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UDK 510.532 RELATIVE ENUMERABILITYAND THE D-C. E. DEGREESM.M. ArslanovAbstratWe study the relationship between the relative enumerability and the d -. e. degrees.We prove that the degree of the halting problem is splittable into two . e. degrees suh thatthe upper one of eah of them ontains only d -. e. degrees whih are . e. in another one.Key words: Turing degrees, omputably enumerable degrees, relative omputable enu-merability, splitting, de�nability.The ∆0

2 degrees of unsolvability are basi objets of study in lassial omputabilitytheory, sine they are the degrees of those sets whose harateristi funtions are limitsof omputable funtions. A natural tool for understanding the Turing degrees is the in-trodution of hierarhies to lassify various kinds of omplexity. The most ommon suhhierarhy, the arithmetial hierarhy, is itself not of muh use in the lassi�ation of the
∆0

2 degrees, sine it is far too oarse. This fat has led to the introdution of hierarhiesbased on �ner distintions than quanti�er alternation. Two suh hierarhies are by nowwell-established. One, the CEA hierarhy independently de�ned by Arslanov [1℄ andJokush and Shore [2, 3℄, is, like the arithmetial hierarhy, based on the omplexityof the de�nitions of the involved sets, replaing the alternation of quanti�ers with theiteration of omputable enumerability in and above a set, a signi�antly less powerfulproedure. The seond suh hierarhy, the di�erene hierarhy due to Putnam [4℄ andErshov [5, 6℄, is built up by starting with the omputable enumerable sets as a base,and then iterating the operation of taking set-theoreti di�erenes, thereby lassifyingsets on the basis of the di�ulty of their onstrution in omparison with . e. sets.Analysis of the relationship of the CEA hierarhy to the di�erene hierarhy is there-fore a natural means of omparing the de�nability of sets to the inherent di�ulty oftheir onstrution.We took the �rst steps toward this analysis in [1℄: we proved that there is a ∆0
2

2 -CEA set whih is not of n-. e. degree for any n < ω . Generalizing this resultJokush and Shore [3℄ proved that for any omputable ordinal α < β , there is a β -. e. degree whih is not α -CEA, while, on the other hand, that for every uniformlygiven lass of ∆0
2 degrees, there is a ∆0

2 2 -CEA degree whih is not in this lass. Fromthe latter result, it follows that for eah α ≤ ω , there is a 2 -CEA set whih is not of
α -. e. degree. This result is more interesting when α > 1 , sine d-. e. sets, and hene
2 -CEA sets, not of . e. degree had already been onstruted by Cooper (unpublished).In [7℄ we took a further step towards analyzing the relationship of this seond level ofthe CEA hierarhy to the di�erene proving that any ω -. e. degree whih is 2 -CEA isalso 2 -. e. In this paper we also obtained a seond result whih imposes a signi�antlimit on possible extensions of this result: there exists a d-. e. set C suh that forevery n ≥ 3 , there exists a set A whih is simultaneously C -CEA and (n + 1)-. e.,yet fails to be of n-. e. degree.



RELATIVE ENUMERABILITY AND THE D -C. E. DEGREES 153Further results in this diretion are obtained in [8℄. Let u and v be . e. degreessuh that v < u . Then there is a d-. e. degree d suh that v < d < u and d is not. e. in v .This result naturally raises the following problem, whih has a long history. Let
a < b be non-omputable . e. degrees. Is there a CEA in a d-. e. degree d < b suhthat b is not . e.?Below we list all so far known results on this question:1. [9℄ Let a be a non-omputable . e. degree suh that a′ = 0′ . Then there isa non-. e. but . e. in a degree b > a . Moreover,2. [10℄ Let c < h be . e. degrees suh that c is low and h is high. Then there isa degree a < h suh that a is CEA in c degree.3. [10℄ For all high . e. degrees h < g , there is a properly d-. e. degree a suhthat h < a < g and a . e. in h .4. [10℄ There is a . e. degree a,0 < a < 0′ suh that for any . e. in a degree

