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UDK 530.12AN EXISTENCE THEOREM FOR THE CAUCHYPROBLEM ON THE LIGHT-CONEFOR THE VACUUM EINSTEIN EQUATIONSWITH NEAR-ROUND ANALYTIC DATAY. Choquet-Bruhat, P.T. Chru�s
iel, J.M. Mart�in-Gar
�iaAbstra
tA 
lass of 
hara
teristi
 general relativisti
 initial data satisfying a near-roundness
ondition at the tip of a light-
one is introdu
ed. It is shown that for any su
h analyti
 datathere exists a 
orresponding solution of the va
uum Einstein equations de�ned in a futureneighborhood of the vertex.Key words: 
hara
teristi
 Cau
hy problem on a light-
one, va
uum Einstein equations.Introdu
tionIn the paper [1℄ we studied the Cau
hy problem for the Einstein equations withdata on a 
hara
teristi
 
one CO . We used the tensorial splitting of the Ri

i tensor ofa Lorentzian metri
 g on a manifold V as the sum of a quasidiagonal hyperboli
 systema
ting on g and a linear �rst order operator a
ting on a ve
tor H, 
alled the wave-gauge ve
tor. The ve
tor H vanishes if g is in wave gauge; that is, if the identity mapis a wave map from (V, g) onto (V, ĝ) , with ĝ being some given metri
, whi
h we have
hosen to be Minkowski. The data needed for the redu
ed PDEs is the tra
e, whi
h wedenote by g , of g on CO . However, be
ause of the 
onstraints, the intrinsi
, geometri
,data is a degenerate quadrati
 form g̃ on CO . Given g̃ , the tra
e g is determinedthrough a hierar
hi
al system of ordinary di�erential equations1 along the rays of CO ,dedu
ed from the 
ontra
tion of the Einstein tensor with a tangent to the rays, whi
hwe have written expli
itly and solved. We have 
alled these equations the wave mapgauge 
onstraints and shown that they are ne
essary and su�
ient 
onditions for thesolutions of the hyperboli
 system to satisfy the full Einstein equations. We have alsoproved lo
al geometri
 uniqueness of a solution g of the va
uum Einstein equationsindu
ing a given g̃ (for details see [1℄). Further referen
es to previous works on theproblem at hand 
an be found in [1℄.Existen
e theorems known for quasilinear wave equations with data on a 
hara
ter-isti
 
one give also existen
e theorems for the Einstein equations, if the initial data isMinkowski in a neighbourhood of the vertex. For more general data problems arise dueto the apparent dis
repan
y between the fun
tional requirements on the 
hara
teristi
data of the hyperboli
 system and the properties of the solutions of the 
onstraints,due to the singularity of the 
one CO at its vertex O . The aim of this work is to makeprogress towards resolving this issue, and provide a su�
ient 
ondition for the validityof an existen
e theorem in a neighbourhood of O under 
onditions alternative to thefast-de
ay 
onditions of [4℄. More pre
isely, we prove that analyti
 initial data arising

1For previous writing of these equations in the 
ase of two interse
ting surfa
es in four-dimensionalspa
etime, see Rendall [2℄ and Damour � S
hmidt [3℄.



116 Y. CHOQUET-BRUHAT ET AL.from a metri
 satisfying (3.3), (3.4) together with the �near-roundness� 
ondition ofDe�nition 6.1 lead to a solution of the va
uum Einstein equations to the future of thelight-
one. 1. Cau
hy problem on a 
hara
teristi
 
onefor quasilinear wave equationsThe redu
ed Einstein equations in wave-map gauge and Minkowski target area quasi-diagonal, quasi-linear se
ond order system for a set v of s
alar fun
tions vI ,
I = 1, . . . , N , on R

n+1 of the form
Aλµ(y, v)D2

λµv + f(y, v, Dv) = 0, y = (yλ) ∈ R
n+1, n ≥ 2, f = (f I). (1.1)If the target is the Minkowski metri
 and takes in the 
oordinates yα the 
anoni
alform

η ≡ −(dy0)2 +

n∑

i=1

(dyi)2, (1.2)then,
Dv =

∂vI

∂yλ
, D2

λµv =
∂2vI

∂yλ∂yµ
, λ, µ = 0, 1, . . . , n. (1.3)We will underline 
omponents in these yα 
oordinates.In the 
ase of the Einstein equations the fun
tions Aλµ ≡ gλµ do not depend dire
tlyon y , they are analyti
 in v in an open set W ⊂ R

N . For v ∈ W the quadrati
 form gλµis of Lorentzian signature. The fun
tions f I are analyti
 in v ∈ W and Dv ∈ R
(n+1)N ,they do not depend dire
tly on y in va
uum.The 
hara
teristi
 
one CO of vertex O for a Lorentzian metri
 g is the set 
overedby future dire
ted null geodesi
s issued from O . We 
hoose 
oordinates yα su
h thatthe 
oordinates of O are yα = 0 and the 
omponents Aλµ(0, 0) take the diagonalMinkowskian values, (−1, 1, . . . , 1) . If v is C1,1 in a neighbourhood U of O and takesits values in W there is an eventually smaller neighbourhood of O , still denoted U ,su
h that CO ∩ U is an n dimensional manifold, di�erentiable ex
ept at O , and thereexist in U 
oordinates y := (yα) ≡ (y0 , yi , i = 1, . . . , n) in whi
h CO is representedby the equation of a Minkowskian 
one with vertex O ,

CO := {r − y0 = 0}, r :=
{∑

(yi)2
}1/2

, (1.4)and the null rays of CO represented by the generators of the Minkowskian 
one, i.e.tangent to the ve
tor ℓ with 
omponents ℓ0 = 1 , ℓi = r−1yi . Inspired by this result andfollowing previous authors we will set the Cau
hy problem for the equations (1.1) ona 
hara
teristi
 
one as the sear
h of a solution whi
h takes given values on a manifoldrepresented by an equation of the form (1.4), that is, a set v su
h that
v = ϕ, (1.5)where overlining means restri
tion to CO . The fun
tion ϕ takes its values in W andis su
h that ℓ is a null ve
tor for A , i.e. when A ≡ g

ℓµℓνgµν = g00 + 2r−1yig0i + r−2yiyjgij = 0. (1.6)We use the following notations:
CT

O := CO ∩ {0 ≤ t := y0 ≤ T },

YO := {y0 > r} , the interior of CO,

Y T
O := YO ∩ {0 ≤ y0 ≤ T }.



