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UDK 530.12AN EXISTENCE THEOREM FOR THE CAUCHYPROBLEM ON THE LIGHT-CONEFOR THE VACUUM EINSTEIN EQUATIONSWITH NEAR-ROUND ANALYTIC DATAY. Choquet-Bruhat, P.T. Chru�siel, J.M. Mart�in-Gar�iaAbstratA lass of harateristi general relativisti initial data satisfying a near-roundnessondition at the tip of a light-one is introdued. It is shown that for any suh analyti datathere exists a orresponding solution of the vauum Einstein equations de�ned in a futureneighborhood of the vertex.Key words: harateristi Cauhy problem on a light-one, vauum Einstein equations.IntrodutionIn the paper [1℄ we studied the Cauhy problem for the Einstein equations withdata on a harateristi one CO . We used the tensorial splitting of the Rii tensor ofa Lorentzian metri g on a manifold V as the sum of a quasidiagonal hyperboli systemating on g and a linear �rst order operator ating on a vetor H, alled the wave-gauge vetor. The vetor H vanishes if g is in wave gauge; that is, if the identity mapis a wave map from (V, g) onto (V, ĝ) , with ĝ being some given metri, whih we havehosen to be Minkowski. The data needed for the redued PDEs is the trae, whih wedenote by g , of g on CO . However, beause of the onstraints, the intrinsi, geometri,data is a degenerate quadrati form g̃ on CO . Given g̃ , the trae g is determinedthrough a hierarhial system of ordinary di�erential equations1 along the rays of CO ,dedued from the ontration of the Einstein tensor with a tangent to the rays, whihwe have written expliitly and solved. We have alled these equations the wave mapgauge onstraints and shown that they are neessary and su�ient onditions for thesolutions of the hyperboli system to satisfy the full Einstein equations. We have alsoproved loal geometri uniqueness of a solution g of the vauum Einstein equationsinduing a given g̃ (for details see [1℄). Further referenes to previous works on theproblem at hand an be found in [1℄.Existene theorems known for quasilinear wave equations with data on a harater-isti one give also existene theorems for the Einstein equations, if the initial data isMinkowski in a neighbourhood of the vertex. For more general data problems arise dueto the apparent disrepany between the funtional requirements on the harateristidata of the hyperboli system and the properties of the solutions of the onstraints,due to the singularity of the one CO at its vertex O . The aim of this work is to makeprogress towards resolving this issue, and provide a su�ient ondition for the validityof an existene theorem in a neighbourhood of O under onditions alternative to thefast-deay onditions of [4℄. More preisely, we prove that analyti initial data arising

1For previous writing of these equations in the ase of two interseting surfaes in four-dimensionalspaetime, see Rendall [2℄ and Damour � Shmidt [3℄.



116 Y. CHOQUET-BRUHAT ET AL.from a metri satisfying (3.3), (3.4) together with the �near-roundness� ondition ofDe�nition 6.1 lead to a solution of the vauum Einstein equations to the future of thelight-one. 1. Cauhy problem on a harateristi onefor quasilinear wave equationsThe redued Einstein equations in wave-map gauge and Minkowski target area quasi-diagonal, quasi-linear seond order system for a set v of salar funtions vI ,
I = 1, . . . , N , on R

n+1 of the form
Aλµ(y, v)D2

λµv + f(y, v, Dv) = 0, y = (yλ) ∈ R
n+1, n ≥ 2, f = (f I). (1.1)If the target is the Minkowski metri and takes in the oordinates yα the anonialform

η ≡ −(dy0)2 +

n∑

i=1

(dyi)2, (1.2)then,
Dv =

∂vI

∂yλ
, D2

λµv =
∂2vI

∂yλ∂yµ
, λ, µ = 0, 1, . . . , n. (1.3)We will underline omponents in these yα oordinates.In the ase of the Einstein equations the funtions Aλµ ≡ gλµ do not depend diretlyon y , they are analyti in v in an open set W ⊂ R

N . For v ∈ W the quadrati form gλµis of Lorentzian signature. The funtions f I are analyti in v ∈ W and Dv ∈ R
(n+1)N ,they do not depend diretly on y in vauum.The harateristi one CO of vertex O for a Lorentzian metri g is the set overedby future direted null geodesis issued from O . We hoose oordinates yα suh thatthe oordinates of O are yα = 0 and the omponents Aλµ(0, 0) take the diagonalMinkowskian values, (−1, 1, . . . , 1) . If v is C1,1 in a neighbourhood U of O and takesits values in W there is an eventually smaller neighbourhood of O , still denoted U ,suh that CO ∩ U is an n dimensional manifold, di�erentiable exept at O , and thereexist in U oordinates y := (yα) ≡ (y0 , yi , i = 1, . . . , n) in whih CO is representedby the equation of a Minkowskian one with vertex O ,

CO := {r − y0 = 0}, r :=
{∑

(yi)2
}1/2

, (1.4)and the null rays of CO represented by the generators of the Minkowskian one, i.e.tangent to the vetor ℓ with omponents ℓ0 = 1 , ℓi = r−1yi . Inspired by this result andfollowing previous authors we will set the Cauhy problem for the equations (1.1) ona harateristi one as the searh of a solution whih takes given values on a manifoldrepresented by an equation of the form (1.4), that is, a set v suh that
v = ϕ, (1.5)where overlining means restrition to CO . The funtion ϕ takes its values in W andis suh that ℓ is a null vetor for A , i.e. when A ≡ g

ℓµℓνgµν = g00 + 2r−1yig0i + r−2yiyjgij = 0. (1.6)We use the following notations:
CT

O := CO ∩ {0 ≤ t := y0 ≤ T },

YO := {y0 > r} , the interior of CO,

Y T
O := YO ∩ {0 ≤ y0 ≤ T }.



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 117and we set
Στ := CO ∩ {y0 = τ}, di�eomorphi to Sn−1 ,

Sτ := YO ∩ {y0 = τ}, di�eomorphi to the ball Bn−1 .We reall the following theorem, whih applies in partiular to the redued Einsteinequations.Theorem 1.1. Consider the problem (1.1) , (1.5) . Suppose that:1. There is an open set U × W ⊂ R
n+1 × R

N , Y T
O ⊂ U where the funtions gλµare smooth in y and v . The funtion f is smooth2 in y ∈ U and v ∈ W and in

Dv ∈ R
(n+1)N .2. For (y, v) ∈ U ×W the quadrati form gλµ has Lorentzian signature; it takes theMinkowskian values for y = 0 and v = 0 . It holds that ϕ(O) = 0 .3a. The funtion ϕ takes its values in W . The one CT

O is null for the metri
gλµ(y, ϕ) .3b. ϕ is the trae on CT

O of a smooth funtion in U .Then there is a number 0 < T0 ≤ T < +∞ suh that the problem (1.1) , (1.5) hasone and only one solution v in Y T0