b > a , if b 6 0′ then b is . e.5. [11℄ Let a > 0 be a superlow degree. Then there is a properly d-. e. degree
d > a suh that d is . e. in a .(A set A is alled superlow if A′ ≡tt ∅′ . A degree is superlow if it ontainsa superlow set.)(A set A is alled superlow if A′ ≡tt ∅′ . A degree is superlow if it ontains a superlowset.)These results allow us to formulate the following well-known hypothesis whih isstill an be onsidered as an open problem.Conjeture. For every low . e. degree a > 0 , there is a CEA in a d-. e. degree

b whih is not . e.Reent investigations have shown that this problem is losely related to anotherimportant problem on de�nability of the . e. degrees in the d-. e. degree struture, andin this investigation deeper understanding of the splitting properties of d-. e. degreesmay be useful.Let a > 0 be a properly d-. e. degree and let b be a . e. degree suh that
b < a . Sine a is . e. in some . e. degree a0 < a , it follows from the Saks SplittingTheorem, relativized to a0 ∪ b < a , that a is splittable into two 2-CEA degrees whihare above b , i.e. there are 2-CEA-degrees c0 and c1 suh that c0 ∪ c1 = a and
b < c0 < a, b < c1 < a . Moreover, Arslanov, Cooper and Li [12, 13℄ proved thatany . e. degree is splittable in the d-. e. degrees over any low d-. e. degree. In thispaper we prove that 0′ is splittable into . e. degrees v0 and v1 suh that for every
d-. e. degree d and eah i ≤ 1 , if vi ≤ d then d is . e. in v1−i .We adopt the usual notational onventions found, for instane, in [14℄. In partiular,we write [s] after funtionals and formulas to indiate that every funtional or parametertherein is evaluated at stage s . In partiular, for an orale X and . e. funtional Φ ,
Φ(X ; y, s) means only that at most s steps are allowed for the omputation from orale
X to onverge, whereas Φ(X ; y)[s] means also that the approximation Xs is used asthe orale, and may mean as well that some funtion-value y(s) is being used as theargument for the omputation. When using a . e. orale, we adopt the ommon pratieof taking the use funtion to be nondereasing in the stage.



154 M.M. ARSLANOVTheorem 1. There exists a splitting of 0′ into . e. degrees v0 and v1 suh thatfor every d-. e. degree d and eah i ≤ 1 , if vi ≤ d then d is . e. in v1−i .Proof. We will onstrut . e. sets V0 and V1 so that the degrees vi = deg Vi havethe desired properties. We also onstrut auxiliary . e. sets U0, U1 .This is ensured by the following two types of requirements.To ensure that ∅′ 6≤T Vi , we satisfy requirements
• P i

e : Ui 6= ΘVi

i,e (for eah partial omputable funtional Θi,e ).To ensure that for all d-. e. sets D , if Vi ≤T D then D is of degree . e. in V1−i ,we satisfy requirements.
• Ri

e : De = ∆
Vi⊕Qi

e

i,e & Qi
e ≤T Vi⊕De (for eah d-. e. set De we build an assoiated

d-. e. set Qi
e . e. in V1−i and a partial omputable funtional ∆i,e ).The ondition Qi

e ≤T V ⊕ De will be met by the usual permitting argument.To ensure that Qi
e is . e. in V1−i we use a ommon method whih works as follows.When an integer x is enumerated into Qi

e at stage s we appoint a ertain marker α(x) .Then we allow x to be removed from Qi
e at a later stage t only if V1−i ↾ α(x)[t − 1] 6=

6= V1−i ↾ α(x)[t].The ondition ∅′ ≤T V0 ⊕ V1 will follow from the onstrution diretly.The basi strategy for P -requirements in isolation is the one developed by Friedbergand Muhnik:(1) Pik an unused witness x from the olumn assoiated with this requirement(< i, ω > for i ≤ 1), whih is larger than all higher-priority restraints, and keepit out of U .(2) Wait for ΘV
e (x) ↓= 0 .(3) Put x into U and protet V ↾ (θ(x) + 1) .The basi strategy for R -requirements in isolation is to build ∆V ⊕Q , ensuring thatit is total and omputes D orretly. Sine we build the set V during the onstrution,we may easily meet this requirement by hanging V , if neessary.While the strategies for the requirements in isolation are thus very simple, there areobviously several on�its between them. The R -strategy threatens to ontribute into