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 117and we set
Στ := CO ∩ {y0 = τ}, di�eomorphi
 to Sn−1 ,

Sτ := YO ∩ {y0 = τ}, di�eomorphi
 to the ball Bn−1 .We re
all the following theorem, whi
h applies in parti
ular to the redu
ed Einsteinequations.Theorem 1.1. Consider the problem (1.1) , (1.5) . Suppose that:1. There is an open set U × W ⊂ R
n+1 × R

N , Y T
O ⊂ U where the fun
tions gλµare smooth in y and v . The fun
tion f is smooth2 in y ∈ U and v ∈ W and in

Dv ∈ R
(n+1)N .2. For (y, v) ∈ U ×W the quadrati
 form gλµ has Lorentzian signature; it takes theMinkowskian values for y = 0 and v = 0 . It holds that ϕ(O) = 0 .3a. The fun
tion ϕ takes its values in W . The 
one CT

O is null for the metri

gλµ(y, ϕ) .3b. ϕ is the tra
e on CT

O of a smooth fun
tion in U .Then there is a number 0 < T0 ≤ T < +∞ su
h that the problem (1.1) , (1.5) hasone and only one solution v in Y T0

O whi
h 
an be extended by 
ontinuity to a smoothfun
tion de�ned on a neighbourhood of the origin in R
n+1 .If ϕ is small enough in appropriate norms, then T0 = T .2. Null adapted 
oordinatesIt has been shown (see [1℄ and referen
es therein) that the 
onstraints are easier tosolve in 
oordinates xα adapted to the null stru
ture of CO , de�ned by

x0 = r − y0, x1 = r and xA = µA(r−1yi), (2.1)where A = 2, . . . , n , lo
al 
oordinates on the sphere Sn−1 , or angular polar 
oordinates.Conversely
y0 = x1 − x0, yi = rΘi(xA) with n∑

i=1

Θi(xA)2 = 1.In the x 
oordinates the Minkowski metri
 (1.2) reads
η ≡ −(dx0)2 + 2dx0dx1 + (x1)2sn−1, (2.2)with

sn−1 := sABdxAdxB , the metri
 of the round sphere Sn−1.Re
all that in these 
oordinates the non zero Christo�el symbols of the Minkowskimetri
 are, with SA
BC , the Christo�el symbols of the metri
 s ,

Γ̂B
1A ≡

1

x1
δB
A , Γ̂B

AC ≡ SB
AC , Γ̂0

AB ≡ −x1sAB , Γ̂1
AB ≡ −x1sAB . (2.3)In the general 
ase, the null geodesi
s issued from O have still equation x0 = 0 ,

xA =
onstant, so that ℓ :=
∂

∂x1
is tangent to those geodesi
s. The tra
e g on CO ofthe spa
etime metri
 g that we are going to 
onstru
t is su
h that g11 = 0 and g1A = 0;we use the notation

g ≡ g00(dx0)2 + 2ν0dx0dx1 + 2νAdx0dxA + gABdxAdxB , (2.4)
2Smooth means Cm , with m being some integer depending on the problem at hand and the
onsidered fun
tion. In parti
ular C∞ and Cω (real analyti
 fun
tions) are smooth.



118 Y. CHOQUET-BRUHAT ET AL.We emphasize that our assumption that g is given by (2.4) is no geometri
 restri
tionfor a metri
 g to have su
h a tra
e on a null 
one x0 = 0 .The Lorentzian metri
 g indu
es on CO a degenerate quadrati
 form g̃ whi
h readsin 
oordinates x1 , xA

g̃ ≡ g̃ABdxAdxB , (2.5)i.e. g̃11 ≡ g̃1A ≡ 0 while g̃ABdxAdxB ≡ gABdxAdxB is an x1 -dependent Riemannianmetri
 on Sn−1 indu
ed on ea
h Σt by g̃ , we denote it by g̃Σ . While g̃ is intrinsi
allyde�ned, it is not so for g00 , ν0 , νA , they are gauge-dependent quantities.Note that g̃ has a more 
ompli
ated expression in 
oordinates yi on CO . Sin
e thein
lusion mapping of CO in the 
oordinates yα is y0 = r, hen
e ∂y0

∂yi
=

yi

r
, it holdsthat

g̃ ≡ g̃ijdyidyj , with g̃ij ≡ r−2yiyjg00 + r−1(yjg0i + yig0j) + gij . (2.6)For Theorem 1.1, to apply to the wave-gauge redu
ed Einstein equations, the 
om-ponents of the initial data in the y 
oordinates must be the tra
e on CO of smoothspa
etime fun
tions. The solution of the redu
ed equations satisfy the full Einstein equa-tions if and only if these initial data satisfy the wave-map gauge 
onstraints. We have
onstru
ted in [1℄ these data as solutions of ODE in adapted null x 
oordinates, whi
hare admissible 
oordinates for R
n+1 only for r > 0 . The 
hange of 
oordinates from

x to y , smooth for r > 0 , is re
alled below; the 
omponents of a spa
etime tensor Tin the 
oordinates x are denoted by Tαβ , while in the 
oordinates y they are denotedby Tαβ .Lemma 2.1. It holds that:
T00 ≡ T00, T11 ≡ T00 + 2

yi

r
T0i +

yi

r

yj

r
Tij , T01 ≡ −(T00 + T0iΘ

i),

T0A ≡ −r
∂Θi

∂xA
T0i, T1A ≡ r

∂Θi

∂xA
(T0i + ΘjTij), TAB ≡ Tijr

2 ∂Θi

∂xA

∂Θj

∂xB
.Conversely, if T1A ≡ T11 ≡ 0 , then

T00 ≡ T00, T0i ≡ −(T00 + T01)r
−1yi − T0A

∂xA

∂yi
,

Tij = (T00 + 2T01)r
−2yiyj + T0Ar−1(yi ∂xA

∂yj
+ yj ∂xA

∂yi
) + TAB

∂xA

∂yi

∂xB

∂yj
.Hereinafter, we shall often abbreviate partial derivatives as follows

∂0 ≡
∂

∂x0
, ∂1 ≡

∂

∂x1
, ∂A ≡

∂

∂xA
,

∂0 ≡
∂

∂y0
, ∂i ≡

∂

∂yi
.3. Chara
teristi
 data3.1. Basi
 (intrinsi
) 
hara
teristi
 data. The basi
 data on a 
hara
teristi

one for the Einstein equation is a degenerate quadrati
 form. We will de�ne this dataas the degenerate quadrati
 form C̃ indu
ed by a given Lorentzian spa
etime metri


C whi
h admits this 
one as a null 
one. By CO , as before, we denote the manifold
x0 ≡ r − y0 = 0 . If we take the yi as 
oordinates on CO , it holds that, see (2.6),

C̃ ≡ C̃ijdyidyj with C̃ij ≡ Cij + r−1(yjCi0 + yiCj0) + r−2yiyjC00 , (3.1)



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 119where Cαβ are the 
omponents in the y 
oordinates of the tra
e C of C on CO (notto be mistaken with the indu
ed quadrati
 form C̃) . Assuming that CO is a null 
onefor C with generators ℓ
0

= 1 , ℓ
i

=
yi

r
, (1.6) implies that the quadrati
 form C̃ isdegenerate,

yi

r

yj

r
C̃ij ≡ C00 + 2

yi

r
C0i +

yi

r

yj

r
Cij = 0. (3.2)Lemma 3.1. Two spa
etime metri
s C and C′ with 
omponents linked by

Cij
′

:= Cij + r−1(aiyj + ajyi) + r−2αyiyj , Ci0
′

:= Ci0 − ai, C00
′

:= C00 − α,with arbitrary ai and α indu
e on CO the same quadrati
 form C̃ , i.e. C̃ij

′

≡ C̃ij .Proof. Elementary 
al
ulation using the identity written above.In what follows, to simplify 
omputations we will make the restri
tive 
ondition that
C0i = 0, C00 = −1, i.e. C := −(dy0)2 + Cijdyidyj . (3.3)The set {y0 = r} is then a null 
one for the metri
 C, with generator ℓ0 = 1, ℓi =

yi

r
,if and only if

yi Cij = yj (3.4)(
ompare [5℄).The general relation between 
omponents in 
oordinates y and adapted null 
oor-dinates x1 , xA gives
C̃ ≡ C̃ABdxAdxB with C̃AB ≡ CAB, C̃1A = C̃11 = 0,with C̃AB being the 
omponents of a x1 ≡ r -dependent Riemannian metri
 on thesphere Sn−1