O whih an be extended by ontinuity to a smoothfuntion de�ned on a neighbourhood of the origin in R
n+1 .If ϕ is small enough in appropriate norms, then T0 = T .2. Null adapted oordinatesIt has been shown (see [1℄ and referenes therein) that the onstraints are easier tosolve in oordinates xα adapted to the null struture of CO , de�ned by

x0 = r − y0, x1 = r and xA = µA(r−1yi), (2.1)where A = 2, . . . , n , loal oordinates on the sphere Sn−1 , or angular polar oordinates.Conversely
y0 = x1 − x0, yi = rΘi(xA) with n∑

i=1

Θi(xA)2 = 1.In the x oordinates the Minkowski metri (1.2) reads
η ≡ −(dx0)2 + 2dx0dx1 + (x1)2sn−1, (2.2)with

sn−1 := sABdxAdxB , the metri of the round sphere Sn−1.Reall that in these oordinates the non zero Christo�el symbols of the Minkowskimetri are, with SA
BC , the Christo�el symbols of the metri s ,

Γ̂B
1A ≡

1

x1
δB
A , Γ̂B

AC ≡ SB
AC , Γ̂0

AB ≡ −x1sAB , Γ̂1
AB ≡ −x1sAB . (2.3)In the general ase, the null geodesis issued from O have still equation x0 = 0 ,

xA =onstant, so that ℓ :=
∂

∂x1
is tangent to those geodesis. The trae g on CO ofthe spaetime metri g that we are going to onstrut is suh that g11 = 0 and g1A = 0;we use the notation

g ≡ g00(dx0)2 + 2ν0dx0dx1 + 2νAdx0dxA + gABdxAdxB , (2.4)
2Smooth means Cm , with m being some integer depending on the problem at hand and theonsidered funtion. In partiular C∞ and Cω (real analyti funtions) are smooth.



118 Y. CHOQUET-BRUHAT ET AL.We emphasize that our assumption that g is given by (2.4) is no geometri restritionfor a metri g to have suh a trae on a null one x0 = 0 .The Lorentzian metri g indues on CO a degenerate quadrati form g̃ whih readsin oordinates x1 , xA

g̃ ≡ g̃ABdxAdxB , (2.5)i.e. g̃11 ≡ g̃1A ≡ 0 while g̃ABdxAdxB ≡ gABdxAdxB is an x1 -dependent Riemannianmetri on Sn−1 indued on eah Σt by g̃ , we denote it by g̃Σ . While g̃ is intrinsiallyde�ned, it is not so for g00 , ν0 , νA , they are gauge-dependent quantities.Note that g̃ has a more ompliated expression in oordinates yi on CO . Sine theinlusion mapping of CO in the oordinates yα is y0 = r, hene ∂y0

∂yi
=

yi

r
, it holdsthat

g̃ ≡ g̃ijdyidyj , with g̃ij ≡ r−2yiyjg00 + r−1(yjg0i + yig0j) + gij . (2.6)For Theorem 1.1, to apply to the wave-gauge redued Einstein equations, the om-ponents of the initial data in the y oordinates must be the trae on CO of smoothspaetime funtions. The solution of the redued equations satisfy the full Einstein equa-tions if and only if these initial data satisfy the wave-map gauge onstraints. We haveonstruted in [1℄ these data as solutions of ODE in adapted null x oordinates, whihare admissible oordinates for R
n+1 only for r > 0 . The hange of oordinates from

x to y , smooth for r > 0 , is realled below; the omponents of a spaetime tensor Tin the oordinates x are denoted by Tαβ , while in the oordinates y they are denotedby Tαβ .Lemma 2.1. It holds that:
T00 ≡ T00, T11 ≡ T00 + 2

yi

r
T0i +

yi

r

yj

r
Tij , T01 ≡ −(T00 + T0iΘ

i),

T0A ≡ −r
∂Θi

∂xA
T0i, T1A ≡ r

∂Θi

∂xA
(T0i + ΘjTij), TAB ≡ Tijr

2 ∂Θi

∂xA

∂Θj

∂xB
.Conversely, if T1A ≡ T11 ≡ 0 , then

T00 ≡ T00, T0i ≡ −(T00 + T01)r
−1yi − T0A

∂xA

∂yi
,

Tij = (T00 + 2T01)r
−2yiyj + T0Ar−1(yi ∂xA

∂yj
+ yj ∂xA

∂yi
) + TAB

∂xA

∂yi

∂xB

∂yj
.Hereinafter, we shall often abbreviate partial derivatives as follows

∂0 ≡
∂

∂x0
, ∂1 ≡

∂

∂x1
, ∂A ≡

∂

∂xA
,

∂0 ≡
∂

∂y0
, ∂i ≡

∂

∂yi
.3. Charateristi data3.1. Basi (intrinsi) harateristi data. The basi data on a harateristione for the Einstein equation is a degenerate quadrati form. We will de�ne this dataas the degenerate quadrati form C̃ indued by a given Lorentzian spaetime metri

C whih admits this one as a null one. By CO , as before, we denote the manifold
x0 ≡ r − y0 = 0 . If we take the yi as oordinates on CO , it holds that, see (2.6),

C̃ ≡ C̃ijdyidyj with C̃ij ≡ Cij + r−1(yjCi0 + yiCj0) + r−2yiyjC00 , (3.1)



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 119where Cαβ are the omponents in the y oordinates of the trae C of C on CO (notto be mistaken with the indued quadrati form C̃) . Assuming that CO is a null onefor C with generators ℓ
0

= 1 , ℓ
i

=
yi

r
, (1.6) implies that the quadrati form C̃ isdegenerate,

yi

r

yj

r
C̃ij ≡ C00 + 2

yi

r
C0i +

yi

r

yj

r
Cij = 0. (3.2)Lemma 3.1. Two spaetime metris C and C′ with omponents linked by

Cij
′

:= Cij + r−1(aiyj + ajyi) + r−2αyiyj , Ci0
′

:= Ci0 − ai, C00
′

:= C00 − α,with arbitrary ai and α indue on CO the same quadrati form C̃ , i.e. C̃ij

′

≡ C̃ij .Proof. Elementary alulation using the identity written above.In what follows, to simplify omputations we will make the restritive ondition that
C0i = 0, C00 = −1, i.e. C := −(dy0)2 + Cijdyidyj . (3.3)The set {y0 = r} is then a null one for the metri C, with generator ℓ0 = 1, ℓi =

yi

r
,if and only if

yi Cij = yj (3.4)(ompare [5℄).The general relation between omponents in oordinates y and adapted null oor-dinates x1 , xA gives
C̃ ≡ C̃ABdxAdxB with C̃AB ≡ CAB, C̃1A = C̃11 = 0,with C̃AB being the omponents of a x1 ≡ r -dependent Riemannian metri on thesphere Sn−1

−

(
C00 +

yi

r
C0i

)
≡ C01 = 1, C0A ≡ −

∂yi

∂xA
C0i = 0, C00 ≡ C00 = −1.This metri C is also suh that

C00 ≡ C0A ≡ C1A ≡ 0, C01 ≡ C11 ≡ 1,while C
AB are the elements of the inverse of the positive de�nite quadrati form withomponents CAB .3.2. Full harateristi data. We have seen in [1℄ that the trae g ofa Lorentzian metri g satisfying the redued Einstein equations is a solution of thefull Einstein equations if and only if it satis�es the wave map gauge onstraints. Theseonstraints Cα = 0 are dedued in vauum from the identity satis�ed by the Einsteintensor S :

ℓ
β

Sαβ ≡ Cα + Lαwhere Lα is linear and homogeneous in the wave gauge vetor H while Cα depends onlyon g and its derivatives among CO and the given target ĝ . Given g̃ , i.e. gAB ≡ CAB ,
g1A = g11 = 0 , the remaining omponents ν0 ≡ g01 , νA ≡ g0A , g00 are determinedby the onstraints and limit onditions at the vertex O whih an always be satis�ed