V in�nitely many numbers while P -restraints of lower priority may obstrut it.Before giving the expliit onstrution we �rst explain the intuition for the Pi - and
Sj -requirements below one Re -strategy.Basi module for the Ri

e -strategy above P -requirements.We use an ω -sequene of �yles�, where eah yle k proeeds as follows:(1) At a stage s set ∆
Vi⊕Qi

e

i,e (k) = De,s(k) with a use δi,e,s(k) > all P i - and P 1−i -restraints, and δi,e,s(k) > δi,e,s(k−1) and start yle k+1 to run simultaneouslywith yle k .(2) Wait for De(k) to hange (at a stage t , say).(3) (i) Enumerate δi,e,s(k) into Qi
e ,(ii) set ∆

V i
⊕Qi

e

i,e (k) = De,t(k) with a new use δi,e,t(k) > all P i -restraints, and
δi,e,t(k) > δi,e,s(k) , and(iii) appoint the marker αi(δi,e,s(k)) as the �rst integer y suh that y ≥ δi,e,t(k)and y = < 2, l > for some l .



RELATIVE ENUMERABILITY AND THE D -C. E. DEGREES 155(4) Wait for De(k) to hange bak (at a stage u , say).(5) We need� to keep Qi
e below V i ⊕ De (at stage t k enters De , and we put δi,e,s(k) into

Qi
e . Now k leaves De ).� to orret the axiom ∆

(V i
⊕Qi

e)
i,e (k) = De(k)We have two possibilities to ahieve this:� either by enumerating δi,e,s(k) into V i� or by removing δi,e,s(k) from Qi

e (in this ase we need to enumerate αi(δi,e,s(k))into V1−i ).The ruial point here is that our hoie between these two possibilities dependsupon the priority ordering of requirements P i and P 1−i that may be injured:a) If the highest-priority strategy whih would be injured by this orretion isa P i -strategy (or there is no strategy at all that would be injured), thenenumerate αi(δi,e,s(k)) into V1−i and remove δi,e,s(k) from Qi
e .b) Otherwise, put δi,e,s(k) into V i , and set ∆

V i
⊕Qi

e

i,e (k) = De,u(k) .Set ∆
Vi⊕Qi

e

i,e (k) = De,u(k) with the same use δi,e,u(k) = δi,e,t(k).In both ases start yle k + 1 to run simultaneously.We now give the onstrution. We say that the axiom ∆
V i

⊕Qi
e

i,e (k) = De(k) requiresorretion at stage s if at a stage t < s we set ∆
V i

⊕Qi
e

i,e (k) = De,t(k) with a use
δi,e,t(k), De,s(k) 6= De,t(k) , and (V i ⊕ Qi

e)t ↾ δi,e,t(k) = (V i ⊕ Qi
e)s ↾ δi,e,t(k) .Stage s = 0 . Set U0 = V0 = V1 = ∅[0]. x0

e,0 =< 0, e >, x1
e,0 =< 1, e > .Stage s > 0 . Fix e suh that s = 〈e, m〉 for some m .Substage 1 (P 0

e -requirement).a) If ΘV0
0,e(x

0
e)[s] ↓= 0 and x0

e,s−1 6∈ U0,s , then enumerate x0
e,s−1 into U0,s , andprotet V0 ↾ θ0,e,s(x

0
e,s−1) with priority P 0

e .b) If ΘV0
0,e(x

0
e)[s] ↓= U0,s(x

0
e,s−1) = 1 , then de�ne

x0
e,s = (µx)[(∃y)(∀j)(x = 〈0, y〉 ∧ x > all Ri

j -uses assigned so far].Otherwise, set x0
e,s = x0

e,s−1.Substage 2 (P 1
e -requirement). Similar to the previous ase with neessary hanges(Θ0

e, V0, U0, x
0
e, θ0,e by Θ1

e, V1, U1, x
1
e, θ1,e aordingly).Substage 3. Let z be the greatest integer suh that for any k < z there existsa stage s′ < s suh that at stage s′ the axiom ∆

