Kazan (Volga region) Federal University Institute of Fundamental Medicine and Biology Department of Morphology and General Pathology

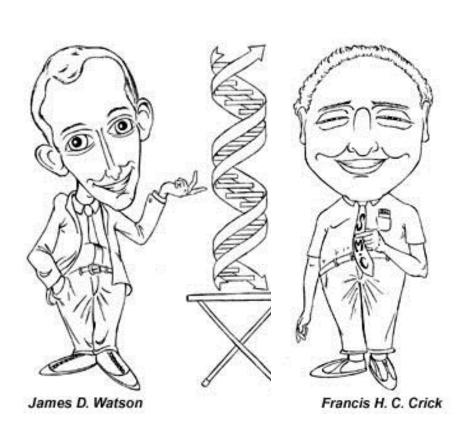
GENETIC DISEASES

Brief History

 First there was Gregor Mendel, a monk who studied inherited characteristics. This was followed by Francis crick and James Watson who unraveled the DNA molecule. This has led us to understanding the human genome sequence

Gregor Mendel

- 1866
- Gregor Mendel
 published the results
 of his investigations of
 the inheritance of
 "factors" in pea
 plants.


Rosalind Franklin

• 1950's.

 Maurice Wilkins (1916-), Rosalind Franklin (1920-1957), Francis H. C. Crick (1916-) of Britain and James D. Watson (1928-) of the U.S. Discover chemical structure of DNA, starting a new branch of science--molecular biology...

Watson and Crick

 Watson and Crick made a model of the DNA molecule and proved that genes determine heredity

Arthur Kornberg

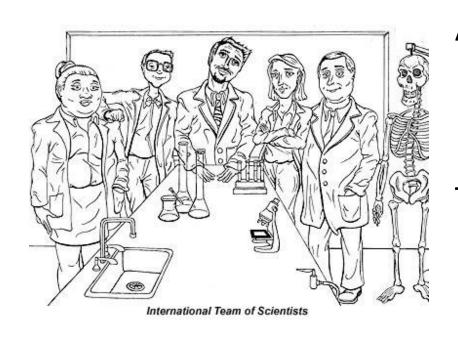
- 1957
- Arthur Kornberg
 (1918-) of the U.S.
 produced DNA in a
 test tube.

Genetic code

83	U	C	Α	G
U	UUU Phe	UCU Ser	UAU Tyr	UGU Cys
	UUC Phe	UCC Ser	UAC Tyr	UGC Cys
	UUA Leu	UCA Ser	UAA End	UGA End
	UUG Leu	UCG Ser	UAG End	UGG Trp
С	CUU Leu	CCU Pro	CAU His	CGU Arg
	CUC Leu	CCC Pro	CAC His	CGC Arg
	CUA Leu	CCA Pro	CAA Gin	CGA Arg
	CUG Leu	CCG Pro	CAG Gln	CGG Arg
A	AUU Ile	ACU Thr	AAU Asn	AGU Ser
	AUC Ile	ACC Thr	AAC Asn	AGC Ser
	AUA Ile	ACA Thr	AAA Lys	AGA Arg
	AUG Met	ACG Thr	AAG Lys	AGG Arg
G	GUU Val	GCU Ala	GAU Asp	GGU Gly
	GUC Val	GCC Ala	GAC Asp	GGC Gly
	GUA Val	GCA Ala	GAA Glu	GGA Gly
	GUG Val	GCG Ala	GAG Glu	GGG Gly

Genetic Code

1966


The Genetic code was discovered; scientists are now able to predict characteristics by studying DNA. This leads to genetic engineering, genetic counseling.

Barbara McClintock

- 1983
- Barbara McClintock (1902-1992) of the U.S. was awarded the Nobel Prize for her discovery that genes are able to change position on chromosomes.

DNA Fingerprinting

The late 1980's.

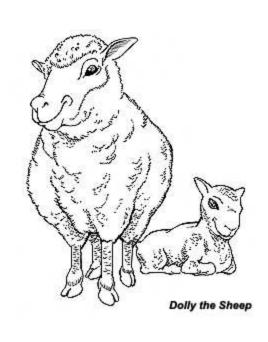
An international team of scientists began the project to map the human genome.

The first crime conviction based on DNA fingerprinting, in Portland Oregon.

