxé& = e {XEX(XJerrXJrnfl}. (4.16)
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5. A criterium: admissible series

To show that the integration of the constraints, which appear as ODE in z', leads
to traces on the cone of smooth spacetime functions, we shall use the following lemma,
introduced by Cagnac (unpublished) for formal series, but used here for real analytic
functions, a special class C¥ of C*° functions.

Lemma 5.1. A function is the trace f on CL of a spacetime function f analytic
in UNYZ, U is a neighbourhood of O, if and only if it admits on UNCYE a convergent
expansion of the form

o0
F=fot+d Fpr? (5.1)
p=1
with
Fo=Tpin.i O .07 +F i 00 0, (5.2)
where fo, fpi.i, and fp; ;  are numbers. Such a series is called an admissible

series. A coefficient f, of the form (5.2) is called an admissible coefficient of order p.

Proof. If f is analytic it admits an expansion in Taylor series

1 orf

g5y O (5.3)

o0
f= Zfal...apyal .“yap’ falmap =
p=0

One goes from the formulas (5.3) to (5.1), (5.2) by replacing 3* by r©¢ and 3° by r,
and conversely, in Q2 N Cp orin . O

_ Remark 5.1. The identity (5.1) is equivalent to saying that f is of the form
f=fi+rfs, with f; and f, analytic functions of y’.

We say that an admissible series is of minimal order ¢ if the coefficients f, are
identically zero for p < gq.

Proposition 5.1. If the metric C is analytic and satisfies the conditions (3.3),
(3.4) then the functions tr X and |X|* are admissible series of minimal orders 2 and 4
respectively.

The following lemmas will be very useful when integrating the constraints.

Lemma 5.2. If f, and hy are admissible coefficients of order p and q respectively,
then f, + hy and fphy are admissible coefficients of order p and p + q respectively.

Proof. Elementary computation of ( f, + hy)r? and f,h,rPT? replacing r©" by '
and r2 by ;(y")2. O

Suppose that f and h are admissible series of minimal orders ¢y and ¢, . The fol-
lowing are easy-to-check consequences of the lemma:

1) fh is an admissible series of minimal order g; + ¢y ;

2) if ¢; = qp, then f+ h is an admissible series of the same minimal order;

3) if f(0) #0 and gy =0, then 1/f is an admissible series of also minimal order 0;

4) r0; f is an admissible series of minimal order gy, unless ¢¢ = 0 and then it has
a larger minimal order.
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Lemma 5.3. If k and h are admissible series with h of minimal order q, > 1 and
the constant ko = k(0) > 0, then the ODE

ro f +kf=h (5.4)

admits one and only one solution f which is also an admissible series of the same
minimal order qn as h. The result extends to q, =0 if kg > 0.

Proof. Expand

=dh

f:ifprp, k:ikprp, h = ihprp, (5.5)
p=0 p=0 p

hence -
rorf =Y pfyr?,
p=1

plug into the ODE (5.4) and proceed to identifications.
We obtain by equating to zero the constant term

ko fo = ho, (5.6)

a relation which can be satisfied when hy # 0 only when kg # 0. We first consider the
case where hg =0, i.e. g, > 1, and take fy = 0. We get the successive equalities

. hy
f1 + kOfl = hl, 1.e. f1 =1 T ko, (57)
and the recurrence relation, using fo =0,
p—1
(p+ko)fp+ > kgfoq=hyp . (5.8)
q=1

For p < gpn, we have h, = 0 and the recurrence relation gives f, = 0. Therefore, the
leading admissible coefficients of f and h are always related by

h
th _ dh

= — 5.9
qn + ko (5.9)

We assume the series for k& and h converge for all directions ©% and radius cr < 1;
that is, we assume that there exists a constant ¢ such that

|kp| < P, and |hy| < cP. (5.10)
Since kg > 0 we have
A<« — <o
= 1+ ko 1+ky —
Assume now that
|fpl <" for p<po, (5.11)

then from the iteration we get, for larger values of p, the inequality

| ol <pfkocp§c”. (5.12)
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The bounds on |f,| show that the series for f also converges. It is an admissible series
of minimal order g5 = gy
When ¢, =0, ie. hog #0 and ko # 0 we take

ho
fo= o
and we set
F=f-/.
It satisfies the equation
roiFF+kF =H, with H:=h-kfy. (5.13)
We have
Hy=0
and we apply the previous result to F'. O

Corollary 5.1. If f and h are admissible series related by (5.4) and p+ ko > 0,
and r~Ph is an admissible series then r~P f is an admissible series of the same minimal
order.