Vi⊕Q(i,e)

i,e (k) = De(k)[s′]was set. Let k < z be the smallest integer (if any) suh that the axiom
∆

(Vi⊕Qi,e)
i,e (k) = De(k) requires orretion at stage s . Let t be a stage at whihthe axiom ∆

(Vi⊕Qi,e)
i,e (k) = = De(k) was set.We onsider two ases.Case 1) De,s(k) = 1 . In this ase we proeed as in step (3) of the Basi Module:(i) enumerate δi,e,t(k) into Qi,e ,



156 M.M. ARSLANOV(ii) set ∆
Vi⊕Qi,e

i,e (k) = De,s(k) with a new use δi,e,s(k) > all P -restraints,and δi,e,s(k) > δi,e,t(k) , and(iii) appoint the marker αi(δi,e,s(k)) as the �rst integer y suh that y ≥
δi,e,s(k) and y =< 2, l > for some l .Case 2) De,s(k) = 0 . Therefore, there is a stage u < s suh that De,u(k) = 1 , andat stage u we (re)set the axiom ∆

Vi⊕Qi,e

i,e (k) = De(k) . It follows also thatat stage u we enumerated δp,e,t(k) into Qi,e . In this ase we proeed as instep (5) of the Basi Module:a) if the highest-priority strategy whih would be injured by the
Qi,e(δi,e,t(k))− or Vi(δi,e,t(k))− orretion is a P -strategy (or thereis no strategy at all that would be injured), then enumerate αi(δi,e,t(k))into V1−i and remove δi,e,t(k) from Qi,e .b) Otherwise, put δi,e,t(k) into Vi .Set ∆

Vi⊕Qi,e

i,e (k) = De,s(k) .Substage 4. If none of the axioms ∆
Vi⊕Qi,e

i,e (k) = De(k) for k < z requires or-retion at stage s , then set the new axiom De,s(z) = ∆
Vi⊕Qi,e

i,e (z) with a use
δi,e,s(z) > all P -, R -restraints.Substage 5. Go to stage s + 1 .End of the onstrution.Veri�ation.Let vi=deg(Vi ), i ≤ 1 .Lemma 1. Qi,e ≤T Vi ⊕ De.Proof. To Vi ⊕ De -omputably ompute whether x ∈ Qi,e , �rst �nd a stage u atwhih a new axiom De(y) = ∆

Vi⊕Qi,e

i,e (y) with a use δi,e,u(y) ≥ x is settled. Obviously,suh a stage u exists.Suppose now that x = δi,e,s(k) was hosen as a use for some ∆
Vi⊕Qi,e

i,e (k) at a stage
s ≤ u (otherwise, x 6∈ Qi,e ). Find a stage v ≥ u at whih Vi,v ↾ x = Vi ↾ x and
De,v(x) = De(x) . Now x ∈ Qi,e if and only if x ∈ Qi,e,v .Lemma 2. If De = ΦU⊕V

e then De ≤T V ⊕ Qe .Proof. It follows immediately by onstrution.Lemma 3. Qi,e is . e. in V1−i .Proof. It follows immediately from the onstrution.Lemma 4. For eah i ≤ 1 and e ∈ ω , requirements P i
e are eventually satis�ed.Proof. Fix e and assume by indution that the Lemma holds for all j < e .Choose s minimal so that no P i

j -restraints may be injured by some R -requirement.By onstrution we may injure P i
e by �nitely many times ontributing some integersinto Vi to protet the V1−i -restraint of higher priority. But beginning at some stage swe take witnesses for ∆-uses greater than the V1−i -restraints, after that we meet therequirement P i

e .



RELATIVE ENUMERABILITY AND THE D -C. E. DEGREES 157Lemma 5. 0′ = v0 ∪ v1 .Proof. Suppose, in ontrary, that v0 ∪ v1 < 0′ . Then by [8, Theorem 4.1℄ thereexists a d-. e. degree d suh that v0 ∪ v1 < d and d is not . e. in v0 ∪ v1 , andtherefore it is not . e. in v1 . We have v0 < d and d is not . e. in v1 , a ontradition.
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