−

(
C00 +

yi

r
C0i

)
≡ C01 = 1, C0A ≡ −

∂yi

∂xA
C0i = 0, C00 ≡ C00 = −1.This metri
 C is also su
h that

C00 ≡ C0A ≡ C1A ≡ 0, C01 ≡ C11 ≡ 1,while C
AB are the elements of the inverse of the positive de�nite quadrati
 form with
omponents CAB .3.2. Full 
hara
teristi
 data. We have seen in [1℄ that the tra
e g ofa Lorentzian metri
 g satisfying the redu
ed Einstein equations is a solution of thefull Einstein equations if and only if it satis�es the wave map gauge 
onstraints. These
onstraints Cα = 0 are dedu
ed in va
uum from the identity satis�ed by the Einsteintensor S :

ℓ
β

Sαβ ≡ Cα + Lαwhere Lα is linear and homogeneous in the wave gauge ve
tor H while Cα depends onlyon g and its derivatives among CO and the given target ĝ . Given g̃ , i.e. gAB ≡ CAB ,
g1A = g11 = 0 , the remaining 
omponents ν0 ≡ g01 , νA ≡ g0A , g00 are determinedby the 
onstraints and limit 
onditions at the vertex O whi
h 
an always be satis�ed



120 Y. CHOQUET-BRUHAT ET AL.by 
hoi
e of 
oordinates (see [1℄). The Cagna
 �Dossa theorem applies to 
omponentsin the y 
oordinates. Lemma 2.1 gives
g00 ≡ g00, g0i ≡ −(g00 + ν0)r

−1yi − νi, with νi := νA
∂xA

∂yi
, (3.5)

gij = (g00 + 2ν0)r
−2yiyj + r−1(yiνj + yjνi) + gAB

∂xA

∂yi

∂xB

∂yj
,while, for the 
hosen metri
 C and gAB ≡ CAB

Cij ≡ r−2yiyj + gAB

∂xA

∂yi

∂xB

∂yj
.Therefore,

gij = Cij + (g00 + 2ν0 − 1)r−2yiyj + r−1(yiνj + yjνj). (3.6)4. Null se
ond fundamental formWe have de�ned in I the null se
ond fundamental form of (CO, g̃) as the tensor χon CO de�ned by the Lie derivative3 with respe
t to the ve
tor ℓ of the degeneratequadrati
 form g̃ , namely in the 
oordinates x1, xA :

χAB :=
1

2
(Lℓg̃)AB ≡

1

2
∂1gAB, (4.1)

χA1 :=
1

2
(Lℓg̃)A1 = 0, χ11 :=

1

2
(Lℓg̃)11 = 0. (4.2)In view of the appli
ation of the Cagna
 �Dossa theorem, we look for smooth ex-tensions. We de�ne a smooth spa
etime ve
tor �eld L , vanishing at O and with tra
e
olinear with ℓ =

∂

∂x1
on CO , by its 
omponents in the xα and yα 
oordinatesrespe
tively:

L := yλ ∂

∂yλ
≡ x0 ∂

∂x0
+ x1 ∂

∂x1
, hen
e L ≡ x1ℓ ≡ rℓ.We assume that the metri
 C is smooth in U , a neighbourhood of O in R

n+1 , i.e.its 
omponents Cij are of 
lass Cm , with m as large as ne
essary in the 
onsidered
ontext, fun
tions of the yα . We de�ne a symmetri
 Cm−1 2-tensor X , identi
ally zeroin the 
ase where C ≡ η , the Minkowski metri
, by:
X :=

1

2
LLC − C. (4.3)In y 
oordinates one has4, using yiCij = yj

X00 ≡ X0i ≡ 0, Xij ≡
1

2
{y0∂0Cij + yh∂hCij}. (4.4)with

yi∂0Cij = 0,

3Re
all that in arbitrary 
oordinates xI the Lie derivative reads
(LℓC̃)HK ≡ ℓI∂I C̃HK + C̃HI∂KℓI + C̃KI∂HℓI .

4Re
all that we underline 
omponents in the y 
oordinates and overline restri
tions to CO.
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h

yiyh∂hCij = yh∂h(yiCij) − yhCij∂hyi = 0, (4.5)whi
h imply
LiXij ≡ yiXij = 0. (4.6)In x 
oordinates we �nd, using the values of the 
omponents C0α and C1α of themetri
 C , that the tensor X obeys the key properties
Xµ0 = 0, Xµ1 = 0, (4.7)while

XAB ≡
1

2
(x0∂0CAB + x1∂1CAB) − CAB. (4.8)Hen
e XAB redu
es on the null 
one CO to

XAB ≡
1

2
x1∂1CAB − CAB ≡ x1χAB − gAB. (4.9)By X we still denote the mixed Cm−1 tensor on spa
etime obtained from X by liftingan index with the 
ontravariant asso
iate of C; its y 
omponents are the Cm−1 fun
-tions

2Xγ
α ≡ Cγβ {y0∂0Cαβ + yi∂iCαβ},hen
e C being given by (3.3),

Xj
i ≡

1

2
Cjh {y0∂0Cih + yk∂kCih}, X0

i ≡ Xj
0 ≡ X0

0 ≡ 0, (4.10)and
Xj

i Lj ≡ 0, (4.11)where the index of L has been lowered with the metri
 C , so that this is equivalent to(4.6). In x 
oordinates XC
A are the only non-vanishing 
omponents of X . Their tra
eson CO are

X
C

A ≡
1

2
x1gBC∂1gAB − δC

A ≡ x1χC
A − δC

A ,hen
e
χC

A :=
1

2
gBC∂1gAB =

1

x1
(X

C

A + δC
A), (4.12)and

τ :=
1

2
gAB∂1gAB =

tr X

x1
+

n − 1

x1
. (4.13)The tra
e of the tensor X is the Cm−1 fun
tion

trX ≡ Xα
α ≡ Xλ

λ ≡ CABXAB. (4.14)On the light 
one CO it holds that
trX ≡ X

i

i ≡ gABXAB ≡
x1

2
gAB ∂1gAB − (n − 1), (4.15)

|χ|2 := χC
AχA

C ≡
1

(x1)2

{
X

α

β X
β

α + 2trX + n − 1
}

. (4.16)



122 Y. CHOQUET-BRUHAT ET AL.5. A 
riterium: admissible seriesTo show that the integration of the 
onstraints, whi
h appear as ODE in x1 , leadsto tra
es on the 
one of smooth spa
etime fun
tions, we shall use the following lemma,introdu
ed by Cagna
 (unpublished) for formal series, but used here for real analyti
fun
tions, a spe
ial 
lass Cω of C∞ fun
tions.Lemma 5.1. A fun
tion is the tra
e f on CT
O of a spa
etime fun
tion f analyti
in U ∩Y T

O , U is a neighbourhood of O , if and only if it admits on U ∩CT
O a 
onvergentexpansion of the form

f ≡ f0 +

∞∑

p=1

fpr
p (5.1)with

fp ≡ fp,i1...ip
Θi1 . . .Θip + f

′

p,i1...ip−1
Θi1 . . . Θip−1 , (5.2)where f0 , fp,i1...ip

and f ′

p,i1...ip−1
are numbers. Su
h a series is 
alled an admissibleseries. A 
oe�
ient fp of the form (5.2) is 
alled an admissible 
oe�
ient of order p .Proof. If f is analyti
 it admits an expansion in Taylor series

f ≡

∞∑

p=0

fα1...αp
yα1 . . . yαp , fα1...αp

:=
1

p!