Proof. Set f =1P¢. If f satisfies (5.4) then ¢ satisfies the equation
rovo+ (p+k)p=r""h.
O

Remark 5.2. The following example is a case of a differential equation of the form
(5.4) with ¢, = 1, but ko is a negative integer, which does not admit as a solution
an admissible series. Let

1 9 3 L r

k: :—]_—7”77’ 77"'7...7 :—2:7ﬂ+r3+7ﬂ5+...7
1—r

r—1

We can solve the ODE explicitly,

R <foo+1og7"“)

r—1 r

with f., an arbitrary integration constant, which cannot be expanded in powers of r
near 0. However if we change k to r/(r—1), then k¢ changes from —1 to 0, the problem
disappears. Remark that the problem also disappears if we change h to r2/(1 — r?),
i.e. g = 2.

In what follows, we will assume the metric C, of the form (3.3) and satisfying (3.4)
is analytic, takes Minkowskian values at the vertex O, and is such that the components
of its trace on Cp satisfy

8ij+ey, C°=69+¢7, (5.14)

Q

J

where ¢;; and 27 have admissible expansions of minimal order 2 while 0yc;, has
an admissible expansion of minimal order 1. The definition (4.10) implies then that

J

|4

Co" {rdo cin + y* Ok cin} (5.15)

N | =

has an admissible expansion of minimal order 2.
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6. The first wave-map gauge constraint

We have deduced our first constraint(see [1]) from the identity
5 — 1 —
7’ Sip =R = -0t + 120wt — §T(F1 +7) = x5 x5, (6.1)

with _ L o L
I'y=W,+ Hy, le—uogABrsAB. (6.2)

Hence for the first wave-map gauge constraint in vacuum we have the equation
C1:= -0 + 1017 — %T(T — g Prsap) — x4 xz =0. (6-3)
When 7,5 is known this equation reads as a first order differential equation for vg
W00 =770 T + %(T — 105 Brsap) + 71X 5B x4 (6.4)

It can be written as a linear equation for v° — 1,

0’ +a(W® —1)+b=0, (6.5)
with 1
a:=11o T+ 57 +77 % X2 =8 xa. (6.6)
L _an
b::afig rSAB. (6.7)
—AB AB n-1 p_1l:p :
In the flat case g%~ =n"", 7 = T XA= 03 the equation reduces to:
1 n—1
81VO+§(VO—1) , =0;

it has one solution tending to 1 when r tends to zero, vy = 1. In the general case (6.5)
reads, with f:=20—1,

1
roif +kf+h=0, k:=ar, h::bT:anigABTQSAB. (6.8)

Recall that 2! = r and

1_ 1 —c
X5 = 5930319,43 = ;(XA+52)- (6.9)
Hence -

s | XPP+2tr X +n-—1

Ix|* = = :
trX_i_nfl 1 T (6.10)

T = — 5 T == — .
r r n—1+trX

-1
_ 1 —
where tr X is an admissible series of minimal order 2. The function {1 + 1trX}
n—

is the trace of a C* function as long as 1+

1trX does not vanish, hence always

n
in a neighbourhood of O since tr X vanishes there.
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It holds that
n—1+trX n otr X

or=-""11 = (6.11)
1 O1tr X
7—71817—5 7—+% (612)
r n—14trX
Also we can write
X2P+2tr X +n—1 X2+trX 1
e B2 X Aol XX 1 (6.13)
r(n—1+trX) rln—1+trX)
Finally computation gives
—1 rotr X +tr X + |X|?
k=ar= - g i X | | (6.14)

2 n—1+trX

n—1

We see that in a neighbourhood of O, k —

of minimal order 2.
On the other hand, since in the = coordinates 71, = 0, r’sap = nap and we have

— —0A — —A
assumed that C . =C" = 0, o’ = 1, g4 =C B, we have

admits an admissible development

_ _ —AB —op
312545 =7 Pnap =C" nap = C  njap — 2.