120 Y. CHOQUET-BRUHAT ET AL.by hoie of oordinates (see [1℄). The Cagna �Dossa theorem applies to omponentsin the y oordinates. Lemma 2.1 gives
g00 ≡ g00, g0i ≡ −(g00 + ν0)r

−1yi − νi, with νi := νA
∂xA

∂yi
, (3.5)

gij = (g00 + 2ν0)r
−2yiyj + r−1(yiνj + yjνi) + gAB

∂xA

∂yi

∂xB

∂yj
,while, for the hosen metri C and gAB ≡ CAB

Cij ≡ r−2yiyj + gAB

∂xA

∂yi

∂xB

∂yj
.Therefore,

gij = Cij + (g00 + 2ν0 − 1)r−2yiyj + r−1(yiνj + yjνj). (3.6)4. Null seond fundamental formWe have de�ned in I the null seond fundamental form of (CO, g̃) as the tensor χon CO de�ned by the Lie derivative3 with respet to the vetor ℓ of the degeneratequadrati form g̃ , namely in the oordinates x1, xA :

χAB :=
1

2
(Lℓg̃)AB ≡

1

2
∂1gAB, (4.1)

χA1 :=
1

2
(Lℓg̃)A1 = 0, χ11 :=

1

2
(Lℓg̃)11 = 0. (4.2)In view of the appliation of the Cagna �Dossa theorem, we look for smooth ex-tensions. We de�ne a smooth spaetime vetor �eld L , vanishing at O and with traeolinear with ℓ =

∂

∂x1
on CO , by its omponents in the xα and yα oordinatesrespetively:

L := yλ ∂

∂yλ
≡ x0 ∂

∂x0
+ x1 ∂

∂x1
, hene L ≡ x1ℓ ≡ rℓ.We assume that the metri C is smooth in U , a neighbourhood of O in R

n+1 , i.e.its omponents Cij are of lass Cm , with m as large as neessary in the onsideredontext, funtions of the yα . We de�ne a symmetri Cm−1 2-tensor X , identially zeroin the ase where C ≡ η , the Minkowski metri, by:
X :=

1

2
LLC − C. (4.3)In y oordinates one has4, using yiCij = yj

X00 ≡ X0i ≡ 0, Xij ≡
1

2
{y0∂0Cij + yh∂hCij}. (4.4)with

yi∂0Cij = 0,

3Reall that in arbitrary oordinates xI the Lie derivative reads
(LℓC̃)HK ≡ ℓI∂I C̃HK + C̃HI∂KℓI + C̃KI∂HℓI .

4Reall that we underline omponents in the y oordinates and overline restritions to CO.



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 121and, using ∂hyi = δi
h

yiyh∂hCij = yh∂h(yiCij) − yhCij∂hyi = 0, (4.5)whih imply
LiXij ≡ yiXij = 0. (4.6)In x oordinates we �nd, using the values of the omponents C0α and C1α of themetri C , that the tensor X obeys the key properties
Xµ0 = 0, Xµ1 = 0, (4.7)while

XAB ≡
1

2
(x0∂0CAB + x1∂1CAB) − CAB. (4.8)Hene XAB redues on the null one CO to

XAB ≡
1

2
x1∂1CAB − CAB ≡ x1χAB − gAB. (4.9)By X we still denote the mixed Cm−1 tensor on spaetime obtained from X by liftingan index with the ontravariant assoiate of C; its y omponents are the Cm−1 fun-tions

2Xγ
α ≡ Cγβ {y0∂0Cαβ + yi∂iCαβ},hene C being given by (3.3),

Xj
i ≡

1

2
Cjh {y0∂0Cih + yk∂kCih}, X0

i ≡ Xj
0 ≡ X0

0 ≡ 0, (4.10)and
Xj

i Lj ≡ 0, (4.11)where the index of L has been lowered with the metri C , so that this is equivalent to(4.6). In x oordinates XC
A are the only non-vanishing omponents of X . Their traeson CO are

X
C

A ≡
1

2
x1gBC∂1gAB − δC

A ≡ x1χC
A − δC

A ,hene
χC

A :=
1

2
gBC∂1gAB =

1

x1
(X

C

A + δC
A), (4.12)and

τ :=
1

2
gAB∂1gAB =

tr X

x1
+

n − 1

x1
. (4.13)The trae of the tensor X is the Cm−1 funtion

trX ≡ Xα
α ≡ Xλ

λ ≡ CABXAB. (4.14)On the light one CO it holds that
trX ≡ X

i

i ≡ gABXAB ≡
x1

2
gAB ∂1gAB − (n − 1), (4.15)

|χ|2 := χC
AχA

C ≡
1

(x1)2

{
X

α

β X
β

α + 2trX + n − 1
}

. (4.16)



122 Y. CHOQUET-BRUHAT ET AL.5. A riterium: admissible seriesTo show that the integration of the onstraints, whih appear as ODE in x1 , leadsto traes on the one of smooth spaetime funtions, we shall use the following lemma,introdued by Cagna (unpublished) for formal series, but used here for real analytifuntions, a speial lass Cω of C∞ funtions.Lemma 5.1. A funtion is the trae f on CT
O of a spaetime funtion f analytiin U ∩Y T

O , U is a neighbourhood of O , if and only if it admits on U ∩CT
O a onvergentexpansion of the form

f ≡ f0 +

∞∑

p=1

fpr
p (5.1)with

fp ≡ fp,i1...ip
Θi1 . . .Θip + f

′

p,i1...ip−1
Θi1 . . . Θip−1 , (5.2)where f0 , fp,i1...ip

and f ′

p,i1...ip−1
are numbers. Suh a series is alled an admissibleseries. A oe�ient fp of the form (5.2) is alled an admissible oe�ient of order p .Proof. If f is analyti it admits an expansion in Taylor series

f ≡

∞∑

p=0

fα1...αp
yα1 . . . yαp , fα1...αp

:=
1

p!

∂pf

∂yα1 . . . ∂yαp
(O). (5.3)One goes from the formulas (5.3) to (5.1), (5.2) by replaing yi by rΘi and y0 by r ,and onversely, in Ω ∩ CO or in Ω .Remark 5.1. The identity (5.1) is equivalent to saying that f is of the form

f = f1 + rf2 , with f1 and f2 analyti funtions of yi .We say that an admissible series is of minimal order q if the oe�ients fp areidentially zero for p < q .Proposition 5.1. If the metri C is analyti and satis�es the onditions (3.3) ,
(3.4) then the funtions trX and |X |2 are admissible series of minimal orders 2 and 4respetively.The following lemmas will be very useful when integrating the onstraints.Lemma 5.2. If fp and hq are admissible oe�ients of order p and q respetively,then fp + hp and fphq are admissible oe�ients of order p and p + q respetively.Proof. Elementary omputation of (fp + hp)r

p and fphqr
p+q replaing rΘi by yiand r2 by Σi(y

i)2 .Suppose that f and h are admissible series of minimal orders qf and qh . The fol-lowing are easy-to-hek onsequenes of the lemma:1) fh is an admissible series of minimal order qf + qh ;2) if qf = qh , then f + h is an admissible series of the same minimal order;3) if f(0) 6= 0 and qf = 0 , then 1/f is an admissible series of also minimal order 0;4) r∂1f is an admissible series of minimal order qf , unless qf = 0 and then it hasa larger minimal order.