Gene Therapy

- 1990.
- Gene therapy was used on patients for the first time.

Dr. Kary Mullis


- 1993
- Dr. Kary Mullis
 discovered the PCR
 procedure, for which
 he was awarded the
 Nobel prize.

DNA Testing

- 1995.
- DNA testing in forensics cases gains fame in the O.J.
 Simpson trial.

Cloning Begins

- 1997.
- Dolly the sheep the first adult animal clone.

Genetic diseases

- traditionally <u>3 types</u> of diseases
- 1. genetically determined
- 2. environmentally determined
- 3. 1. + 2.
- today distinctions are blurred
- up to 20% of pediatric in-patients have genetic abnormality
- about 50% of spontaneous abortuses have chromosomal aberration
- only mutations that are not lethal are reservoir of genetic diseases

Terminology

- hereditary = derived from parents
- familial = transmitted in the gametes through generations
- congenital = present at birth (not always genetically determined - e.g. congenital syphilis, toxoplasmosis)
- ! not all genetical diseases are congenital e.g.
 Huntington disease 3rd to 4th decade of life

Classification

3 groups of genetic diseases

- 1. Disorders with multifactorial inheritance (polygenic)
- 2. Monogenic (mendelian) disorders
- 3. Chromosomal aberrations

1. Disorders with multifactorial inheritance (polygenic)

- influence of multiple genes + environmental factors
- relatively frequent
- Diabetes mellitus (see Endocrine pathology)
- Hypertension (see Circulation)
- Gout (discussed here + see Crystals)
- Schizophrenia (Psychiatry)
- Congenital heart disease certain forms (see Heart)
- Some types of cancer (ovarian, breast, colon) (see Neoplasms)
- often familial occurrence probability of disease is in 1st degree relatives about 5-10%; 2nd degree relatives 0,5-1%

Gout

- genetically impaired metabolism of uric acid (end product of purine metabolism)
- tissue accumulation of excessive amounts of UA crystals
- recurrent episodes of acute arthritis precipitation of monosodium urate crystals inside the joints
- formation of large crystalline aggregates tophi
- chronic destruction of joints joint deformity
- renal injury
- M>F

- Primary gout (90% of cases)
- unknown enzymatic defect

- Secondary gout (10%)
- known cause of hyperuricemia (increased turnover of nucleic acids - e.g. leukemias; chronic renal disease; increased intake game, red wine)

Morphology

- Acute arthritis
- any joint, mostly hallux abrupt and intense pain
- Chronic arthritis
- permanent precipitation tophi inflammation (lymphocytes, histiocytes)
- destruction of cartilage, fibrosis of synovial membrane, ankylosis
- Kidneys 3 forms
- medulla (papillae), tophi, kidney stones

- tophi are formed in the vicinity of joints, bursa olecrani, bursa preapatellaris, auricle
- less frequently kidneys, other tissues
- urate crystals are soluble in water! fixation in absolute alcohol (biopsy!!!)
- turns polarized light
- patients with gout obese, increased risk of hypertension, arteriosclerosis
- Clinical presentation 3 stages
- 1. asymptomatic hyperuricaemia
- 2. acute arthritis attacks of acute pain (days-weeks), silent periods (months-years)
- 3. chronic changes tophi, ankylosis, in 20% chronic renal failure

2. Monogenic (mendelian) disorders

- mutation of 1 gene, mendelian type of inheritance
- today about 5000 diseases
- Autosomal dominant
- Autosomal recessive
- X-linked

Autosomal dominant disorders

- both homozygotes and heterozygotes are affected
- <u>usually heterozygotes</u> (inherited from one parent)
- both <u>males and females</u> are affected
- transmission from one generation to the other
- 50% of children are affected

Familial hypercholesterolemia

- (= subgroup of hyperlipoproteinemia)
- most frequent mendelian disorder 1:500
- mutation of gene encoding LDL-receptor (70% of plasma cholesterol)
- heterozygotes 2-3× elev. of plasma cholesterol levels
- homozygotes 5× elevation of plasma cholesterol levels
- heterozygotes asymptomatic until adulthood xanthomas along tendon sheets, coronary AS
- homozygotes xanthomas in childhood, death due to MI by the age of 15Y

Marfan syndrome

- French pediatrician Marfan 1896 young girl with typical habitus
- abnormal protein <u>fibrillin</u> secreted by fibroblasts, part of ECM
- impairment of collagenous and elastic tissue decreased firmness of connective tissue
- principal clinical manifestations 3 systems

1. skeleton

- slender, elongated habitus
- long legs, arms and fingers (arachnodactyly) -El Greco!
- high, arched (Gothic) palate
- hyperextensibility of joints
- spinal deformities, pectus excavatum, pigeon breast - pres. Lincoln???