Hence using now the values of C,3

§g B7’2SAB = 5 (]. +C”5ij — 2) = 9 + 50”51']', (615)

where ¢¥6;; has an admissible development of minimal order 2. We conclude that

s ——— Y2
o X +ir X 4 X121 (6.16)
(n—1+tX) 2 —

h

admits also such a development. Lemma 5.3 applies, and we have proved the following
theorem:

Theorem 6.1. If the basic characteristic data are induced on Co by a C¥ (i.e.
analytic) metric of the form (3.3), hence satisfying (2.4), then 1° —1 admits an admis-
sible expansion of minimal order 2, hence is the trace in a neighbourhood of O of a C¥
spacetime function. Then 1° = N with N° € C¥ and N°(O) = 1. In a neighbourhood
of O, it holds that vy = N, No = (N°)~1L.

In the expression of the characteristic initial data in y coordinates there appears
r~2(vy — 1) , which, though being continuous on each ray as r tends to zero, is not
an admissible expansion. We introduce the following definition.

Definition 6.1. A metric C' satisfying (3.3), (3.4) is said to be near-round at the

vertex if there is a neighbourhood of O where r~'¢;; = d;; and r~2¢;;6¥ = D with

Eij and D being admissible series.

If C is near-round at the vertex, Uij has an analytic extension Cj; of the form,

with d;; being analytic extension of Eij,

— —,0
Cij = 0ij + gy y =y dag,



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. .. 127

therefore,
onCij =0 for y° =0, hence 9,CY =0 for y"=0,

CY =69 +y°dY,
with d being some analytic functions. Hence

CYeij = (y°){D + d7di;}.

Using the definition of X,z we see that if C' is near-round at the vertex, then

1
Xop =y Yap, with Yj; = 5 {dij + y°0odi; + y"Ondi;}, Yio =Yoo =0. (6.17)

Hence

trX =y trY, with trY =C9Y; ==CY {di +y 0ds; + y"Ondi; }-

| =

An elementary computation shows that trY is of the following form (with Z being
an analytic function)

trY =4°Z, hence trX = (3°)%Z
On the other hand, _ _ _ _
X;=C" Xjn =y°C Yy = y"Y],

therefore,
2 _ yvioyvi — (,0\2vi v
| X :Xng:(y)YlY-J.

We deduce from these formulas that if C' is near-round at the vertex then

r~2tr X = Z and r~2|X|? = |Y|? are admissible series.

Theorem 6.2. A sufficient condition for r=2(v° — 1), with vy solution of the first
wave-map gauge constraint, to have an admissible expansion is that the C¥ metric C
given by (3.3) which induces the basic characteristic data be near-round at the vertex.

Proof. Since f:= 1y — 1 satisfies Eq. (6.8), ¢ := r~2(p — 1) satisfies
ro1d+ 2+ k)p+r"2h=0. (6.18)

The expression (6.16) shows that for a metric C' round at the vertex r—2h admits
an admissible development, the application of Corollary 5.1 gives the result. O

7. The C4 constraint

We have written in [1] the C4 constraint in vacuum as
1 -, 1 1— .
Ca = —5(018a +7€4) + VX4 = 5047 +0a ( W1+ 100107 |,
where £4 is defined as

— 0 2 ~
a = =204 + 400§ + <W0 - ;VO> va+9459°"(S6p —Tep).  (T.1)
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Using the first constraint we find
0, 1w
voohv- + §W1 = —a, (72)
where a is given by (6.14), hence

1 -
da (a+ 57‘) = TﬁlaAF(trX, |X|2),

where
- tr X +tr X + | X2 1—
> ) (DESEUER SR SR SuE 7 g
n—1+trX 2
_roitr X + H{(n+ Dtr X + [tr X|?} + [ X2

n—14+trX

admits in a neighbourhood of O an admissible development of minimal order 2.
We have:

1 ~ R —
Ca = -3 (016a +T€4) + VXS —r'OaF (tr X, [X]?) =0. (7.3)

7.1. Equations for 4. We set {; = £y = 0 on the cone and we define §; by

Oz dzA
==& = . . 4
& oy 3 oy €a (7.4)
It holds that _
y'& =0, (7.5)

because (recall that 2! =r, y' = rO(z4))

024 oyt oxt 9 oyt 10y
We have hy vl b
z Y ep =68 =¢a. (7.7)

OxA &= oxA Oyt
The equation (7.7) implies that

(D e\ O
31€A:(8T§+7“ é) OxA’

hence

1oy 9, 1 S B -1 =¥ 72 —
Ca = 2893A{8r§+é(r +T)}+VBXA rTOaF(tr X, | X[?) = 0.

Since trX = trX is a scalar function and the equation of Co in the z coordinates is
2% =0 and y° does not depend on z, it holds that

oy’ 0

) oy 0
- tr X
OxA Oyt A,

OxA OxA X = OxA Oyt

tr X
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analogously
0 oyt 0 0 ———— Oy 0
— | X2 = X2, —FtrX,|X]?) =" —F@{rX,|X|?).
89:A| | 81A8y1| % Oz A (tr X, |X[?) 924 By (tr X, [X[?)

We now compute, with covariant derivatives V taken in the Riemannian metric
9ap =Cas,
Vpxl =V (in + iaB) _Lg,xt
A= VB 1 A 1 A | — 1 BAA-
The Christoffel symbols Cfi. of the Riemannian connection V are equal (recall that
CBY = OBl = C% = 0) to the trace on Cp of the Christoffel symbols with the same
indices of the spacetime metric C', hence denoting by (¢)V the covariant derivative
in the metric C'

~ 1] ——

Since the X% are the only non-vanishing components of the tensor X, and due to the
form chosen for the metric C' we find that

OVpX] = OV X = 22 OVaX;
o7 OVa Xy

and Egs. (7.3) read

oy 1 ( 1] 8 N
=L 0 Zlrg+ g v xe - 2 o | _
Cr=grar {3 g S0+ B |+ NG - TR X | 0. (79

The parentheses constitute a linear diagonal operator on the &; of the type considered
in Lemma 5.3. Equating it to zero gives an equation with solution &; an admissible
series of minimal order 1. We denote by =; the extension of & to spacetime, that is
we have o

[I]|

where E; are analytical functions beginning by linear terms.

7.2. Equations for v;. We now consider Egs. (7.1), which read

1 1— 1 ~ 1
Ova + <; —-3 W1> va —2vexq — 5 Gapg P (SEp —Tep) + 5 vpéa =0. (7.10)

We set B L 4
Joi = —Vi+ALi, with LiECijL], L_jzyj (7.11)

with v; such that
vl =yt =0; (7.12)

that is, using (7.11)

Then (compare (3.5))

gyt _ oy
VA = =g Du = ux Ve
Hence .
oy’ _
Oy = &ELA(&&""T L)
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We recall that

1 —c . —C
XS = ;(XA +69), e rvexG =veX 4 +va

Therefore, after product by r, the equations can be written as follows:

0y’

1 — 1 — 1 —
oA (7‘01&— arwlﬁ—i— 51/07“@) —2F 4 — §TVOEA =0,

with . o ~
Fa=veXy, Ea=0ap7""(SEp —TCp)
By definition it holds that
chi = goc X9,

and since Xg are the only non-vanishing components of the mixed tensor X in the

coordinates x 5
oy® Oy
goc X5 = goa X = 920 &E—Agﬂ_g-

Recalling that X =0 we find (using (4.11), X/L; =0)

Oz A 9024 OpA 120

FAEVOY§E—

We then remark that SZ, — 5CBD is the trace on Cp of the difference of the com-
ponents of the Christoffel symbols, 75 and Cg, , with these angular x indices of the
Minkowski metric 1 and the metric C':