∂pf

∂yα1 . . . ∂yαp
(O). (5.3)One goes from the formulas (5.3) to (5.1), (5.2) by repla
ing yi by rΘi and y0 by r ,and 
onversely, in Ω ∩ CO or in Ω .Remark 5.1. The identity (5.1) is equivalent to saying that f is of the form

f = f1 + rf2 , with f1 and f2 analyti
 fun
tions of yi .We say that an admissible series is of minimal order q if the 
oe�
ients fp areidenti
ally zero for p < q .Proposition 5.1. If the metri
 C is analyti
 and satis�es the 
onditions (3.3) ,
(3.4) then the fun
tions trX and |X |2 are admissible series of minimal orders 2 and 4respe
tively.The following lemmas will be very useful when integrating the 
onstraints.Lemma 5.2. If fp and hq are admissible 
oe�
ients of order p and q respe
tively,then fp + hp and fphq are admissible 
oe�
ients of order p and p + q respe
tively.Proof. Elementary 
omputation of (fp + hp)r

p and fphqr
p+q repla
ing rΘi by yiand r2 by Σi(y

i)2 .Suppose that f and h are admissible series of minimal orders qf and qh . The fol-lowing are easy-to-
he
k 
onsequen
es of the lemma:1) fh is an admissible series of minimal order qf + qh ;2) if qf = qh , then f + h is an admissible series of the same minimal order;3) if f(0) 6= 0 and qf = 0 , then 1/f is an admissible series of also minimal order 0;4) r∂1f is an admissible series of minimal order qf , unless qf = 0 and then it hasa larger minimal order.



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 123Lemma 5.3. If k and h are admissible series with h of minimal order qh ≥ 1 andthe 
onstant k0 ≡ k(0) ≥ 0 , then the ODE
r∂1f + kf = h (5.4)admits one and only one solution f whi
h is also an admissible series of the sameminimal order qh as h . The result extends to qh = 0 if k0 > 0 .Proof. Expand

f =

∞∑

p=0

fpr
p, k =

∞∑

p=0

kpr
p, h =

∞∑

p=qh

hpr
p, (5.5)hen
e

r∂1f =

∞∑

p=1

pfpr
p,plug into the ODE (5.4) and pro
eed to identi�
ations.We obtain by equating to zero the 
onstant term

k0f0 = h0, (5.6)a relation whi
h 
an be satis�ed when h0 6= 0 only when k0 6= 0 . We �rst 
onsider the
ase where h0 = 0 , i.e. qh ≥ 1 , and take f0 = 0 . We get the su

essive equalities
f1 + k0f1 = h1, i.e. f1 =

h1

1 + k0
, (5.7)and the re
urren
e relation, using f0 = 0 ,

(p + k0)fp +

p−1∑

q=1

kqfp−q = hp . (5.8)For p < qh , we have hp = 0 and the re
urren
e relation gives fp = 0 . Therefore, theleading admissible 
oe�
ients of f and h are always related by
fqh

=
hqh

qh + k0
. (5.9)We assume the series for k and h 
onverge for all dire
tions Θi and radius cr < 1 ;that is, we assume that there exists a 
onstant c su
h that

|kp| < cp, and |hp| < cp. (5.10)Sin
e k0 ≥ 0 we have
|f1| ≤ |

h1

1 + k0
| <

c

1 + k0
≤ c.Assume now that

|fp| < cp for p < p0, (5.11)then from the iteration we get, for larger values of p , the inequality
|fp| <

p

p + k0
cp ≤ cp . (5.12)



124 Y. CHOQUET-BRUHAT ET AL.The bounds on |fp| show that the series for f also 
onverges. It is an admissible seriesof minimal order qf = qh .When qh = 0 , i.e. h0 6= 0 and k0 6= 0 we take
f0 =

h0

k0and we set
F = f − f0.It satis�es the equation

r∂1F + kF = H, with H := h − kf0. (5.13)We have
H0 = 0and we apply the previous result to F .Corollary 5.1. If f and h are admissible series related by (5.4) and p + k0 > 0 ,and r−ph is an admissible series then r−pf is an admissible series of the same minimalorder.Proof. Set f = rpφ . If f satis�es (5.4) then φ satis�es the equation

r∂1φ + (p + k)φ = r−ph.Remark 5.2. The following example is a 
ase of a di�erential equation of the form(5.4) with qh = 1 , but k0 is a negative integer, whi
h does not admit as a solutionan admissible series. Let
k =

1

r − 1
= −1 − r − r2 − r3 − · · · , h =

r

1 − r2
= r + r3 + r5 + · · · ,We 
an solve the ODE expli
itly,

f =
r

r − 1

(
f∞ + log

r + 1

r

)with f∞ an arbitrary integration 
onstant, whi
h 
annot be expanded in powers of rnear 0 . However if we 
hange k to r/(r−1) , then k0 
hanges from −1 to 0 , the problemdisappears. Remark that the problem also disappears if we 
hange h to r2/(1 − r2) ,i.e. qh = 2 .In what follows, we will assume the metri
 C , of the form (3.3) and satisfying (3.4)is analyti
, takes Minkowskian values at the vertex O , and is su
h that the 
omponentsof its tra
e on CO satisfy
Cij ≡ δij + cij , C

ij
≡ δij + cij , (5.14)where cij and cij have admissible expansions of minimal order 2 while ∂0 cih hasan admissible expansion of minimal order 1. The de�nition (4.10) implies then that

X
j

i ≡
1

2
Cjh

{
r ∂0 cih + yk ∂k cih

} (5.15)has an admissible expansion of minimal order 2.
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onstraintWe have dedu
ed our �rst 
onstraint(see [1℄) from the identity
ℓ
β

S1β ≡ R11 ≡ −∂1τ + ν0∂1ν0τ −
1

2
τ(Γ1 + τ) − χB

A χA
B, (6.1)with

Γ1 ≡ W 1 + H1, W 1 ≡ −ν0 gABrsAB. (6.2)Hen
e for the �rst wave-map gauge 
onstraint in va
uum we have the equation
C1 := −∂1τ + ν0∂1ν0τ −

1

2
τ(τ − ν0 gABrsAB) − χB

A χA
B = 0. (6.3)When gAB is known this equation reads as a �rst order di�erential equation for ν0

ν0∂1ν0 = τ−1∂1τ +
1

2
(τ − ν0 gABrsAB) + τ−1χB

A χA
B. (6.4)It 
an be written as a linear equation for ν0 − 1 ,

∂1ν
0 + a(ν0 − 1) + b = 0, (6.5)with

a := τ−1∂1τ +
1

2
τ + τ−1|χ|2, |χ|2 ≡ χB

A χA
B, (6.6)

b := a −
1

2
gABrsAB. (6.7)In the �at 
ase gAB = ηAB , τ =

n − 1

r
, χB

A =
1

r
δB
A the equation redu
es to:

∂1ν
0 +

1

2
(ν0 − 1)

n − 1

r
= 0;it has one solution tending to 1 when r tends to zero, ν0 = 1 . In the general 
ase (6.5)reads, with f := ν0 − 1 ,

r∂1f + kf + h = 0, k := ar, h := br = ar −
1

2
gABr2sAB. (6.8)Re
all that x1 ≡ r and

χC
A ≡

1

2
gBC∂1gAB =

1

r
(X

C

A + δC
A). (6.9)Hen
e

|χ|2 =
|X|2 + 2trX + n − 1

r2
,

τ =
tr X

r
+

n − 1

r
, τ−1 =

r

n − 1 + trX
, (6.10)where tr X is an admissible series of minimal order 2. The fun
tion {