2. ocular changes

• dislocation or subluxation of the lens (weakness of suspensory ligaments)

3. cardiovascular system

- fragmentation of elastic fibers in tunica media
 aorta
- aneurysmal dilatation aortic dissection rupture (35-45% of pts.)
- incompetence (dilatation) aortic valve
- tricuspidal and/or mitral valve floppy valve

Ehlers-Danlos syndrome

- similar to Marfan syndrome
- genetic defect of collagen fibrils several types
 - both autosomal dominant and recessive
- hyperextensibility of skin, hypermobility of joints - contortionist!
- joint dislocations, vulnerability
- rupture of large vessels, colon, cornea

2. Autosomal recessive

- majority of mendelian disorders
- only <u>homozygotes are affected</u>, <u>heterozygotes</u>
 (parents) are only carriers
- 25% of descendants are affected
- if the mutant gene occurs with low frequency high probability in <u>consanguineous marriages</u>
- onset of symptoms often in childhood
- frequently enzymatic defect
- testing of parents and amnial cells

Cystic fibrosis

- 1:2000 live births most common lethal genetic disease in white population
- defect in the transport of chloride ions across epithelia - increased absorption of Na+ and water to the blood
- widespread defect in the exocrine glands abnormally viscid mucous secretions
- blockage of airways, pancreatic ducts, biliary ducts

- <u>Pancreatic abnormalities</u> (85%) dilatation of ducts, atrophy of exocrine part, fibrosis
- Pulmonary lesions dilatation of bronchioles, mucus retention, repeated inflammation, bronchiectasis, lung abscesses, emphysema and atelectasis (100%), cor pulmonale chronicum
- GIT meconium ileus (newborns) (25%), biliary cirrhosis (2%)
- Male genital tract sterility (obstruction of vas deferens, epididymis, seminal vesicles) (95%)

Clinical symptomatology

- recurrent pulmonary infections
- pancreatic insufficiency, malabsorption syndrome (large, foul stool), hypovitaminosis A, D, E, K, poor weight gain
- high level of sodium in the sweat "salty" children mother's diagnosis
- death usually in 3. decade due to respiratory failure

Phenylketonuria (PKU)

- absence of enzyme phenylalanine-hydroxylase (PAH) Phe ->Tyr
- increase of plasmatic Phe since birth rising levels impairs brain development
- after 6M severe mental retardation IQ under 50
- decreased pigmentation of hair and skin absence of Tyr
- EARLY SCREENING TEST!!!
- DIET!!!
- mothers with PKU increased levels of Phe transplacental transport - child with severe mental defect (although heterozygous!) - maternal PKU - DIET!!!

Galactosemia

- defect of galactose metabolism
- lactose -> Gal+Glc
- Gal -> Glc defect accumulation of Gal in blood
- <u>liver, eyes, brain</u> are affected
- hepatomegaly (fatty change fibrosis cirrhosis)
- lens opacification cataracts
- brain loss of neurons, gliosis, edema
- Symptomatology from birth
- vomiting, diarrhea, jaundice, hepatomegaly
- later cataracts, mental retardation
- DIET!

Glycogen storage diseases (glycogenoses)

- deficiency of any one of the enzymes involved in degradation or synthesis
- depending on the type of defect tissue distribution, type of accumulated product
- 12 forms most important:
- type I. von Gierke disease hepatorenal type
- type II. <u>Pompe disease</u> generalized type (liver, heart, skeletal muscle)
- type V. <u>McArdle syndrome</u> skeletal muscle only
- biopsy: PAS, Best's carmine

Lysosomal storage diseases

- defect of lysosomal enzymes, hydrolyzing various substances (a.o. sphingolipids, mucopolysacharides) - storage of insoluble metabolites in lysosomes
- extremely rare