Ey = ?AB?CD(SED - égD)v with  E4 = CABCCD(ngD - CCBD)-

Using the expressions of n and C and the vanishing of the Christoffel symbols of n
in y coordinates we find

i « « ayi « « ayl g
Eaq= CAaCA“(ﬂAu - Cx\u) = OrA Cmcm(n)\u - C/\M) = 7630—14_0”0)\#03\;0

with Ciu analytic functions, components of Christoffel symbols of the metric C' in y

coordinates, that is, using the values of the y components of the metric C'

: 1
Cijc)\ucf\u = 5 Chk(ahcik + Opcir — é)ichk).

We recall from (6.15) that
rW, = —1 EABT2SAB = -1 {n -1+ cijéij},
and we find that Egs. (7.10) can be written as

Iy
ozA

where £; is the following linear operator on v;

Li=0,

-1 11— -1 1 =
rowi + v {nT +3 chkéhk} v —2v; X] + 51/07"§ ~3 rpCi CMCy, = 0. (7.13)

We extend Lemma 5.3 as follows.
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Lemma 7.1. If kf and h; are admissible series of minimal orders 1, and the
constant ko > 0, then the ODE

rowi + kovi + klv; = h; (7.14)

admits a solution v;, which is also an admissible series of the same minimal order
than h.

Recalling that vy — 1 is an admissible series of minimal order 2 we see that this
lemma applies to (7.13). We have proved:

Theorem 7.1. If the basic characteristic data is induced by an analytic met-
ric C' satisfying (3.3), (3.4), Eq. (7.13) admits one and only one solution v; which is
an admissible series of minimal order 2. We denote by N; its spacetime extension.

We now prove:

Theorem 7.2. A sufficient condition for r—2v; to have an admissible expansion

is that the C* metric C' given by (3.3) which induces the basic characteristic data be
near-round at the vertes.

Proof. Using the relation between X and Y the linearity of F in trX and |X|?
we see that for C round at the vertex the equation satisfied by &; reads

% {r%é—i—é(n—i—?ﬁ?)} = hj,

with

—————— 0
hj = OV ((y°)2Y)) - a—ij((yO)Qtr Y, () Y ?).

We deduce from the linearity of F in tr X and |X|? that r—'h; admits an admissible
expansion, the same holds therefore (see Corollary 5.1) for r~1¢;. The equation satisfied
by v; reads o

7

rowi + 1 {nT +r2 dhkéhk} Vi — 2er2Y_-j = hy, (7.15)

1 1
h; = 75 oTé + ZTBVO Chk(ahdik + Ondir — &-dhk).

An extension of Lemma 7.1 shows that »~“7; admits an admissible expansion because
it is so of h;. O

2

8. The Cy constraint

The last unknown in g, the only unknown in the constraint Cy, is

900 = Yoo

The constraint Cy has a simpler expression in terms of g''. Since g'! is linked to gy,
by the identity

7”900 + 7" 10 + 5 Ga0 = 0,
we have

Goo = —7" (10)? + 5 Pvpva = =g (1) + C  vi vy (8.1)
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We have seen [1] that the Cy constraint can be written in vacuum as

1 — — ~ 1 ~
A+ (R +7)C+ 5 {&Wl + R+ TW 4 R— S5 Peags + yABvAfB} =0, (82)
with
1 \_;; 1=
¢:= 81+/s+5¢ g +§W ) (8.3)
0 1 — = =0 =0 ==1  _,p
K=V 811/075(W1 +71), Wi=pW, W =W =—rg""sap. (8.4)

8.1. Equation for (. In the flat case it holds that

— n—1
Vo =1, Tn:*WLn:—r ,  kp=0.