1 +
1

n − 1
trX

}
−1is the tra
e of a Cω fun
tion as long as 1 +

1

n − 1
tr X does not vanish, hen
e alwaysin a neighbourhood of O sin
e trX vanishes there.
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∂1τ ≡ −

n − 1 + trX

r2
+

∂1tr X

r
, (6.11)

τ−1∂1τ ≡ −
1

r
+

∂1tr X

n − 1 + trX
. (6.12)Also we 
an write

τ−1|χ|2 ≡
|X|2 + 2trX + n − 1

r(n − 1 + tr X)
≡

|X|2 + tr X

r(n − 1 + tr X)
+

1

r
. (6.13)Finally 
omputation gives

k ≡ ar ≡
n − 1

2
+

r∂1tr X + tr X + |X|2

n − 1 + tr X
. (6.14)We see that in a neighbourhood of O , k−

n − 1

2
admits an admissible developmentof minimal order 2.On the other hand, sin
e in the x 
oordinates η1α = 0 , r2sAB = ηAB and we haveassumed that C

00
= C

0A
= 0 , C

01
= 1 , gAB = C

AB , we have
gABr2sAB ≡ gABηAB ≡ C

AB
ηAB ≡ C

αβ
ηαβ − 2.Hen
e using now the values of Cαβ

1

2
gABr2sAB ≡

1

2
(1 + Cijδij − 2) ≡

n − 1

2
+

1

2
cijδij , (6.15)where cijδij has an admissible development of minimal order 2 . We 
on
lude that

h ≡
r∂1tr X + tr X + |X|2

(n − 1 + tr X)
−

1

2
cijδij (6.16)admits also su
h a development. Lemma 5.3 applies, and we have proved the followingtheorem:Theorem 6.1. If the basi
 
hara
teristi
 data are indu
ed on CO by a Cω (i.e.analyti
) metri
 of the form (3.3) , hen
e satisfying (2.4) , then ν0−1 admits an admis-sible expansion of minimal order 2 , hen
e is the tra
e in a neighbourhood of O of a Cωspa
etime fun
tion. Then ν0 = N

0 with N0 ∈ Cω and N0(O) = 1 . In a neighbourhoodof O , it holds that ν0 = N0 , N0 = (N0)−1 .In the expression of the 
hara
teristi
 initial data in y 
oordinates there appears
r−2(ν0 − 1) , whi
h, though being 
ontinuous on ea
h ray as r tends to zero, is notan admissible expansion. We introdu
e the following de�nition.De�nition 6.1. A metri
 C satisfying (3.3), (3.4) is said to be near-round at thevertex if there is a neighbourhood of O where r−1cij ≡ dij and r−2cijδ

ij ≡ D with
dij and D being admissible series.If C is near-round at the vertex, Cij has an analyti
 extension Cij of the form,with dij being analyti
 extension of dij ,

Cij ≡ δij + cij , cij ≡ y0dij ,



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 127therefore,
∂hCij ≡ 0 for y0 = 0, hen
e ∂hCij ≡ 0 for y0 = 0,and

Cij ≡ δij + y0dij ,with dij being some analyti
 fun
tions. Hen
e
Cijcij ≡ (y0)2{D + dijdij}.Using the de�nition of Xαβ we see that if C is near-round at the vertex, then

Xαβ ≡ y0 Yαβ , with Yij :=
1

2
{dij + y0∂0dij + yh∂hdij}, Yi0 ≡ Y00 ≡ 0. (6.17)Hen
e

trX ≡ y0 tr Y, with trY ≡ Cij Yij ≡
1

2
Cij {dij + y0∂0dij + yh∂hdij}.An elementary 
omputation shows that tr Y is of the following form (with Z beingan analyti
 fun
tion)

trY ≡ y0Z, hen
e tr X ≡ (y0)2Z.On the other hand,
X i

j ≡ Cih Xjh = y0Cih Yjh := y0Y i
j ,therefore,

|X |2 ≡ X i
j Xj

i ≡ (y0)2Y i
j Y j

i .We dedu
e from these formulas that if C is near-round at the vertex then
r−2 tr X ≡ Z and r−2 |X|2 ≡ |Y |2 are admissible series.Theorem 6.2. A su�
ient 
ondition for r−2(ν0 − 1) , with ν0 solution of the �rstwave-map gauge 
onstraint, to have an admissible expansion is that the Cω metri
 Cgiven by (3.3) whi
h indu
es the basi
 
hara
teristi
 data be near-round at the vertex.Proof. Sin
e f := ν0 − 1 satis�es Eq. (6.8), φ := r−2(ν0 − 1) satis�es

r∂1φ + (2 + k)φ + r−2h = 0. (6.18)The expression (6.16) shows that for a metri
 C round at the vertex r−2h admitsan admissible development, the appli
ation of Corollary 5.1 gives the result.7. The CA 
onstraintWe have written in [1℄ the CA 
onstraint in va
uum as
CA = −

1

2
(∂1ξA + τξA) + ∇̃BχB

A −
1

2
∂Aτ + ∂A

(
1

2
W 1 + ν0∂1ν

0

)
,where ξA is de�ned as

ξA := −2ν0∂1νA + 4ν0νCχC
A +

(
W

0
−

2

r
ν0

)
νA + gABgCD(SB

CD − Γ̃B
CD). (7.1)
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onstraint we �nd
ν0∂1ν

0 +
1

2
W 1 = −a, (7.2)where a is given by (6.14), hen
e

∂A

(
a +

1

2
τ

)
≡ r−1∂AF (tr X, |X |2),where

F (tr X, |X |2) :=
r∂1tr X + tr X + |X|2

n − 1 + tr X
+

1

2
tr X ≡

≡
r∂1tr X + 1

2{(n + 1)trX + |tr X|2} + |X |2

n − 1 + trXadmits in a neighbourhood of O an admissible development of minimal order 2.We have:
CA ≡ −

1

2
(∂1ξA + τξA) + ∇̃BχB

A − r−1∂AF (tr X, |X |2) = 0. (7.3)7.1. Equations for ξA . We set ξ1 = ξ0 = 0 on the 
one and we de�ne ξi by
ξi :=

∂xα

∂yi
ξα ≡

∂xA

∂yi
ξA. (7.4)It holds that

yi ξi = 0, (7.5)be
ause (re
all that x1 = r , yi ≡ rΘi(xA))
yi ∂xA

∂yi
≡ r

∂yi

∂x1

∂xA

∂yi
≡ rδA

1 = 0,
∂

∂r

∂yi

∂xA
≡

1

r

∂yi

∂xA
. (7.6)We have

∂yi

∂xA
ξi ≡

∂yi

∂xA

∂xB

∂yi
ξB ≡ δB

A ξB ≡ ξA. (7.7)The equation (7.7) implies that
∂1ξA ≡

(
∂

∂r
ξi + r−1ξi

)
∂yi

∂xA
,hen
e

CA ≡ −
1

2

∂yi

∂xA

{
∂

∂r
ξi + ξi(r

−1 + τ)

}
+ ∇̃BχB

A − r−1∂AF (tr X, |X |2) = 0.Sin
e trX ≡ trX is a s
alar fun
tion and the equation of CO in the x 
oordinates is
x0 = 0 and y0 does not depend on xA , it holds that