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 123Lemma 5.3. If k and h are admissible series with h of minimal order qh ≥ 1 andthe onstant k0 ≡ k(0) ≥ 0 , then the ODE
r∂1f + kf = h (5.4)admits one and only one solution f whih is also an admissible series of the sameminimal order qh as h . The result extends to qh = 0 if k0 > 0 .Proof. Expand

f =

∞∑

p=0

fpr
p, k =

∞∑

p=0

kpr
p, h =

∞∑

p=qh

hpr
p, (5.5)hene

r∂1f =

∞∑

p=1

pfpr
p,plug into the ODE (5.4) and proeed to identi�ations.We obtain by equating to zero the onstant term

k0f0 = h0, (5.6)a relation whih an be satis�ed when h0 6= 0 only when k0 6= 0 . We �rst onsider thease where h0 = 0 , i.e. qh ≥ 1 , and take f0 = 0 . We get the suessive equalities
f1 + k0f1 = h1, i.e. f1 =

h1

1 + k0
, (5.7)and the reurrene relation, using f0 = 0 ,

(p + k0)fp +

p−1∑

q=1

kqfp−q = hp . (5.8)For p < qh , we have hp = 0 and the reurrene relation gives fp = 0 . Therefore, theleading admissible oe�ients of f and h are always related by
fqh

=
hqh

qh + k0
. (5.9)We assume the series for k and h onverge for all diretions Θi and radius cr < 1 ;that is, we assume that there exists a onstant c suh that

|kp| < cp, and |hp| < cp. (5.10)Sine k0 ≥ 0 we have
|f1| ≤ |

h1

1 + k0
| <

c

1 + k0
≤ c.Assume now that

|fp| < cp for p < p0, (5.11)then from the iteration we get, for larger values of p , the inequality
|fp| <

p

p + k0
cp ≤ cp . (5.12)



124 Y. CHOQUET-BRUHAT ET AL.The bounds on |fp| show that the series for f also onverges. It is an admissible seriesof minimal order qf = qh .When qh = 0 , i.e. h0 6= 0 and k0 6= 0 we take
f0 =

h0

k0and we set
F = f − f0.It satis�es the equation

r∂1F + kF = H, with H := h − kf0. (5.13)We have
H0 = 0and we apply the previous result to F .Corollary 5.1. If f and h are admissible series related by (5.4) and p + k0 > 0 ,and r−ph is an admissible series then r−pf is an admissible series of the same minimalorder.Proof. Set f = rpφ . If f satis�es (5.4) then φ satis�es the equation

r∂1φ + (p + k)φ = r−ph.Remark 5.2. The following example is a ase of a di�erential equation of the form(5.4) with qh = 1 , but k0 is a negative integer, whih does not admit as a solutionan admissible series. Let
k =

1

r − 1
= −1 − r − r2 − r3 − · · · , h =

r

1 − r2
= r + r3 + r5 + · · · ,We an solve the ODE expliitly,

f =
r

r − 1

(
f∞ + log

r + 1

r

)with f∞ an arbitrary integration onstant, whih annot be expanded in powers of rnear 0 . However if we hange k to r/(r−1) , then k0 hanges from −1 to 0 , the problemdisappears. Remark that the problem also disappears if we hange h to r2/(1 − r2) ,i.e. qh = 2 .In what follows, we will assume the metri C , of the form (3.3) and satisfying (3.4)is analyti, takes Minkowskian values at the vertex O , and is suh that the omponentsof its trae on CO satisfy
Cij ≡ δij + cij , C

ij
≡ δij + cij , (5.14)where cij and cij have admissible expansions of minimal order 2 while ∂0 cih hasan admissible expansion of minimal order 1. The de�nition (4.10) implies then that

X
j

i ≡
1

2
Cjh

{
r ∂0 cih + yk ∂k cih

} (5.15)has an admissible expansion of minimal order 2.



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 1256. The �rst wave-map gauge onstraintWe have dedued our �rst onstraint(see [1℄) from the identity
ℓ
β

S1β ≡ R11 ≡ −∂1τ + ν0∂1ν0τ −
1

2
τ(Γ1 + τ) − χB

A χA
B, (6.1)with

Γ1 ≡ W 1 + H1, W 1 ≡ −ν0 gABrsAB. (6.2)Hene for the �rst wave-map gauge onstraint in vauum we have the equation
C1 := −∂1τ + ν0∂1ν0τ −

1

2
τ(τ − ν0 gABrsAB) − χB

A χA
B = 0. (6.3)When gAB is known this equation reads as a �rst order di�erential equation for ν0

ν0∂1ν0 = τ−1∂1τ +
1

2
(τ − ν0 gABrsAB) + τ−1χB

A χA
B. (6.4)It an be written as a linear equation for ν0 − 1 ,

∂1ν
0 + a(ν0 − 1) + b = 0, (6.5)with

a := τ−1∂1τ +
1

2
τ + τ−1|χ|2, |χ|2 ≡ χB

A χA
B, (6.6)

b := a −
1

2
gABrsAB. (6.7)In the �at ase gAB = ηAB , τ =

n − 1

r
, χB

A =
1

r
δB
A the equation redues to:

∂1ν
0 +

1

2
(ν0 − 1)

n − 1

r
= 0;it has one solution tending to 1 when r tends to zero, ν0 = 1 . In the general ase (6.5)reads, with f := ν0 − 1 ,

r∂1f + kf + h = 0, k := ar, h := br = ar −
1

2
gABr2sAB. (6.8)Reall that x1 ≡ r and

χC
A ≡

1

2
gBC∂1gAB =

1

r
(X

C

A + δC
A). (6.9)Hene

|χ|2 =
|X|2 + 2trX + n − 1

r2
,

τ =
tr X

r
+

n − 1

r
, τ−1 =

r

n − 1 + trX
, (6.10)where tr X is an admissible series of minimal order 2. The funtion {

1 +
1

n − 1
trX

}
−1is the trae of a Cω funtion as long as 1 +

1

n − 1
tr X does not vanish, hene alwaysin a neighbourhood of O sine trX vanishes there.
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∂1τ ≡ −

n − 1 + trX

r2
+

∂1tr X

r
, (6.11)

τ−1∂1τ ≡ −
1

r
+

∂1tr X

n − 1 + trX
. (6.12)Also we an write

τ−1|χ|2 ≡
|X|2 + 2trX + n − 1

r(n − 1 + tr X)
≡

|X|2 + tr X

r(n − 1 + tr X)
+

1

r
. (6.13)Finally omputation gives

k ≡ ar ≡
n − 1

2
+

r∂1tr X + tr X + |X|2

n − 1 + tr X
. (6.14)We see that in a neighbourhood of O , k−

n − 1

2
admits an admissible developmentof minimal order 2.On the other hand, sine in the x oordinates η1α = 0 , r2sAB = ηAB and we haveassumed that C

