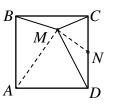
Решения задач олимпиады им. В.Р.Фридлендера, 8 апреля 2017 г.

Задача 1. Имеется квадрат ABCD. Точка N — середина стороны CD. Внутри квадрата выбрана точка M так, что AM = AB и NM = ND. Найти величину угла BMC.

Ответ. 135°.

Решение. Угол $BMD=135^{\circ}$, т.к. он является вписанным в окружность с центром в точке A и опирается на дугу в 270° . Точка N является центром описанной окружности вокруг треугольника CMD, значит угол CMD — прямой. Искомый угол $BMC=360^{\circ}-BMD-CMD=135^{\circ}$.



Задача 2. Какие значения может принимать свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше ста, и P(20) = P(17) = 2017?

Ответ. −23.

Решение. Для целочисленных многочленов разность P(a)-P(b) делится на a-b, поэтому $P(20)-P(0)=P(17)-P(0)=2017-a_0$ делится на 20 и на 17, значит, и на $17\cdot 20=340$, то есть $2017=340k+a_0$. Так как $|a_0|<100$, то k=6, $a_0=-23$.

Задача 3. Имеется клетчатое поле размером 3×5 и три краски — чёрная, серая и белая. Надо раскрасить клетки так, чтобы все соседние клетки были разного цвета. Но при этом не было резкой смены цвета, т.е. запрещено соседство чёрной и белой клеток. Клетки называются соседними, если у них есть общая сторона. Сколькими способами это можно сделать?

Ответ. 384 варианта.

Решение. Отметим прежде всего, что между двумя серыми клетками стоит ровно одна белая или чёрная клетка. Значит, серые клетки стоят на доске в шахматном порядке. Рассмотрим 2 случая: а) в левом нижнем углу стоит серая клетка. Тогда число возможных несерых клеток равно 7, их можно закрасить в чёрный или белый цвет числом способов = $2^7 = 128$; б) в левом нижнем углу стоит несерая клетка, тогда общее число несерых клеток равно 8, число способов их закрасить — $2^8 = 256$. Всего мы получаем 128 + 256 = 384 варианта раскраски.

Задача 4. В трапеции ABCD с основаниями BC и AD проведены диагонали AC и BD, пересекающиеся в точке O. Площади треугольников BCO и AOD равны соответственно S_1 и S_2 . Найти площадь трапеции.

Ответ.
$$\sqrt{S} = \sqrt{S_1} + \sqrt{S_2}$$
 .

Решение. Треугольники BCO и AOD подобны по 3 углам. Если коэффициент подобия равен k, то AD = k BC, $S_2 = k^2 S_I$, $k = \sqrt{S_1/S_2}$, высота трапеции $h = h_I + h_2$, где $h_2 = k$ h_I . Площадь трапеции равна $S = 1/2(AD + BC)h = 1/2(1 + k) \cdot BC \cdot (1 + k) \cdot h_1 = S_I(1 + k)^2$. Заменяя k на отношение корней из S_2 и S_1 , получаем требуемое.

Задача 5. Даны три числа. Если их все увеличить на 1, то их произведение тоже увеличится на 1. Если все исходные числа увеличить на 2, то их произведение тоже увеличится на 2. А на сколько увеличится произведение, если все исходные числа увеличить на 3?

Ответ: на 9.

Решение. Пусть нам даны изначально числа a,b и c. Обозначим ab + bc + ca = x и a+b+c=y. По условию (a+1)(b+1)(c+1)=abc+1 и (a+2)(b+2)(c+2)=abc+2. Раскрывая скобки и сокращая подобные слагаемые, получим, что x+y=0, 2x+4y=-6, откуда x=3, y=-3. Тогда нужная нам разность равна $(a+3)(b+3)(c+3)-abc=3x+9y+27=3\cdot 3+9\cdot (-3)+27=9$.

Задача 6. Пусть $f(x) = 1 + \sqrt{x}$. Решить уравнения a) f(x) = x; б) f(f(x)) = x; в) f(f(f(x))) = x.

Ответ. Во всех случаях $x = \frac{3+\sqrt{5}}{2}$.

Решение. В случае а) решается обычное квадратное уравнение относительно \sqrt{x} , получаем $\sqrt{x} = \frac{1+\sqrt{5}}{2}$, откуда $x = \sqrt{x} + 1 = \frac{3+\sqrt{5}}{2}$.

Уравнение (б) имеет вид $1+\sqrt{1+\sqrt{x}}=x$. Можно решать его стандартным способом, избавляясь от корней: $\sqrt{1+\sqrt{x}}=x-1$, значит, $x\geq 1$ и $1+\sqrt{x}=(x-1)^2$. Полагая $t=\sqrt{x}$, получаем уравнение $t^4-2t^2-1=0$, корни 0 и -1 находятся подбором, то есть уравнение принимает вид $t(t+1)(t^2-t-1)=0$.

Первые два корня лишние, а уравнение $t^2-t-1=0$ сводится к $x=\sqrt{x}+1$, то есть к случаю a).