∂

∂xA
trX ≡

∂

∂xA
tr X ≡

∂yi

∂xA

∂

∂yi
tr X ≡

∂yi

∂xA

∂

∂yi
tr X,
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∂

∂xA
|X |2 ≡

∂yi

∂xA

∂

∂yi
|X |2,

∂

∂xA
F (tr X, |X |2) ≡

∂yi

∂xA

∂

∂yi
F (tr X, |X |2).We now 
ompute, with 
ovariant derivatives ∇̃ taken in the Riemannian metri


gAB ≡ CAB ,
∇̃BχB

A ≡ ∇̃B

(
1

x1
X

B

A +
1

x1
δB
A

)
≡

1

x1
∇̃BX

B

A .The Christo�el symbols C̃A
BC of the Riemannian 
onne
tion ∇̃ are equal (re
all that

CB0 = CB1 = C00 = 0) to the tra
e on CO of the Christo�el symbols with the sameindi
es of the spa
etime metri
 C , hen
e denoting by (C)∇ the 
ovariant derivativein the metri
 C

∇̃BχB
A ≡

1

x1
(C)∇BXB

A .Sin
e the XB
A are the only non-vanishing 
omponents of the tensor X, and due to theform 
hosen for the metri
 C we �nd that

(C)∇BXB
A = (C)∇αXα

A =
∂yi

∂xA
(C)∇αXα

iand Eqs. (7.3) read
CA≡

∂yj

∂xA

1

r

{
−

1

2

[
r

∂

∂r
ξj + ξj(n + tr X)

]
+ (C)∇αXα

j −
∂

∂yj
F (tr X, |X |2)

}
= 0. (7.8)The parentheses 
onstitute a linear diagonal operator on the ξj of the type 
onsideredin Lemma 5.3. Equating it to zero gives an equation with solution ξj an admissibleseries of minimal order 1 . We denote by Ξj the extension of ξi to spa
etime, that iswe have

ξi ≡ Ξi, (7.9)where Ξi are analyti
al fun
tions beginning by linear terms.7.2. Equations for νi . We now 
onsider Eqs. (7.1), whi
h read
∂1νA +

(
1

r
−

1

2
W 1

)
νA − 2νCχC

A −
1

2
ν0gABgCD(SB

CD − Γ̃B
CD) +

1

2
ν0ξA = 0 . (7.10)We set

g0i ≡ −νi + λLi, with Li ≡ Cij L
j
, L

j
≡ yj , (7.11)with νi su
h that

νiL
i
≡ νi yi = 0; (7.12)that is, using (7.11),

λ ≡ (Li L
i
)−1 g0j L

j
≡ r−2yj g0j .Then (
ompare (3.5))

νA ≡ −
∂yi

∂xA
g0i ≡

∂yi

∂xA
νi.Hen
e

∂1νA ≡
∂yi

∂xA
(∂1νi + r−1νi).
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all that
χC

A ≡
1

r
(X

C

A + δC
A), i.e. rνCχC

A ≡ νCX
C

A + νA.Therefore, after produ
t by r , the equations 
an be written as follows:
∂yi

∂xA

(
r∂1νi −

1

2
rW 1νi +

1

2
ν0rξi

)
− 2FA −

1

2
rν0EA = 0,with

FA := νCX
C

A, EA := gAB gCD(SB
CD − Γ̃B

CD).By de�nition it holds that
νCX

C

A ≡ g0CXC
A ,and sin
e XC

A are the only non-vanishing 
omponents of the mixed tensor X in the
oordinates x

g0CXC
A = g0λXλ

A ≡
∂yα

∂x0

∂yβ

∂xA
gαλ Xλ

β .Re
alling that X0
i ≡ 0 we �nd (using (4.11), Xj

i Lj = 0)

FA ≡ νC X
C

A ≡ −
∂yi

∂xA
g0jX

j
i ≡

∂yi

∂xA
νjX

j
i .We then remark that SB

CD − C̃B
CD is the tra
e on CO of the di�eren
e of the 
om-ponents of the Christo�el symbols, ηα

βγ and Cα
βγ , with these angular x indi
es of theMinkowski metri
 η and the metri
 C :

EA := gABgCD(SB
CD − C̃B

CD), with EA ≡ CABCCD(ηB
CD − CB

CD).Using the expressions of η and C and the vanishing of the Christo�el symbols of ηin y 
oordinates we �nd
EA ≡ CAαCλµ(ηα

λµ − Cα
λµ) ≡

∂yi

∂xA
CiαCλµ(ηα

λµ − Cα
λµ) ≡ −

∂yi

∂xA
CijCλµCj

λµ,with Cj
λµ analyti
 fun
tions, 
omponents of Christo�el symbols of the metri
 C in y
oordinates, that is, using the values of the y 
omponents of the metri
 C

CijC
λµCj

λµ ≡
1

2
Chk(∂hcik + ∂hcik − ∂ichk).We re
all from (6.15) that

rW 1 ≡ −ν0 gABr2sAB ≡ −ν0 {n − 1 + cijδij},and we �nd that Eqs. (7.10) 
an be written as
∂yi

∂xA
Li = 0 ,where Li is the following linear operator on νi

r∂1νi + ν0

{
n − 1

2
+

1

2
chkδhk

}
νi − 2νjX

j
i +

1

2
ν0r ξi −

1

2
rν0CijCλµCj

λµ = 0. (7.13)We extend Lemma 5.3 as follows.
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i and hi are admissible series of minimal orders 1 , and the
onstant k0 ≥ 0 , then the ODE

r∂1νi + k0νi + kj
i νj = hi (7.14)admits a solution νi , whi
h is also an admissible series of the same minimal orderthan h .Re
alling that ν0 − 1 is an admissible series of minimal order 2 we see that thislemma applies to (7.13). We have proved:Theorem 7.1. If the basi
 
hara
teristi
 data is indu
ed by an analyti
 met-ri
 C satisfying (3.3) , (3.4) , Eq. (7.13) admits one and only one solution νi whi
h isan admissible series of minimal order 2 . We denote by Ni its spa
etime extension.We now prove:Theorem 7.2. A su�
ient 
ondition for r−2νi to have an admissible expansionis that the Cω metri
 C given by (3.3) whi
h indu
es the basi
 
hara
teristi
 data benear-round at the vertex.Proof. Using the relation between X and Y the linearity of F in trX and |X |2we see that for C round at the vertex the equation satis�ed by ξj reads

1

2

{
r

∂

∂r
ξj + ξj(n + r2Z)

}
= hj ,with

hj := (C)∇α((y0)2Y α
j ) −

∂

∂yj
F ((y0)2tr Y, (y0)4|Y |2).We dedu
e from the linearity of F in tr X and |X |2 that r−1hj admits an admissibleexpansion, the same holds therefore (see Corollary 5.1) for r−1ξj . The equation satis�edby νj reads

r∂1νi + ν0

{
n − 1

2
+ r2 dhkδhk

}
νi − 2νjr

2Y j
i = hi, (7.15)

hi = −
1

2
ν0rξi +

1

4
r3ν0 Chk(∂hdik + ∂hdik − ∂idhk).An extension of Lemma 7.1 shows that r−2νi admits an admissible expansion be
auseit is so of hi . 8. The C0 
onstraintThe last unknown in g , the only unknown in the 
onstraint C0 , is

g00 ≡ g00.The 
onstraint C0 has a simpler expression in terms of g11 . Sin
e g11 is linked to g00by the identity
g01g00 + g11g10 + gA1gA0 = 0,we have

g00 ≡ −g11(ν0)
2 + gABνBνA ≡ −g11(ν0)

2 + C
ij

νi νj . (8.1)