00
= C

0A
= 0 , C

01
= 1 , gAB = C

AB , we have
gABr2sAB ≡ gABηAB ≡ C

AB
ηAB ≡ C

αβ
ηαβ − 2.Hene using now the values of Cαβ

1

2
gABr2sAB ≡

1

2
(1 + Cijδij − 2) ≡

n − 1

2
+

1

2
cijδij , (6.15)where cijδij has an admissible development of minimal order 2 . We onlude that

h ≡
r∂1tr X + tr X + |X|2

(n − 1 + tr X)
−

1

2
cijδij (6.16)admits also suh a development. Lemma 5.3 applies, and we have proved the followingtheorem:Theorem 6.1. If the basi harateristi data are indued on CO by a Cω (i.e.analyti) metri of the form (3.3) , hene satisfying (2.4) , then ν0−1 admits an admis-sible expansion of minimal order 2 , hene is the trae in a neighbourhood of O of a Cωspaetime funtion. Then ν0 = N

0 with N0 ∈ Cω and N0(O) = 1 . In a neighbourhoodof O , it holds that ν0 = N0 , N0 = (N0)−1 .In the expression of the harateristi initial data in y oordinates there appears
r−2(ν0 − 1) , whih, though being ontinuous on eah ray as r tends to zero, is notan admissible expansion. We introdue the following de�nition.De�nition 6.1. A metri C satisfying (3.3), (3.4) is said to be near-round at thevertex if there is a neighbourhood of O where r−1cij ≡ dij and r−2cijδ

ij ≡ D with
dij and D being admissible series.If C is near-round at the vertex, Cij has an analyti extension Cij of the form,with dij being analyti extension of dij ,

Cij ≡ δij + cij , cij ≡ y0dij ,
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∂hCij ≡ 0 for y0 = 0, hene ∂hCij ≡ 0 for y0 = 0,and

Cij ≡ δij + y0dij ,with dij being some analyti funtions. Hene
Cijcij ≡ (y0)2{D + dijdij}.Using the de�nition of Xαβ we see that if C is near-round at the vertex, then

Xαβ ≡ y0 Yαβ , with Yij :=
1

2
{dij + y0∂0dij + yh∂hdij}, Yi0 ≡ Y00 ≡ 0. (6.17)Hene

trX ≡ y0 tr Y, with trY ≡ Cij Yij ≡
1

2
Cij {dij + y0∂0dij + yh∂hdij}.An elementary omputation shows that tr Y is of the following form (with Z beingan analyti funtion)

trY ≡ y0Z, hene tr X ≡ (y0)2Z.On the other hand,
X i

j ≡ Cih Xjh = y0Cih Yjh := y0Y i
j ,therefore,

|X |2 ≡ X i
j Xj

i ≡ (y0)2Y i
j Y j

i .We dedue from these formulas that if C is near-round at the vertex then
r−2 tr X ≡ Z and r−2 |X|2 ≡ |Y |2 are admissible series.Theorem 6.2. A su�ient ondition for r−2(ν0 − 1) , with ν0 solution of the �rstwave-map gauge onstraint, to have an admissible expansion is that the Cω metri Cgiven by (3.3) whih indues the basi harateristi data be near-round at the vertex.Proof. Sine f := ν0 − 1 satis�es Eq. (6.8), φ := r−2(ν0 − 1) satis�es

r∂1φ + (2 + k)φ + r−2h = 0. (6.18)The expression (6.16) shows that for a metri C round at the vertex r−2h admitsan admissible development, the appliation of Corollary 5.1 gives the result.7. The CA onstraintWe have written in [1℄ the CA onstraint in vauum as
CA = −

1

2
(∂1ξA + τξA) + ∇̃BχB

A −
1

2
∂Aτ + ∂A

(
1

2
W 1 + ν0∂1ν

0

)
,where ξA is de�ned as

ξA := −2ν0∂1νA + 4ν0νCχC
A +

(
W

0
−

2

r
ν0

)
νA + gABgCD(SB

CD − Γ̃B
CD). (7.1)



128 Y. CHOQUET-BRUHAT ET AL.Using the �rst onstraint we �nd
ν0∂1ν

0 +
1

2
W 1 = −a, (7.2)where a is given by (6.14), hene

∂A

(
a +

1

2
τ

)
≡ r−1∂AF (tr X, |X |2),where

F (tr X, |X |2) :=
r∂1tr X + tr X + |X|2

n − 1 + tr X
+

1

2
tr X ≡

≡
r∂1tr X + 1

2{(n + 1)trX + |tr X|2} + |X |2

n − 1 + trXadmits in a neighbourhood of O an admissible development of minimal order 2.We have:
CA ≡ −

1

2
(∂1ξA + τξA) + ∇̃BχB

A − r−1∂AF (tr X, |X |2) = 0. (7.3)7.1. Equations for ξA . We set ξ1 = ξ0 = 0 on the one and we de�ne ξi by
ξi :=

∂xα

∂yi
ξα ≡

∂xA

∂yi
ξA. (7.4)It holds that

yi ξi = 0, (7.5)beause (reall that x1 = r , yi ≡ rΘi(xA))
yi ∂xA

∂yi
≡ r

∂yi

∂x1

∂xA

∂yi
≡ rδA

1 = 0,
∂

∂r

∂yi

∂xA
≡

1

r

∂yi

∂xA
. (7.6)We have

∂yi

∂xA
ξi ≡

∂yi

∂xA

∂xB

∂yi
ξB ≡ δB

A ξB ≡ ξA. (7.7)The equation (7.7) implies that
∂1ξA ≡

(
∂

∂r
ξi + r−1ξi

)
∂yi

∂xA
,hene

CA ≡ −
1

2

∂yi

∂xA

{
∂

∂r
ξi + ξi(r

−1 + τ)

}
+ ∇̃BχB

A − r−1∂AF (tr X, |X |2) = 0.Sine trX ≡ trX is a salar funtion and the equation of CO in the x oordinates is
x0 = 0 and y0 does not depend on xA , it holds that

∂

∂xA
trX ≡

∂

∂xA
tr X ≡

∂yi

∂xA

∂

∂yi
tr X ≡

∂yi

∂xA

∂

∂yi
tr X,
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∂

∂xA
|X |2 ≡

∂yi

∂xA

∂

∂yi
|X |2,

∂

∂xA
F (tr X, |X |2) ≡

∂yi

∂xA

∂

∂yi
F (tr X, |X |2).We now ompute, with ovariant derivatives ∇̃ taken in the Riemannian metri

gAB ≡ CAB ,
∇̃BχB

A ≡ ∇̃B

(
1

x1
X

B

A +
1

x1
δB
A

)
≡

1

x1
∇̃BX

B

A .The Christo�el symbols C̃A
BC of the Riemannian onnetion ∇̃ are equal (reall that

CB0 = CB1 = C00 = 0) to the trae on CO of the Christo�el symbols with the sameindies of the spaetime metri C , hene denoting by (C)∇ the ovariant derivativein the metri C

∇̃BχB
A ≡

1

x1
(C)∇BXB

A .Sine the XB
A are the only non-vanishing omponents of the tensor X, and due to theform hosen for the metri C we �nd that

(C)∇BXB
A = (C)∇αXα

A =
∂yi

∂xA
(C)∇αXα

iand Eqs. (7.3) read
CA≡

∂yj

∂xA

1

r

{
−

1

2

[
r

∂

∂r
ξj + ξj(n + tr X)

]
+ (C)∇αXα

j −
∂

∂yj
F (tr X, |X |2)