Sphingolipidoses

more frequent in Ashkenazi Jews

Gaucher disease

- defect of glucocerebrosidase 3 types (type 1 survival, type 2 lethal, type 3 intermediate)
- accumulation of glucocerebroside (Glcceramide) - kerasin
- Gaucher cells spleen (red pulp), liver (sinuses), bone marrow

Niemann-Pick disease

- defect of sphingomyelinase
- accumulation of cholesterol and sphingomyelin in spleen, liver, BM, LN, lungs massive visceromegaly
- CNS (foamy cells) severe neurological deterioration
- death during first 4-5 years

Tay-Sachs disease (gangliosidosis)

 neurons and glial cells of CNS - mental retardation, blindness

Mucopolysacharidoses

- MP synthesized in the connective tissue by fibroblasts part of the ground substance
- several clinical variants (I-VII)
- involvement of liver, spleen, heart (valves, coronary arteries), blood vessels
- Symptoms: coarse facial features (gargoylism), clouding of the cornea, joint stiffness, mental retardation
- usually death in childhood (cardiac complications)
- most frequent <u>Hurler syndrome</u> and <u>Hunter syndrome</u> (X-linked!)

X-linked diseases

- transmitted by heterozygous mother to sons
- daughters 50% carriers, 50% healthy
- sons 50% diseased, 50% healthy
- Children of diseased father sons are healthy, all daughters are carriers
- Hemophilia A (defect of Factor VIII)
- Hemophilia B (defect of Factor IX)
- Muscle dystrophy (Duchen disease)

3. Chromosomal aberrations (cytogenetic disorders)

- alternations in the number or structure of chromosomes
- autosomes or sex chromosomes
- studied by cytogenetics
- cell cycle arrested in metaphase (colchicin) staining by Giemsa method (G-bands) - photographing - karyotype
- 2 sets of 23 chromosomes
- 22 pairs of autosomes, 2 sex chromosomes (XX or XY)
- cytogenetic disorders are <u>relatively frequent</u>! (1:160 newborns; 50% of spontaneous abortions)

Numerical abnormalities

- euploidy normal 46 (2n)
- polyploidy (3n or 4n) spontaneous abortion
- aneuploidy
- trisomy (2n+1) 47 compatible with life
- monosomy (2n-1) autosomal incompatible with life
- sex chromosomal compatible with life

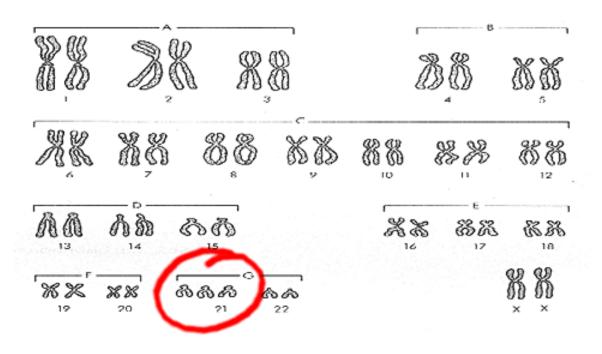
Structural abnormalities

- breakage followed by loss or rearrangement
- deletion, translocation

Generally:

- loss of chromosomal material is more dangerous than gain
- abnormalities of sex chromosomes are better tolerated than autosomal
- abnormalities of sex chromosomes sometimes symptomatic in adult age (e.g. infertility)
- usually origin de novo (both parents and siblings are normal)

Autosomal disorders


Trisomy 21 (Down syndrome)

- most frequent 1:700 births; parents have normal karyotype
- maternal age has a strong influence: <20 y.
 1:1550 live births, >45 y.
 1:25 live births
- most frequently is abnormality in ovum (ovum is under long-time influence of environment)