Для пункта в) такой подход бесполезен, так как сводится к решению уравнения 8 степени. Заметим, однако, что в пунктах а) и б) ответы одинаковые. Случайно ли это? Видимо, нет. Функция f в данном случае — возрастающая. Покажем, что в этом случае уравнения f(x) = x и f(f(...f(x)...)) = x (k экземпляров f) равносильны.

Действительно, если x является корнем первого уравнения, то f(f(x)) = f(x) = x, аналогично f(f(f(x))) = x и т.д. Предположим, что у второго уравнения есть корень, не удовлетворяющий условию f(x) = x. Пусть, для определенности, $x_1 = f(x) > x$. Но тогда $x_2 = f(f(x)) = f(x_1) > f(x) = x_1$. Аналогично получаем что $x < x_1 < x_2 < ... < x_k = f(f(...f(x)...))$. Значит, равенство f(f(...f(x)...)) = x не выполняется.

Задача 7. Докажите, что всякая бесконечная арифметическая прогрессия, состоящая из натуральных чисел, содержит бесконечную геометрическую прогрессию.

Решение. Пусть первый член прогрессии есть $a_0 = n$, разность -d. Тогда в прогрессии есть также член $a_n = n + n \cdot d = n(1 + d)$. Покажем, что (1 + d) можно рассматривать как знаменатель искомой геометрической прогрессии. Действительно, $n(1 + d)^k = n(1 + kd + ... + d^k) = n + (k + ... + d^{k-1})d$ имеет вид $a_0 + l \cdot d$.

Задача 8. Даны шесть отрезков, из любых трех из них можно составить треугольник. Верно ли, что из этих отрезков можно составить тетраэдр?

Ответ. Нет, неверно.

Решение. Есть разные контрпримеры $(1, 1, 1, 1, 1, \sqrt{3})$. Если тетраэдр с такими ребрами существует, то две грани у него – правильные треугольники со стороной

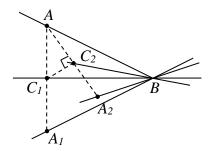
1, имеющие общее основание. Высоты этих треугольников равны $\frac{\sqrt{3}}{2}$, поэтому расстояние между их вершинами меньше, чем $\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$.

Не существует также тетраэдра с длинами ребер (1, 1, 1, a, a), 1 < a < 2 (доказывается рассмотрением 2 случаев расположения ребер).

Задача 9. Из точки A на плоское зеркало под углом α падает луч света. Зеркало поворачивается на угол β вокруг проекции луча на зеркало. Найти угол между лучами, отражёнными от исходного и повёрнутого зеркал.

Ответ. $2\arcsin(\sin\alpha\sin\beta)$.

Решение. Пусть B — точка падения луча на зеркало, C_1 — проекция A на зеркало, A_1 и A_2 — точки, симметричные A относительно исходного и повёрнутого зеркала. Отрезки A_1B и A_2B направлены по отражённым лучам, т.е. искомый угол — это A_1BA_2 . Обозначим C_2 середину AA_2 (проекцию A на повёрнутое зеркало). По условию AC_1 и AC_2 перпендикулярны соответственно исходному и по-



вёрнутому зеркалу, следовательно угол C_IAC_2 равен β . Остаётся заметить, что AC_1 = $AB \sin \alpha$, $C_IC_2 = AC_I \sin \beta = AB \sin \alpha \sin \beta$; $A_IA_2 = 2 C_IC_2$ и треугольник A_IBA_2 – равнобедренный со сторонами $A_IB = A_2B$ (= AB), откуда и следует ответ.

Задача 10. Симметричным разбиением натурального числа n называется запись этого числа в виде суммы натуральных слагаемых $n = a_1 + a_2 + ... + a_{k-1} + a_k$ ($k \ge 1$), в которой равноудаленные от концов слагаемые равны, то есть $a_1 = a_k$, $a_2 = a_{k-1}$ и вообще, $a_i = a_{k+1-i}$ при $1 \le i \le k$. Например, 16 = 16, 16 = 2 + 12 + 2 и 16 = 7 + 1 + 1 + 7 — симметричные разбиения числа 16. Найдите количество всех симметричных разбиений числа 2017.

Ответ: 2¹⁰⁰⁸.

Решение. Представим число 2017 в виде ряда из единиц. Расставим плюсы между некоторыми из них. Серию единичек длиной k, не разделенных плюсами, будем считать числом k. Например, 111 + 11 + 111 соответствует разбиению 3 + 2 + 3.

Между 2017 единичками есть 2016 мест для вставки «плюса». Каждому симметричному разбиению числа 2017 соответствует расстановка плюсов в первых 1008 местах в ряду из 2017 единиц. На последних 1008 местах плюсы ставятся *симметрично* первым 1008 плюсам относительно середины ряда. Но в каждое из 1008 первых мест плюс либо ставится, либо не ставится, поэтому получается всего 2¹⁰⁰⁸ вариантов.