}
= 0. (7.8)The parentheses onstitute a linear diagonal operator on the ξj of the type onsideredin Lemma 5.3. Equating it to zero gives an equation with solution ξj an admissibleseries of minimal order 1 . We denote by Ξj the extension of ξi to spaetime, that iswe have

ξi ≡ Ξi, (7.9)where Ξi are analytial funtions beginning by linear terms.7.2. Equations for νi . We now onsider Eqs. (7.1), whih read
∂1νA +

(
1

r
−

1

2
W 1

)
νA − 2νCχC

A −
1

2
ν0gABgCD(SB

CD − Γ̃B
CD) +

1

2
ν0ξA = 0 . (7.10)We set

g0i ≡ −νi + λLi, with Li ≡ Cij L
j
, L

j
≡ yj , (7.11)with νi suh that

νiL
i
≡ νi yi = 0; (7.12)that is, using (7.11),

λ ≡ (Li L
i
)−1 g0j L

j
≡ r−2yj g0j .Then (ompare (3.5))

νA ≡ −
∂yi

∂xA
g0i ≡

∂yi

∂xA
νi.Hene

∂1νA ≡
∂yi

∂xA
(∂1νi + r−1νi).
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χC

A ≡
1

r
(X

C

A + δC
A), i.e. rνCχC

A ≡ νCX
C

A + νA.Therefore, after produt by r , the equations an be written as follows:
∂yi

∂xA

(
r∂1νi −

1

2
rW 1νi +

1

2
ν0rξi

)
− 2FA −

1

2
rν0EA = 0,with

FA := νCX
C

A, EA := gAB gCD(SB
CD − Γ̃B

CD).By de�nition it holds that
νCX

C

A ≡ g0CXC
A ,and sine XC

A are the only non-vanishing omponents of the mixed tensor X in theoordinates x

g0CXC
A = g0λXλ

A ≡
∂yα

∂x0

∂yβ

∂xA
gαλ Xλ

β .Realling that X0
i ≡ 0 we �nd (using (4.11), Xj

i Lj = 0)

FA ≡ νC X
C

A ≡ −
∂yi

∂xA
g0jX

j
i ≡

∂yi

∂xA
νjX

j
i .We then remark that SB

CD − C̃B
CD is the trae on CO of the di�erene of the om-ponents of the Christo�el symbols, ηα

βγ and Cα
βγ , with these angular x indies of theMinkowski metri η and the metri C :

EA := gABgCD(SB
CD − C̃B

CD), with EA ≡ CABCCD(ηB
CD − CB

CD).Using the expressions of η and C and the vanishing of the Christo�el symbols of ηin y oordinates we �nd
EA ≡ CAαCλµ(ηα

λµ − Cα
λµ) ≡

∂yi

∂xA
CiαCλµ(ηα

λµ − Cα
λµ) ≡ −

∂yi

∂xA
CijCλµCj

λµ,with Cj
λµ analyti funtions, omponents of Christo�el symbols of the metri C in yoordinates, that is, using the values of the y omponents of the metri C

CijC
λµCj

λµ ≡
1

2
Chk(∂hcik + ∂hcik − ∂ichk).We reall from (6.15) that

rW 1 ≡ −ν0 gABr2sAB ≡ −ν0 {n − 1 + cijδij},and we �nd that Eqs. (7.10) an be written as
∂yi

∂xA
Li = 0 ,where Li is the following linear operator on νi

r∂1νi + ν0

{
n − 1

2
+

1

2
chkδhk

}
νi − 2νjX

j
i +

1

2
ν0r ξi −

1

2
rν0CijCλµCj

λµ = 0. (7.13)We extend Lemma 5.3 as follows.
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i and hi are admissible series of minimal orders 1 , and theonstant k0 ≥ 0 , then the ODE

r∂1νi + k0νi + kj
i νj = hi (7.14)admits a solution νi , whih is also an admissible series of the same minimal orderthan h .Realling that ν0 − 1 is an admissible series of minimal order 2 we see that thislemma applies to (7.13). We have proved:Theorem 7.1. If the basi harateristi data is indued by an analyti met-ri C satisfying (3.3) , (3.4) , Eq. (7.13) admits one and only one solution νi whih isan admissible series of minimal order 2 . We denote by Ni its spaetime extension.We now prove:Theorem 7.2. A su�ient ondition for r−2νi to have an admissible expansionis that the Cω metri C given by (3.3) whih indues the basi harateristi data benear-round at the vertex.Proof. Using the relation between X and Y the linearity of F in trX and |X |2we see that for C round at the vertex the equation satis�ed by ξj reads

1

2

{
r

∂

∂r
ξj + ξj(n + r2Z)

}
= hj ,with

hj := (C)∇α((y0)2Y α
j ) −

∂

∂yj
F ((y0)2tr Y, (y0)4|Y |2).We dedue from the linearity of F in tr X and |X |2 that r−1hj admits an admissibleexpansion, the same holds therefore (see Corollary 5.1) for r−1ξj . The equation satis�edby νj reads

r∂1νi + ν0

{
n − 1

2
+ r2 dhkδhk

}
νi − 2νjr

2Y j
i = hi, (7.15)

hi = −
1

2
ν0rξi +

1

4
r3ν0 Chk(∂hdik + ∂hdik − ∂idhk).An extension of Lemma 7.1 shows that r−2νi admits an admissible expansion beauseit is so of hi . 8. The C0 onstraintThe last unknown in g , the only unknown in the onstraint C0 , is

g00 ≡ g00.The onstraint C0 has a simpler expression in terms of g11 . Sine g11 is linked to g00by the identity
g01g00 + g11g10 + gA1gA0 = 0,we have

g00 ≡ −g11(ν0)
2 + gABνBνA ≡ −g11(ν0)

2 + C
ij

νi νj . (8.1)



132 Y. CHOQUET-BRUHAT ET AL.We have seen [1℄ that the C0 onstraint an be written in vauum as
∂1ζ + (κ + τ)ζ +

1

2

{
∂1W

1
+ (κ + τ)W

1
+ R̃ −

1

2
gABξAξB + gAB∇̃AξB

}
= 0, (8.2)with

ζ :=

(
∂1 + κ +

1

2
τ

)
g11 +

1

2
W

1
, (8.3)

κ ≡ ν0∂1ν0 −
1

2
(W 1 + τ), W 1 ≡ ν0W

0
, W

0
≡ W

1
≡ −rgABsAB. (8.4)8.1. Equation for ζ . In the �at ase it holds that

ν0,η = 1, τη = −W 1,η =
n − 1

r
, κη = 0.The funtion ζ redues to

ζη := ∂1g
11 +

1

2
τη(g11 − 1), (8.5)and the equation for ζ reads, using ξA,η = 0 ,

∂1ζη +
n − 1

r
ζη +

1

2

{
n − 1

r2
−

(n − 1)2

r2
+ R̃η

}
= 0.That is, using the salar urvature of the Sn−1 round sphere of radius r whih is5

R̃η = r−2(n − 2)(n − 1), (8.6)the equation
∂1ζη +

n − 1

r
ζη = 0has the only bounded solution ζη ≡ 0 . From (8.5) results we have then g11

η ≡ 1 . We nowstudy the general ase.We an write the equation to be satis�ed by ζ as follows,
r∂1(rζ) +(rζ) k rζ +(rζ) h = 0, (8.7)