The function ¢ reduces to

_ 1
Gy = 0t + 5rn(g“ —1), (8.5)

and the equation for ¢ reads, using {4, =0,

n—1 1 (n—-1 (n-12 =
01Gy + " Cn+§{ T 2 +Rn}0~

That is, using the scalar curvature of the S™~! round sphere of radius r which is®

R,=r"%n—-2)(n—1), (8.6)
the equation
n—1
61Cn + Cn =0
has the only bounded solution ¢, = 0. From (8.5) results we have then g,' = 1. We now
study the general case.
We can write the equation to be satisfied by ¢ as follows,
701 (r¢) +9 kr¢ 49 h =0, (8.7)
. 1 N
O =r(k+7)—1=7r {1/081V0+§(TW1)}1, (8.8)
r? il =1 5 1l_up ABS
rOp = 5 {awv +(k+7)W +R-— 59 €Al +g vAgg} .

Hence
1

2
Op=2 L oW
2 { Wt

9 o~ 11 -
(=W W +R+1°00W — §§AB§A53 + gABvAgB} . (8.9)

We have shown that ©°—1 and 79114, hence also 7°0114, admit admissible expansions
of minimal order 2, and we have seen that r7 and rW/; are admissible series with terms
of order zero (n — 1) and —(n — 1) respectively. Hence k is an admissible series of the

5See for instance [6, p. 140].
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zero-order term n — 2, and we have
(TC)k’ =n-—2+kq,

where k; is an admissible series of minimal order 1.
We study the terms appearing in "9h.
The term
r2y081V0W1 =r991p W (8.10)

has an admissible expansion of minimal order 2 (see Lemma 5.4).
The term

rgAPeats =207 &g (8.11)

has an admissible expansion of order 4 because &; has an admissible expansion of order 1.
As for the term B _A_B~
9PV abs =C" V als,
the Christoffel symbols 5§C of the Riemannian connection V are equal (recall that
CB0 = OBl = C% = 0) to the trace on Cp of the Christoffel symbols with the same
indices of the spacetime metric C', hence denoting by ()V the covariant derivative

in the metric C' _
VASB = (C)VAEB.

Since the Zp are the only non-vanishing components of the vector =, and due to the
form chosen for the metric C' we find

POV 42 = CoF OV, 2. (8.12)

—AB=~ - . ..
Hence the scalar r2C" " V 4¢p has an admissible expansion of minimal order 2.
We have seen that in the flat case

—1 0B S n—1
W,=n"Th=— . (8.13)
and ( 2
—1 —1 n—1 n—1 ~
W, +7W, = { P } =—-R,. (8.14)
In the general case we compute

Recall that

set
—1 —1 . o o ~
W =W, +F, with F:=(g ) 5)1%5.

Using the values of the Christoffel symbols f‘iﬁ and the components of g and 7 in x
coordinates we find
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hence - - ; .
Wl _ _n -1 _ ﬂém alwl _ n—1 n (ﬁ — y@;ﬁ”)éij
N r r’ o2 r2 ’
and -
1 1 = -1 trX+cY0; -1 1_,
—(T—Wl)WlE— n n r A +c70i5 n + Las, L
2 r 2r r r

Using the value of the scalar curvature E,, of the round sphere S™"~! of radius r we
find that

— 1 ] — ~
r2 {81W1 + 50— Wl)Wl} = 2R, +®,
where ® is an admissible expansion of minimal order 2,
. . 1 R .
P .= —yhé)hE”cSij — (n — 2)&(5@‘ — 5(71 —1 +Ehk(5hk)(t1“X + E”(Sij).

To compute 2R, we use formulas given in [1]. The formulas (10.33) and (10.37)
of [1] for a general metric in null adapted coordinates are

AR =1 =1 T _ =1 ~ __ap=l =1 A =1
G PRap =2(0,4T,,+7) [(81 +T,, + 5)911 +T |+ R—2g45T | 4T, 5 — 295Vl 5,

— =1
Ry =-0ir+T 7 — x4 X8,
and ) .
So1 = 3 g PRap + Riav® — §V0§11§11-
In the case of the metric C, it holds that Cyp; = 1, Coa = 0, Cyo = —1, and
C'" =1. Hence

1
@rt =@l =0, ©rt= —5(0’43610,43 +C*B9yCap),

and the above formulas reduce to (recall that R = (9)R):
UAB OORup = —(01+71) [T + 6AB8()CAB + E,
Ry = —0im — x4 x5,

and B . .
-2 (DS =g*”Rap + Ru,

from which we deduce
R=20r+ 72+ (01 + 1) P 8Can + xE x4 — 2 OF,,.

