
Республиканская олимпиада школьников «Путь к Олимпу» по информатике, 9-11 классы, 2026.
Казань, 20 января 2026 г.

Задача 1. Две доминошки
Две доминошки □□a b и □□c d можно поставить рядом только, когда одно из чисел в паре (a; b)

совпадает с одним из чисел в паре (c; d), то есть когда a = c или a = d или b = c или b = d. В каждом
из этих случаев легко восстанавливается порядок расположения доминошек. Если не выполняется
ни одно из этих условий, выводим –1.
def solve():

a, b = map(int, input().split())
c, d = map(int, input().split())

if a == c:
print(a, b, c, d)

elif a == d:
print(a, b, d, c)

elif b == c:
print(b, a, c, d)

elif b == d:
print(b, a, d, c)

else:
print(-1)

Задача 2. Потерянные этажи
Постановка задачи

• В последовательности натуральных чисел подсчитали количество чисел a0, больших 0,
количество чисел a1, больших 1, и т.д.

• По набору положительных чисел a0, a1, ..., am−1 восстановить исходную последовательность.

Подзадача 1
Изобразим числа последовательности a0, a1, ..., am−1 в виде таблицы (диаграмма Юнга) Тогда

исходная последовательность — это столбцы этой таблицы. Осталось посчитать число «этажей» в
каждом столбце.

Общее количество домов в городе будет равно a[0]. Пусть b[j] — количество этажей в j-м доме.
Приведем пример кода на языке Pascal:
for i := 0 to m - 1 do

for j := 1 to a[i] do inc(b[j]);
writeln(a[0]);
for i := 1 to a[0] do

write(b[i],’ ’);
Сложность алгоритма — O(m2). Решение проходит тесты при всех m ⩽ 40 000.

Подзадача 2
Как и в первом решении, сначала выведем значение a[0] — общее количество домов в городе.

Теперь заметим, что количество одноэтажных домов равно a[0] − a[1], количество двухэтажных
равно a[1]− a[2] и так далее, наконец, количество m-этажных домов будет равно a[m− 1]− a[m].

Страница 1 из 5



Республиканская олимпиада школьников «Путь к Олимпу» по информатике, 9-11 классы, 2026.
Казань, 20 января 2026 г.

Выводим число этажей i+ 1 в количестве a[i]− a[i+ 1] для каждого i = 0 . .m− 1.
Пример кода на языке Pascal:
writeln(a[0]);
for i := m - 1 downto 0 do

for j := a[i + 1] + 1 to a[i] do
write(i + 1,’ ’);

Сложность алгоритма — O(m).

Задача 3. Баскетбольный турнир

Постановка задачи

Надо научиться разделять две ситуации.

Полное решение

• Если команды играли круговой турнир, то общее количество матчей будет равно n·(n−1)
2 . Со-

ответственно, суммарное количество побед будет n·(n−1)
2 .

• Если команды играли олимпийскую систему, то общее количество матчей будет равно n − 1.
Соответственно, суммарное количество побед будет n− 1.

Посчитаем суммарное количество побед. Если оно будет равно n·(n−1)
2 , то ответом будет Round-

robin, иначе Olympic.

Задача 4. Рассадка пассажиров

Подзадача 1

В текущей подзадаче можно создать двумерный массив a размером n на 3 и эмулировать процесс
рассадки. Значение a[i][j] равное true будет означать, что в ряду i на кресле j уже сидит пассажир,
иначе кресло ещё пустое. При посадке очередного пассажира нужно проверить: сидит ли кто-нибудь
между проходом и креслом пассажира, и если на указанных местах есть какие-либо пассажиры,
то нужно увеличить ответ на количество таких пассажиров. Асимптотика решения O(k · m), а
так как m— это константа, то имеем асимптотику O(k). Количество пассажиров не больше общего
количества мест, поэтому k ⩽ n ·m и итоговая асимптотика решения O(n).

Подзадача 2

Текущую подзадачу можно решить аналогично подзадаче 1, но нужно создать массив размером n на
m. Различие лишь в том, что в подзадаче 1 для каждого места в ряду можно было точечно проверить
остальные места в том же ряду, а в текущей подзадаче лучше использовать цикл. Асимптотика
решения O(n ·m2).