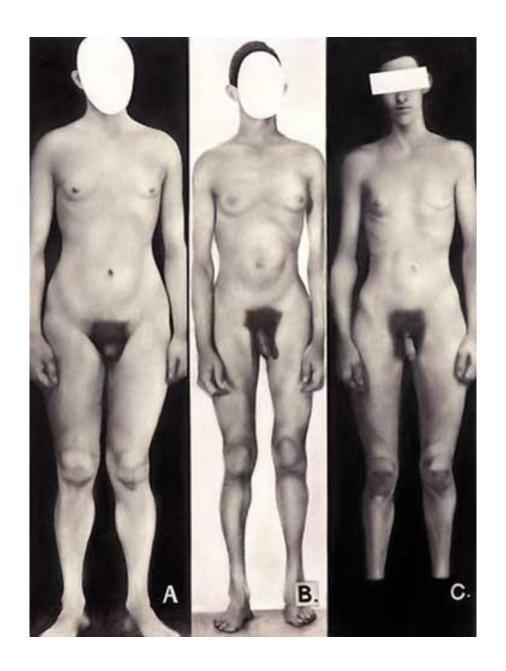
Clinical symptoms

- mental retardation (IQ 25-50)
- flat face + epicanthus
- congenital heart defects
- neck skin folds
- skeletal muscle hypotonia
- hypermobility of joints
- increased risk of acute leukemias
- mortality 40% until 10Y (cardiac complications)

Down's Syndrome or Trisomy 21

Less frequent disorders

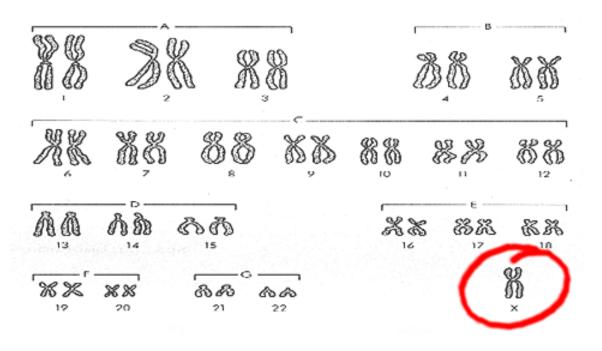
- Trisomy 18 (Edwards syndrome) 1:8000
- Trisomy 13 (Patau syndrome) 1:15000


Sex chromosomal disorders

- a number of karyotypes from 45(X0) to 49 (XXXXY) - compatible with survival
- normally in females 1 of X is inactivated (all somatic cells contain Barr body)
- ! male phenotype is encoded by Y

Klinefelter syndrome (47, XXY)

- <u>1:1000 males</u>
- additional X is either of paternal or maternal origin
- advanced maternal age, history of irradiation of either of parents
- wide range of clinical manifestations
- distinctive body habitus increase length between soles and pubic bone
- reduced body and facial hair
- gynecomastia
- testicular atrophy impaired spermatogenesis sterility (rarely fertility! - mosaics)


Klinefleter's

Turner syndrome (45, X0)

- 1:3000 females
- primary hypogonadism in phenotypic female
- growth retardation (short stature, webbing of the neck, low posterior hairline, broad chest, cubitus valgus)
- streak ovaries infertility, amenorrhea, infantile genitalia, little pubic hair

Turner's Syndrome

Prenatal diagnostics

- amniocentesis analysis of amniotic fluid
- cytogenetic analysis (karyotype e.g. Down)
- biochemical activity of various enzymes (e.g. Tay-Sachs)
- analysis of various specific genes (CF gene PCR)
- sex of the fetus (X-linked disorders hemophilia)

Pediatric diseases

- infants and children
- first year of life high mortality
- highest mortality neonatal period (first 4W; perinatal first 1W)
- between 1Y and 15Y of age the leading cause of death = injuries from accidents

Congenital malformations

- structural defects present at birth some may become apparent later!
- etiology is either genetic or <u>environmental</u>
- viral infections (rubella, CMV) during first 3M
- other infectious (toxoplasmosis, syphilis, HIV)
- <u>drugs</u> (thalidomide, alcohol, cytostatics)
- irradiation
- in 40-60% is the cause unknown!

Perinatal infections

- ascending (transcervical) in utero or during birth (HSV, HIV)
- transplacental syphilis, toxoplasmosis, rubella, CMV

Prematurity

- higher morbidity and mortality than in full term babies
- before 37.-38. W
- high risk weight <2500g
- intracerebral bleeding (immature vessels in basal ganglia)
- infant respiratory distress syndrome RDS decrease in surfactant synthesis; 15-20% 32.-36.W vs. 60% <28.W
- <u>SIDS sudden infant death syndrome</u> (crib death, cot death)
- <u>Erythroblastosis fetalis</u> hemolysis due to ABO or Rh incompatibility between mother and fetus