We have B B o
(T, = — ((C)M+ Pyl <C>&) ,

Since C' is an analytic metric in a neighbourhood of O, (C)gaﬁ admit admissible

expansions and, hence 72 (¢)'S(; also admits an admissible expansion of minimal order 2.
Recall that

-1 trX X2 +2tr X -1
r=2 + = and |X|2:| 2t X+n

r r r2

)
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hence
P20+ 2+ 5B = (n—1)(n—2)+2(n — 1)ir X + 2rontr X + (tr X)? + [ X%

Finally we remark that dyC'4p are the non-vanishing components of the Lie deriva-
tive of the metric C' with respect to the vector m with = components m°® = 1,

m!' =m? =0, hence with 3 components m® = —1, m’ = 0 that

CAB9yCap = CPL,,Cop = CP0yChp,

hence

has an admissible expansion of minimal order 1 and 72(9; + T)UABGOCAB has an ad-
missible expansion of minimal order 2.
We have proved that _ _
r’R = TQR,] + U,

where

U =2(n—1)tr X + 2ro1tr X + (tr X)2 4 [X 2 4 r2(81 + 7) C Bocij

has an admissible expansion of minimal order 2. Hence
1

r? {81W1 + 2(7’ —Wl)Wl +E} =P+ V.

In conclusion, we have shown that (")h has an admissible expansion of minimal
order 2, the same is therefore true for r(.

8.2. [Equation for o := g'' — 1. The definition of ¢ gives for a := g'! — 1

an equation which reads
1 —
roja+r <H+§T)a+g(2H+T+W12C)O. (8.15)

Theorem 8.1. If the basic characteristic data is induced in a mneighbourhood of
O by an analytic metric C satisfying (3.3), (3.4), then Eq. (8.15) admits in this
neighbourhood one and only one solution « which is an admissible series of minimal
order 2.

This implies that oo + 1 is also an admissible series of minimal order 2.

Proof. Using the definition of x in (8.4), the equation (8.15) reads
1
roia+r (Ii + 57) a+ 1w — () =0,
that is,

rora+ @ka 4 @h =0, (8.16)

with )
(@ = (1/0811/0 — §W1) , (@p = (1/0811/0 — C) . (8.17)
Previous results show that this equation is of a form to which Lemma 5.3 applies with
@y = 21—

series of minimal order 2.
The identity (8.1) shows the property of gy, + 1. O

and (®h of minimal order 2. It has therefore a solution «, admissible
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Theorem 8.2. If in addition to the hypothesis of the previous theorem the given
metric C is near-round at the vertez, then r=2(gyo + 1) is an admissible series in
a neighbourhood of the vertex.

Proof. The result will follow from the proof that (®)h given in (8.17) is such that
r~2(®h is an admissible series. By previous results, it remains only to prove that r=2(r()
has an admissible expansion, hence that it is so for 72"k, We have

1 11 _
200 = 3 {7“_2(<I> L)+ 20— 3 7 Beats + yABvAgB} . (8.18)

We check that if C' is near-round at the vertex, the various terms studied above are
such that the required condition is satisfied. Indeed,

1/0811/0W1 =1%"19,1, TWI
has an admissible expansion because it is so for r=19;1y and rWl.
g Peasp =C &g, GV als = Co8 OV, Ep

have admissible expansions because §; does.
The assumptions on ¢ and the identity 3", = r show that

yhé)héijéij = (yhé)hﬁijéij + QEM&Z‘J‘),

hence r—2®, and 72V, with ® and ¥ given above have admissible expansions.
It remains to show the property for

(C)gm = _((C)&_i_ ’I“_lyi (C)&).
Since C' is an analytic metric in a neighbourhood of O, (©)S,, has an admissible

1
expansion. Denoting by (C)Kz-j = —3 00Cjj the second fundamental form of C' relative

to the slicing of R"*! by y° = constant, we know that©,
(C)goi = 01 tI‘(C)K —(©) vj(cjh (C)th)
We have

(OF,(CTMD Ky) = €7 (9; O Ky, — OO Ky — OO K ).