(rζ)k := r(κ + τ) − 1 ≡ r

{
ν0∂1ν0 +

1

2
(τ − W1)

}
− 1, (8.8)

(rζ)h :=
r2

2

{
∂1W

1
+ (κ + τ)W

1
+ R̃ −

1

2
gABξAξB + gAB∇̃AξB

}
.Hene

(rζ)h :=
r2

2

{
∂1W

1
+

1

2
(τ−W 1)W

1
+R̃+ν0∂1ν0W

1
−

1

2
gABξAξB + gAB∇̃AξB

}
. (8.9)We have shown that ν0−1 and r∂1ν0 , hene also rν0∂1ν0 , admit admissible expansionsof minimal order 2, and we have seen that rτ and rW1 are admissible series with termsof order zero (n− 1) and −(n− 1) respetively. Hene k is an admissible series of the

5See for instane [6, p. 140℄.
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(rζ)k = n − 2 + k1,where k1 is an admissible series of minimal order 1.We study the terms appearing in (rζ)h .The term

r2ν0∂1ν0W
1
≡ rν0∂1ν0 rW

1 (8.10)has an admissible expansion of minimal order 2 (see Lemma 5.4).The term
r2gABξAξB ≡ r2C

ij
ξi ξj (8.11)has an admissible expansion of order 4 beause ξi has an admissible expansion of order 1.As for the term

gAB∇̃AξB ≡ C
AB

∇̃AξB ,the Christo�el symbols C̃A
BC of the Riemannian onnetion ∇̃ are equal (reall that

CB0 = CB1 = C00 = 0) to the trae on CO of the Christo�el symbols with the sameindies of the spaetime metri C , hene denoting by (C)∇ the ovariant derivativein the metri C
∇̃AξB ≡ (C)∇AΞB.Sine the ΞB are the only non-vanishing omponents of the vetor Ξ, and due to theform hosen for the metri C we �nd

C
AB(C)∇AΞB = Cαβ (C)∇αΞβ . (8.12)Hene the salar r2C

AB
∇̃AξB has an admissible expansion of minimal order 2.We have seen that in the �at ase

W
1

η ≡ ηαβ Γ̂1
αβ ≡ −

n − 1

r
(8.13)and

∂1W
1

η + τW
1

η ≡

{
n − 1

r2
−

(n − 1)2

r2

}
= −R̃η . (8.14)In the general ase we ompute

∂1W
1

+
1

2
(τ − W 1)W

1
.Reall that

τ ≡
n − 1

r
+

tr X

r
;set

W
1
≡ W

1

η + F, with F := (gαβ − ηαβ) Γ̂1
αβ .Using the values of the Christo�el symbols Γ̂1

αβ and the omponents of g and η in xoordinates we �nd
F ≡ −(C

AB
− ηAB)x1sAB ≡ −

1

r
(C

αβ
− ηαβ)ηαβ ≡

≡
1

r
(n + 1 − C

αβ
ηαβ) ≡

1

r
(n + 1 − C

αβ
ηαβ) ≡

1

r
(n − C

ij
ηij) ≡ −

1

r
cij δij ;
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W

1
≡ −

n − 1

r
−

cijδij

r
, ∂1W

1
≡

n − 1

r2
+

(cij − yh∂hcij)δij

r2
,and

1

2
(τ − W

1
)W

1
≡ −

{
n − 1

r
+

trX + cijδij

2r

}{
n − 1

r
+

1

r
cijδij

}
.Using the value of the salar urvature R̃η of the round sphere Sn−1 of radius r we�nd that

r2

{
∂1W

1
+

1

2
(τ − W

1
)W

1
}

≡ −r2R̃η + Φ,where Φ is an admissible expansion of minimal order 2,
Φ := −yh∂hcijδij − (n − 2)cijδij −

1

2
(n − 1 + chkδhk)(tr X + cijδij).To ompute r2R̃ , we use formulas given in [1℄. The formulas (10.33) and (10.37)of [1℄ for a general metri in null adapted oordinates are

gABRAB ≡ 2(∂1 +Γ
1

11 +τ)
[
(∂1 + Γ

1

11 +
τ

2
)g11 + Γ

1
]
+R̃−2gABΓ

1

1AΓ
1

1B−2gAB∇̃AΓ
1

1B,

R11 ≡ −∂1τ + Γ
1

11τ − χB
A χA

B ,and
S01 ≡ −

1

2
ν0g

ABRAB + R1AνA −
1

2
ν0g

11R11.In the ase of the metri C , it holds that C01 = 1 , C0A = 0 , C00 = −1 , and
C11 = 1 . Hene

(C)Γ1
11 ≡(C) Γ1

1A ≡ 0, (C)Γ1 ≡ −
1

2
(CAB∂1CAB + CAB∂0CAB),and the above formulas redue to (reall that R̃ ≡ (C)R̃):

C
AB (C)RAB ≡ −(∂1 + τ)

[
τ + C

AB
∂0CAB

]
+ R̃,

R11 ≡ −∂1τ − χB
A χA

B ,and
−2 (C)S01 ≡ gABRAB + R11,from whih we dedue

R̃ ≡ 2∂1τ + τ2 + (∂1 + τ)C
AB

∂0CAB + χB
A χA

B − 2 (C)S01.We have
(C)S01 ≡ −

(
(C)S00 + r−1yi (C)S0i

)
.Sine C is an analyti metri in a neighbourhood of O , (C)Sαβ admit admissibleexpansions and, hene r2 (C)S01 also admits an admissible expansion of minimal order 2.Reall that

τ ≡
n − 1

r
+

tr X

r
and |χ|2 =

|X|2 + 2 trX + n − 1

r2
,
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r2{2∂1τ + τ2 + χB

AχA
B} ≡ (n − 1)(n − 2) + 2(n − 1)tr X + 2r∂1tr X + (tr X)2 + |X|2.Finally we remark that ∂0CAB are the non-vanishing omponents of the Lie deriva-tive of the metri C with respet to the vetor m with x omponents m0 = 1 ,

m1 = mA = 0 , hene with y omponents m0 = −1 , mi = 0 that
CAB∂0CAB ≡ CαβLmCαβ ≡ Cαβ∂0Cαβ ,hene

C
AB

∂0CAB ≡ Cij ∂0Cij ≡ Cij ∂0cijhas an admissible expansion of minimal order 1 and r2(∂1 + τ)C
AB

∂0CAB has an ad-missible expansion of minimal order 2.We have proved that
r2R̃ ≡ r2R̃η + Ψ,where

Ψ ≡ 2(n − 1)tr X + 2r∂1tr X + (tr X)2 + |X|2 + r2(∂1 + τ)Cij ∂0cijhas an admissible expansion of minimal order 2. Hene
r2

{
∂1W

1
+

1

2
(τ − W

1
)W

1
+ R̃

}
≡ Φ + Ψ.In onlusion, we have shown that (rζ)h has an admissible expansion of minimalorder 2, the same is therefore true for rζ.8.2. Equation for α := g11 − 1 . The de�nition of ζ gives for α := g11 − 1an equation whih reads

r∂1α + r

(
κ +

1

2
τ

)
α +

r

2
(2κ + τ + W 1 − 2ζ) = 0. (8.15)Theorem 8.1. If the basi harateristi data is indued in a neighbourhood of

O by an analyti metri C satisfying (3.3) , (3.4) , then Eq. (8.15) admits in thisneighbourhood one and only one solution α whih is an admissible series of minimalorder 2 .This implies that g00 + 1 is also an admissible series of minimal order 2 .Proof. Using the de�nition of κ in (8.4), the equation (8.15) reads
r∂1α + r

(
κ +

1

2
τ

)
α + r(ν0∂1ν0 − ζ) = 0,that is,

r∂1α + (α)kα + (α)h = 0, (8.16)with
(α)k := r

(
ν0∂1ν0 −

1

2
W 1

)
, (α)h := r

(
ν0∂1ν0 − ζ

)
. (8.17)Previous results show that this equation is of a form to whih Lemma 5.3 applies with

(α)k0 =
n − 1

2
and (α)h of minimal order 2. It has therefore a solution α , admissibleseries of minimal order 2.The identity (8.1) shows the property of g00 + 1 .