132 Y. CHOQUET-BRUHAT ET AL.We have seen [1℄ that the C0 
onstraint 
an be written in va
uum as
∂1ζ + (κ + τ)ζ +

1

2

{
∂1W

1
+ (κ + τ)W

1
+ R̃ −

1

2
gABξAξB + gAB∇̃AξB

}
= 0, (8.2)with

ζ :=

(
∂1 + κ +

1

2
τ

)
g11 +

1

2
W

1
, (8.3)

κ ≡ ν0∂1ν0 −
1

2
(W 1 + τ), W 1 ≡ ν0W

0
, W

0
≡ W

1
≡ −rgABsAB. (8.4)8.1. Equation for ζ . In the �at 
ase it holds that

ν0,η = 1, τη = −W 1,η =
n − 1

r
, κη = 0.The fun
tion ζ redu
es to

ζη := ∂1g
11 +

1

2
τη(g11 − 1), (8.5)and the equation for ζ reads, using ξA,η = 0 ,

∂1ζη +
n − 1

r
ζη +

1

2

{
n − 1

r2
−

(n − 1)2

r2
+ R̃η

}
= 0.That is, using the s
alar 
urvature of the Sn−1 round sphere of radius r whi
h is5

R̃η = r−2(n − 2)(n − 1), (8.6)the equation
∂1ζη +

n − 1

r
ζη = 0has the only bounded solution ζη ≡ 0 . From (8.5) results we have then g11

η ≡ 1 . We nowstudy the general 
ase.We 
an write the equation to be satis�ed by ζ as follows,
r∂1(rζ) +(rζ) k rζ +(rζ) h = 0, (8.7)

(rζ)k := r(κ + τ) − 1 ≡ r

{
ν0∂1ν0 +

1

2
(τ − W1)

}
− 1, (8.8)

(rζ)h :=
r2

2

{
∂1W

1
+ (κ + τ)W

1
+ R̃ −

1

2
gABξAξB + gAB∇̃AξB

}
.Hen
e

(rζ)h :=
r2

2

{
∂1W

1
+

1

2
(τ−W 1)W

1
+R̃+ν0∂1ν0W

1
−

1

2
gABξAξB + gAB∇̃AξB

}
. (8.9)We have shown that ν0−1 and r∂1ν0 , hen
e also rν0∂1ν0 , admit admissible expansionsof minimal order 2, and we have seen that rτ and rW1 are admissible series with termsof order zero (n− 1) and −(n− 1) respe
tively. Hen
e k is an admissible series of the

5See for instan
e [6, p. 140℄.
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(rζ)k = n − 2 + k1,where k1 is an admissible series of minimal order 1.We study the terms appearing in (rζ)h .The term

r2ν0∂1ν0W
1
≡ rν0∂1ν0 rW

1 (8.10)has an admissible expansion of minimal order 2 (see Lemma 5.4).The term
r2gABξAξB ≡ r2C

ij
ξi ξj (8.11)has an admissible expansion of order 4 be
ause ξi has an admissible expansion of order 1.As for the term

gAB∇̃AξB ≡ C
AB

∇̃AξB ,the Christo�el symbols C̃A
BC of the Riemannian 
onne
tion ∇̃ are equal (re
all that

CB0 = CB1 = C00 = 0) to the tra
e on CO of the Christo�el symbols with the sameindi
es of the spa
etime metri
 C , hen
e denoting by (C)∇ the 
ovariant derivativein the metri
 C
∇̃AξB ≡ (C)∇AΞB.Sin
e the ΞB are the only non-vanishing 
omponents of the ve
tor Ξ, and due to theform 
hosen for the metri
 C we �nd

C
AB(C)∇AΞB = Cαβ (C)∇αΞβ . (8.12)Hen
e the s
alar r2C

AB
∇̃AξB has an admissible expansion of minimal order 2.We have seen that in the �at 
ase

W
1

η ≡ ηαβ Γ̂1
αβ ≡ −

n − 1

r
(8.13)and

∂1W
1

η + τW
1

η ≡

{
n − 1

r2
−

(n − 1)2

r2

}
= −R̃η . (8.14)In the general 
ase we 
ompute

∂1W
1

+
1

2
(τ − W 1)W

1
.Re
all that

τ ≡
n − 1

r
+

tr X

r
;set

W
1
≡ W

1

η + F, with F := (gαβ − ηαβ) Γ̂1
αβ .Using the values of the Christo�el symbols Γ̂1

αβ and the 
omponents of g and η in x
oordinates we �nd
F ≡ −(C

AB
− ηAB)x1sAB ≡ −

1

r
(C

αβ
− ηαβ)ηαβ ≡

≡
1

r
(n + 1 − C

αβ
ηαβ) ≡

1

r
(n + 1 − C

αβ
ηαβ) ≡

1

r
(n − C

ij
ηij) ≡ −

1

r
cij δij ;



134 Y. CHOQUET-BRUHAT ET AL.hen
e
W

1
≡ −

n − 1

r
−

cijδij

r
, ∂1W

1
≡

n − 1

r2
+

(cij − yh∂hcij)δij

r2
,and

1

2
(τ − W

1
)W

1
≡ −

{
n − 1

r
+

trX + cijδij

2r

}{
n − 1

r
+

1

r
cijδij

}
.Using the value of the s
alar 
urvature R̃η of the round sphere Sn−1 of radius r we�nd that

r2

{
∂1W

1
+

1

2
(τ − W

1
)W

1
}

≡ −r2R̃η + Φ,where Φ is an admissible expansion of minimal order 2,
Φ := −yh∂hcijδij − (n − 2)cijδij −

1

2
(n − 1 + chkδhk)(tr X + cijδij).To 
ompute r2R̃ , we use formulas given in [1℄. The formulas (10.33) and (10.37)of [1℄ for a general metri
 in null adapted 
oordinates are

gABRAB ≡ 2(∂1 +Γ
1

11 +τ)
[
(∂1 + Γ

1

11 +
τ

2
)g11 + Γ

1
]
+R̃−2gABΓ

1

1AΓ
1

1B−2gAB∇̃AΓ
1

1B,

R11 ≡ −∂1τ + Γ
1

11τ − χB
A χA

B ,and
S01 ≡ −

1

2
ν0g

ABRAB + R1AνA −
1

2
ν0g

11R11.In the 
ase of the metri
 C , it holds that C01 = 1 , C0A = 0 , C00 = −1 , and
C11 = 1 . Hen
e

(C)Γ1
11 ≡(C) Γ1

1A ≡ 0, (C)Γ1 ≡ −
1

2
(CAB∂1CAB + CAB∂0CAB),and the above formulas redu
e to (re
all that R̃ ≡ (C)R̃):

C
AB (C)RAB ≡ −(∂1 + τ)

[
τ + C

AB
∂0CAB

]
+ R̃,

R11 ≡ −∂1τ − χB
A χA

B ,and
−2 (C)S01 ≡ gABRAB + R11,from whi
h we dedu
e

R̃ ≡ 2∂1τ + τ2 + (∂1 + τ)C
AB

∂0CAB + χB
A χA

B − 2 (C)S01.We have
(C)S01 ≡ −

(
(C)S00 + r−1yi (C)S0i

)
.Sin
e C is an analyti
 metri
 in a neighbourhood of O , (C)Sαβ admit admissibleexpansions and, hen
e r2 (C)S01 also admits an admissible expansion of minimal order 2.Re
all that