Страница 2 из 5



Республиканская олимпиада школьников «Путь к Олимпу» по информатике, 9-11 классы, 2026.
Казань, 20 января 2026 г.

Подзадача 3

В текущей подзадаче можно отсортировать массив по номеру ряда, при этом для одного и того
же ряда нужно сохранить порядок пассажиров, который был в исходном списке. Другими словами,
если пассажиры i и j имеют кресла на одном ряду и в изначальном списке пассажир i идёт до
пассажира j, то и после сортировки пассажир i должен идти до пассажира j.

Так как мы отсортировали пассажиров по номеру ряда, то мы можем пойти по отсортированному
массиву и обрабатывать ряд за рядом, для каждого ряда эмулируя процесс посадки. То есть в
отличие от предыдущих подзадач можно создать одномерных массив размером m.

Итоговая асимптотика решения O(k · log k) +O(k ·m) = O(k · (log k +m)).

Подзадача 4

Решение основывается на решении из подзадачи 3, но теперь нужно обрабатывать каждого пасса-
жирова быстрее чем O(m). Для этого можно воспользоваться, например, деревом отрезков и при
обработке очередного пассажира вычислять количество пассажиров на отрезке в ряду за O(logm).
В таком случае итоговая асимптотика будет O(k · log k) +O(k · logm) = O(k · (log k + logm)).

Подзадача 5

Заметим, что задача сводится к задаче о подсчёте количества инверсий. В таком случае нам не
нужно хранить данные о текущем обрабатываемом ряде в одномерном массиве размером m, а можно
обойтись массивом размером, равном количеству пассажиров в текущем ряду. Асимптотика решения
O(k · log k).

Задача 5. Лорды и гербы
Задачу можно представить в виде двудольного графа:

• левая доля — лорды (вершины 1 . . . n);
• правая доля — гербы (вершины 1 . . . n);
• ребро между лордом i и гербом j существует, если лорд i имеет герб j.

Тогда два лорда могут общаться напрямую, если они соединены через общую вершину-герб.
Цепочка посредников соответствует пути в этом двудольном графе вида «лорд — герб — лорд —
герб — ... — лорд». Минимальное число посредников равно длине такого пути, делённой на 2, минус
1 (если считать в вершинах, то количество вершин-лордов минус 1).

Поэтому задача сводится к поиску кратчайшего пути между вершинами-лордами A и B в дву-
дольном графе, проходящего по рёбрам «лорд — герб — лорд».

Подзадача 1. n ⩽ 30, сумма гербов ⩽ 3 000.
Можно явно построить граф лордов: две вершины соединены ребром, если у соответствующих

лордов есть общий герб. Затем запустить BFS от A до B в этом графе. Проверку наличия общего
герба для пары лордов можно делать двойным циклом по гербам: для каждой пары лордов (i, j)
перебираем все пары гербов (hi, hj), где hi принадлежит лорду i, а hj — лорду j. Если найдём
совпадение, то лорды i и j соединены ребром.

Оценим сложность алгоритма: проверка каждой пары лордов – O(n2) пар, затем для каждой
пары делаем O(gi · gj) сравнений. В худшем случае gi, gj ≈ 1

n

∑
gi ≈ 100, значит, общее число

операций ≈ 302 · 1002 = 9 · 106, что приемлемо. Алгоритм BFS требует O(n2) операций. Таким
образом,

Сложность алгоритма: O(n2 ·G2), где G — среднее количество гербов у лорда. Память O(n2).
При данных ограничениях работает быстро.

Подзадача 2. n ⩽ 200, сумма гербов ⩽ 20 000.

Страница 3 из 5



Республиканская олимпиада школьников «Путь к Олимпу» по информатике, 9-11 классы, 2026.
Казань, 20 января 2026 г.

Можно ускорить проверку наличия общего герба, отсортировав списки гербов у каждого лорда и
используя метод двух указателей. Построение графа лордов всё ещё квадратично по n, но проверка
общей вершины работает за O(gi + gj).