136 Y. CHOQUET-BRUHAT ET AL.Theorem 8.2. If in addition to the hypothesis of the previous theorem the givenmetri C is near-round at the vertex, then r−2(g00 + 1) is an admissible series ina neighbourhood of the vertex.Proof. The result will follow from the proof that (α)h given in (8.17) is suh that
r−2(α)h is an admissible series. By previous results, it remains only to prove that r−2(rζ)has an admissible expansion, hene that it is so for r−2(rζ)h . We have

r−2(rζ)h :=
1

2

{
r−2(Φ + Ψ) + ν0∂1ν0W

1
−

1

2
gABξAξB + gAB∇̃AξB

}
. (8.18)We hek that if C is near-round at the vertex, the various terms studied above aresuh that the required ondition is satis�ed. Indeed,

ν0∂1ν0W
1
≡ ν0r−1∂1ν0 rW

1has an admissible expansion beause it is so for r−1∂1ν0 and rW
1 .

gABξAξB ≡ C
ij

ξi ξj , gAB∇̃AξB ≡ Cαβ (C)∇αΞβhave admissible expansions beause ξi does.The assumptions on cij and the identity yh∂hr ≡ r show that
yh∂hcijδij ≡ r2(yh∂hd

ij
δij + 2d

ij
δij),hene r−2Φ , and r−2Ψ , with Φ and Ψ given above have admissible expansions.It remains to show the property for

(C)S01 ≡ −((C)S00 + r−1yi (C)S0i).Sine C is an analyti metri in a neighbourhood of O , (C)S00 has an admissibleexpansion. Denoting by (C)Kij ≡ −
1

2
∂0Cij the seond fundamental form of C relativeto the sliing of Rn+1 by y0 = onstant, we know that6,

(C)S0i ≡ ∂i tr(C)K −(C) ∇j(C
jh (C)Kih).We have

(C)∇j(C
jh(C)Kih) ≡ Cjh (∂j

(C)Kih − Ck
ji

(C)Kik − C
k(C)
jh Kjk).The funtions (C)Kij are analyti and the Christo�el symbols Ck
ji are produts by y0of analyti funtions, while elementary omputations give

−2yiCjh ∂j
(C)Kih ≡ yiCjh ∂j∂0Cih ≡ Cjh {∂j∂0(y

icih) − ∂0cjh},hene using yicih = 0 and δjhcjh = (y0)2Z . We dedue from these results that
r−1yi(C)S0i also has an admissible expansion.

6See for instane [7, Chapter 6℄.



AN EXISTENCE THEOREM FOR THE CAUCHY PROBLEM. . . 1379. Conlusions9.1. An existene theorem. We have shown that when the metri C given by(3.3) whih indues on CO the basi harateristi data g̃ (i.e. gAB ≡ CAB ≡ C̃AB)is analyti, then the funtions ν0 , νi , g00 have admissible expansions. We have shownthat if moreover C is near-round at the vertex (de�nition 6.2), then the funtions
r−2(ν0 − 1) , r−1νi , and r−2(g00 + 1) have also admissible expansions. These resultsimply the following theorem (the notations are those of Setion 1):Theorem 9.1. If the metri C given by (3.3) , (3.4) whih indues the basi har-ateristi data on the one CT

O is smooth everywhere, and moreover analyti and near-round in a neighbourhood of the vertex, then there exists a number T0 > 0 suh that thewave-gauge redued vauum Einstein equations with harateristi initial determined by
C and the solution of the wave-map gauge onstraints have a solution in Y T0

O whihindues on CT0

O the same quadrati form as C .Proof. It results from the formulae
g00 ≡ g00, g0i ≡ −{g00 + ν0)}r

−1yi − νi, with yiνi ≡ 0, (9.1)
gij − δij ≡ {g00 + 1 + 2(ν0 − 1)}r−2yiyj + r−1(yiνj + yjνi) + cij , (9.2)and the theorems of previous setions that g00 + 1 , g0i , and gij − δij have admissibleexpansions, hene are the trae on CO of analyti funtions. We apply the Cagna �Dossa theorem.This theorem and the results of [1℄ lead then to the following su�ient onditionsfor the existene of a solution of the full Einstein equations.Theorem 9.2. If the metri C given by (3.3) whih indues the basi harateristidata on the one CO is smooth, and analyti and near-round at the vertex, there existsa vauum Einsteinian spaetime (Y T0

O , g) whih indues on CT0

O the same quadratiform as C . The solution is loally geometrially unique.JMM was supported by the Frenh ANR grant BLAN07-1_201699 entitled �LISASiene�, and also in part by the Spanish MICINN projet FIS2009-11893. PTC wassupported in part by the Polish Ministry of Siene and Higher Eduation grant Nr NN201 372736. �åçþìåÈ. Øîêå-Áðþà, Ï.Ò. Õðóñüöåëü, Õ.Ì. Ìàðòèí-�àðñèà. Òåîðåìà ñóùåñòâîâàíèÿ ðå-øåíèÿ çàäà÷è Êîøè î ñâåòîâîì êîíóñå äëÿ âàêóóìíûõ óðàâíåíèé Ýéíøòåéíà ñ ¾ïî÷òè-çàêðóãëåííûìè¿ àíàëèòè÷åñêèìè äàííûìè.Ïðåäñòàâëåí êëàññ õàðàêòåðèñòè÷åñêèõ ðåëÿòèâèñòñêè îáîáùåííûõ èñõîäíûõ äàí-íûõ, óäîâëåòâîðÿþùèõ óñëîâèþ ïî÷òèçàêðóãëåííîñòè íà âåðøèíå ñâåòîâîãî êîíóñà.Ïîêàçàíî, ÷òî äëÿ ëþáûõ ïîäîáíûõ àíàëèòè÷åñêèõ äàííûõ ñóùåñòâóåò ñîîòâåòñòâóþùååðåøåíèå äëÿ âàêóóìíûõ óðàâíåíèé Ýéíøòåéíà, îïðåäåëåííîå â îêðåñòíîñòè âåðøèíûâ ñâåòîâîì êîíóñå áóäóùåãî.Êëþ÷åâûå ñëîâà: õàðàêòåðèñòè÷åñêàÿ çàäà÷à Êîøè î ñâåòîâîì êîíóñå, âàêóóìíûåóðàâíåíèÿ Ýéíøòåéíà.
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