Ji

(©)

The functions ‘“)K;; are analytic and the Christoffel symbols C’]’?Z- are products by y°

of analytic functions, while elementary computations give

—2y'C7" 9, Ky, = y* 0" 9;00Cin = O {9;00 (v cin) — Bocin b

hence using y'c;, = 0 and &"cj, = (y°)2Z. We deduce from these results that

r~1y (@S, also has an admissible expansion.
O

6See for instance [7, Chapter 6].
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9. Conclusions

9.1. An existence theorem. We have shown that when the metric C' given by
(3.3) which induces on Cp the basic characteristic data g (i.e. g5 = Cap = Cap)
is analytic, then the functions vy, v4, goo have admissible expansions. We have shown
that if moreover C' is near-round at the vertex (definition 6.2), then the functions
r2(vy — 1), 7'y, and 77%(gy, + 1) have also admissible expansions. These results
imply the following theorem (the notations are those of Section 1):

Theorem 9.1. If the metric C' given by (3.3), (3.4) which induces the basic char-
acteristic data on the cone C} is smooth everywhere, and moreover analytic and near-
round in a neighbourhood of the vertex, then there exists a number Ty > 0 such that the
wave-gauge reduced vacuum Einstein equations with characteristic initial determined by
C and the solution of the wave-map gauge constraints have a solution in YOT" which
induces on C(T)" the same quadratic form as C'.

Proof. It results from the formulae
900 = 900> oi = —{J00 T+ vo)yr—ty' — v, with y'y; =0, (9.1)

9ij — 05 = {Too + 1+ 200 = D}r2y"y’ + 7 y'vy + ') + cij, (9.2)

and the theorems of previous sections that gy + 1, go;, and g;; — d;; have admissible

expansions, hence are the trace on Cp of analytic functions. We apply the Cagnac—
Dossa theorem. O

This theorem and the results of [1] lead then to the following sufficient conditions
for the existence of a solution of the full Einstein equations.

Theorem 9.2. If the metric C given by (3.3) which induces the basic characteristic
data on the cone Co is smooth, and analytic and near-round at the vertex, there exists
a vacuum FEinsteinian spacetime (YOT“,g) which induces on C(T)O the same quadratic
form as C'. The solution is locally geometrically unique.

JMM was supported by the French ANR grant BLANO7-1 201699 entitled “LISA
Science”, and also in part by the Spanish MICINN project FIS2009-11893. PTC was
supported in part by the Polish Ministry of Science and Higher Education grant Nr N
N201 372736.

Pesome

H. Hloxe-Bpra, II.T. Xpycvueav, X.M. Mapmun-I'apcua. Teopema cymecTBOBaHHSA pe-
nreHus 3a1a49u Komm 0 CBeTOBOM KOHYCE JI/Isi BAKYyYMHBIX ypaBHEHUI DHHIITENHA ¢ «II0YTH-
3aKPYTIE€HHBIMIU» aAHAJTUTUYICCKUMU JTaHHbIMUA.

IIpencraBmen kmacc XapakKTEPUCTUIECKUX PEIATUBUCTCKNA OOODIIEHHBIX WCXOMHBIX JTAaH-
HBIX, YIOBJETBOPAIOMNX VCJIOBUIO NOYMU3AKPY2AEHHOCNMY Ha BEPIINHE CBETOBOTO KOHYCA.
ITokazano, 410 A1 /TIO0BIX TOMOOHBIX AHATUTHIECKUX JAHHBIX CYIIECTBYET COOTBETCTBYIOIIEE
penreHue s BaKyyMHBIX ypaBHeHUE DUHIITEHHA, ONPEIeJIeHHOE B OKPECTHOCTH BEPIIUHBI
B CBETOBOM KOHYyCe OymayImero.

KuroueBbie ciioBa: XapakTepucTuyeckas 3aada Komm o cBeTOBOM KOHyCe, BaKyyMHBIE
ypaBHEHMS DUHIITEHHA.
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