Оценим сложность: проверка наличия общего герба имеет сложность O(gi+ gj) вместо O(gi · gj),
затем сортировка списков гербов: O(

∑
gi log gi). Далее, строим граф за O(n2 ·G), где G — средняя

длина списка. В худшем случае нам нужно 2002 · 100 = 4 · 106 операций. Кроме того, BFS требует
O(n2) операций. Таким образом,

Сложность алгоритма: O(n2 ·G), G — среднее количество гербов. Память O(n2).

Подзадача 3. n ⩽ 1 000, сумма гербов ⩽ 150 000.
Здесь уже квадратичное построение графа лордов не пройдёт. Нужно использовать двудольную

структуру: BFS идёт по рёбрам «лорд → герб → лорд». Заведём списки смежности: для каждого
лорда список его гербов и для каждого герба список лордов, имеющих этот герб. BFS запускаем от
лорда a, чередуя переходы: из лорда во все его гербы, из герба во всех лордов, имеющих этот герб.
Посещённые гербы и лорды отмечаем, чтобы не ходить по кругу.

Оценим сложность алгоритма: построение списков требует O(
∑

gi) операций, затем BFS, в ко-
тором каждое ребро «лорд–герб» и «герб–лорд» будет просмотрено не более одного раза, поэтому
общая сложность O(

∑
gi). Таким образом,

Сложность алгоритма: O(n+
∑

gi), то есть линейная от общего количества рёбер в двудольном
графе, память O(n+

∑
gi).

Подзадача 4. [Полное решение.] n ⩽ 1 500, сумма гербов ⩽ 300 000.
Решение такое же, как для подзадачи 3, поскольку алгоритм имеет линейную сложность от об-

щего количества гербов. Ограничения увеличены, но алгоритм остаётся эффективным. Особенности
реализации:

• нужно аккуратно работать с памятью, используя, например, векторы (динамические массивы)
в C++.

• для быстрой проверки общего герба у A и B можно использовать булевый массив размера n.
• для восстановления пути нужно хранить для каждой вершины (лорда и герба) предыдущую

вершину в BFS. Каждый путь в BFS имеет вид: A (лорд) → герб1 → лорд1 → герб2 → лорд2 →
... →B. Нас интересуют только лорды-посредники (лорд1, лорд2, ...). Их количество на единицу
меньше, чем количество рёбер «герб–лорд» в пути (или количество рёбер «лорд–герб» минус
1). При восстановлении пути из B двигаемся назад по ссылкам, собирая только лордов (кроме
A и B), затем разворачиваем порядок.

Итоговая сложность алгоритма: O(
∑

gi), то есть линейная от общего количества рёбер в двудоль-
ном графе, память O(n+

∑
gi).

Таким образом, полное решение, проходящее все подзадачи, — это двудольный BFS, описанный
в подзадачах 3 и 4. Реализация алгоритма состоит из следующих шагов:

1. Считать n, списки гербов для каждого лорда.
2. Построить списки: для каждого лорда список его гербов, для каждого герба список лордов.
3. Считать A и B. Проверить, есть ли у них общий герб (вывести 0, если есть).
4. Запустить BFS от A:

• Очередь хранит пары (тип вершины, номер), где тип указывает, лорд это или герб.

• Из лорда переходим во все его гербы (если герб не посещён).

• Из герба переходим во всех лордов, имеющих этот герб (если лорд не посещён).

• Для каждой вершины запоминаем предыдущую вершину (для восстановления пути).

5. Если B достигнут, восстановить цепочку посредников и вывести ответ.
6. Иначе вывести −1.

Страница 4 из 5



Республиканская олимпиада школьников «Путь к Олимпу» по информатике, 9-11 классы, 2026.
Казань, 20 января 2026 г.

Задача демонстрирует важность выбора подходящего представления графа. Наивное построение
графа лордов работает только для маленьких n. Для больших ограничений необходимо использо-
вать двудольную структуру, что позволяет решить задачу за линейное время от общего количества
гербов.

Страница 5 из 5