τ ≡
n − 1

r
+

tr X

r
and |χ|2 =

|X|2 + 2 trX + n − 1

r2
,
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e
r2{2∂1τ + τ2 + χB

AχA
B} ≡ (n − 1)(n − 2) + 2(n − 1)tr X + 2r∂1tr X + (tr X)2 + |X|2.Finally we remark that ∂0CAB are the non-vanishing 
omponents of the Lie deriva-tive of the metri
 C with respe
t to the ve
tor m with x 
omponents m0 = 1 ,

m1 = mA = 0 , hen
e with y 
omponents m0 = −1 , mi = 0 that
CAB∂0CAB ≡ CαβLmCαβ ≡ Cαβ∂0Cαβ ,hen
e

C
AB

∂0CAB ≡ Cij ∂0Cij ≡ Cij ∂0cijhas an admissible expansion of minimal order 1 and r2(∂1 + τ)C
AB

∂0CAB has an ad-missible expansion of minimal order 2.We have proved that
r2R̃ ≡ r2R̃η + Ψ,where

Ψ ≡ 2(n − 1)tr X + 2r∂1tr X + (tr X)2 + |X|2 + r2(∂1 + τ)Cij ∂0cijhas an admissible expansion of minimal order 2. Hen
e
r2

{
∂1W

1
+

1

2
(τ − W

1
)W

1
+ R̃

}
≡ Φ + Ψ.In 
on
lusion, we have shown that (rζ)h has an admissible expansion of minimalorder 2, the same is therefore true for rζ.8.2. Equation for α := g11 − 1 . The de�nition of ζ gives for α := g11 − 1an equation whi
h reads

r∂1α + r

(
κ +

1

2
τ

)
α +

r

2
(2κ + τ + W 1 − 2ζ) = 0. (8.15)Theorem 8.1. If the basi
 
hara
teristi
 data is indu
ed in a neighbourhood of

O by an analyti
 metri
 C satisfying (3.3) , (3.4) , then Eq. (8.15) admits in thisneighbourhood one and only one solution α whi
h is an admissible series of minimalorder 2 .This implies that g00 + 1 is also an admissible series of minimal order 2 .Proof. Using the de�nition of κ in (8.4), the equation (8.15) reads
r∂1α + r

(
κ +

1

2
τ

)
α + r(ν0∂1ν0 − ζ) = 0,that is,

r∂1α + (α)kα + (α)h = 0, (8.16)with
(α)k := r

(
ν0∂1ν0 −

1

2
W 1

)
, (α)h := r

(
ν0∂1ν0 − ζ

)
. (8.17)Previous results show that this equation is of a form to whi
h Lemma 5.3 applies with

(α)k0 =
n − 1

2
and (α)h of minimal order 2. It has therefore a solution α , admissibleseries of minimal order 2.The identity (8.1) shows the property of g00 + 1 .



136 Y. CHOQUET-BRUHAT ET AL.Theorem 8.2. If in addition to the hypothesis of the previous theorem the givenmetri
 C is near-round at the vertex, then r−2(g00 + 1) is an admissible series ina neighbourhood of the vertex.Proof. The result will follow from the proof that (α)h given in (8.17) is su
h that
r−2(α)h is an admissible series. By previous results, it remains only to prove that r−2(rζ)has an admissible expansion, hen
e that it is so for r−2(rζ)h . We have

r−2(rζ)h :=
1

2

{
r−2(Φ + Ψ) + ν0∂1ν0W

1
−

1

2
gABξAξB + gAB∇̃AξB

}
. (8.18)We 
he
k that if C is near-round at the vertex, the various terms studied above aresu
h that the required 
ondition is satis�ed. Indeed,

ν0∂1ν0W
1
≡ ν0r−1∂1ν0 rW

1has an admissible expansion be
ause it is so for r−1∂1ν0 and rW
1 .

gABξAξB ≡ C
ij

ξi ξj , gAB∇̃AξB ≡ Cαβ (C)∇αΞβhave admissible expansions be
ause ξi does.The assumptions on cij and the identity yh∂hr ≡ r show that
yh∂hcijδij ≡ r2(yh∂hd

ij
δij + 2d

ij
δij),hen
e r−2Φ , and r−2Ψ , with Φ and Ψ given above have admissible expansions.It remains to show the property for

(C)S01 ≡ −((C)S00 + r−1yi (C)S0i).Sin
e C is an analyti
 metri
 in a neighbourhood of O , (C)S00 has an admissibleexpansion. Denoting by (C)Kij ≡ −
1

2
∂0Cij the se
ond fundamental form of C relativeto the sli
ing of Rn+1 by y0 = 
onstant, we know that6,

(C)S0i ≡ ∂i tr(C)K −(C) ∇j(C
jh (C)Kih).We have

(C)∇j(C
jh(C)Kih) ≡ Cjh (∂j

(C)Kih − Ck
ji

(C)Kik − C
k(C)
jh Kjk).The fun
tions (C)Kij are analyti
 and the Christo�el symbols Ck
ji are produ
ts by y0of analyti
 fun
tions, while elementary 
omputations give

−2yiCjh ∂j
(C)Kih ≡ yiCjh ∂j∂0Cih ≡ Cjh {∂j∂0(y

icih) − ∂0cjh},hen
e using yicih = 0 and δjhcjh = (y0)2Z . We dedu
e from these results that
r−1yi(C)S0i also has an admissible expansion.

6See for instan
e [7, Chapter 6℄.
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lusions9.1. An existen
e theorem. We have shown that when the metri
 C given by(3.3) whi
h indu
es on CO the basi
 
hara
teristi
 data g̃ (i.e. gAB ≡ CAB ≡ C̃AB)is analyti
, then the fun
tions ν0 , νi , g00 have admissible expansions. We have shownthat if moreover C is near-round at the vertex (de�nition 6.2), then the fun
tions
r−2(ν0 − 1) , r−1νi , and r−2(g00 + 1) have also admissible expansions. These resultsimply the following theorem (the notations are those of Se
tion 1):Theorem 9.1. If the metri
 C given by (3.3) , (3.4) whi
h indu
es the basi
 
har-a
teristi
 data on the 
one CT

O is smooth everywhere, and moreover analyti
 and near-round in a neighbourhood of the vertex, then there exists a number T0 > 0 su
h that thewave-gauge redu
ed va
uum Einstein equations with 
hara
teristi
 initial determined by
C and the solution of the wave-map gauge 
onstraints have a solution in Y T0

O whi
hindu
es on CT0

O the same quadrati
 form as C .Proof. It results from the formulae
g00 ≡ g00, g0i ≡ −{g00 + ν0)}r

−1yi − νi, with yiνi ≡ 0, (9.1)
gij − δij ≡ {g00 + 1 + 2(ν0 − 1)}r−2yiyj + r−1(yiνj + yjνi) + cij , (9.2)and the theorems of previous se
tions that g00 + 1 , g0i , and gij − δij have admissibleexpansions, hen
e are the tra
e on CO of analyti
 fun
tions. We apply the Cagna
 �Dossa theorem.This theorem and the results of [1℄ lead then to the following su�
ient 
onditionsfor the existen
e of a solution of the full Einstein equations.Theorem 9.2. If the metri
 C given by (3.3) whi
h indu
es the basi
 
hara
teristi
data on the 
one CO is smooth, and analyti
 and near-round at the vertex, there existsa va
uum Einsteinian spa
etime (Y T0

O , g) whi
h indu
es on CT0

O the same quadrati
form as C . The solution is lo
ally geometri
ally unique.JMM was supported by the Fren
h ANR grant BLAN07-1_201699 entitled �LISAS
ien
e�, and also in part by the Spanish MICINN proje
t FIS2009-11893. PTC wassupported in part by the Polish Ministry of S
ien
e and Higher Edu
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