Министерство образования и науки Российской федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет

ИНСТИТУТ ФИЗИКИ

Кафедра медицинской физики

Направление 03.03.02 - физика

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

ИССЛЕДОВАНИЕ СТРУКТУРЫ АНТИТРОМБОТИЧЕСКИХ ПРЕПАРАТОВ В РАСТВОРЕ МЕТОДАМИ СПЕКТРОСКОПИИ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА

Работа завершена:

Студент(ка) гр. 06-404

«<u>15» июния</u> 2018 г.

Работа допущена к защите:

Научный руководитель: к.ф.-м.н., доцент

«<u>15</u>» <u>июия</u> 2018 г.

Зав. кафедрой д.х.н., профессор

«15» серонея 2018 г.

ul подпись

А.Ф. Тимерова

подпись

Л.Ф. Галиуллина

Аганов

Казань – 2018

Министерство образования и науки Российской федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет

ИНСТИТУТ ФИЗИКИ

Кафедра медицинской физики

Направление 03.03.02 – физика

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(бакалаврская работа)

ИССЛЕДОВАНИЕ СТРУКТУРЫ АНТИТРОМБОТИЧЕСКИХ ПРЕПАРАТОВ В РАСТВОРЕ МЕТОДАМИ СПЕКТРОСКОПИИ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА

Работа завершена:		
Студент(ка) гр. 06-404		
«» 2018 г.	подпись	А.Ф. Тимерова
Работа допущена к защите:		
Научный руководитель: к.фм.н., доцент		
«» 2018 г.	подпись	Л.Ф. Галиуллина
Зав. кафедрой д.х.н., профессор		
«» 2018 г.		А.В. Аганов

Содержание

ВВЕДЕНИЕ
1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
1.1 Физические основы спектроскопии ядерного магнитного резонанса 5
1.2 Двумерная спектроскопия ядерного магнитного резонанса
1.2.1 COSY ЯМР эксперимент
1.2.2 HSQC ЯМР эксперимент 11
1.2.3 HMBC ЯМР эксперимент
2 ПРАКТИЧЕСКАЯ ЧАСТЬ
2.1 Материалы, методы и объекты исследования 15
2.2 ЯМР исследование соединения 1
2.3 ЯМР исследование соединения 2
2.4 ЯМР исследование соединения 3
2.5 ЯМР исследование соединения 4
2.6 ЯМР исследование соединения 5 33
2.7 Общее представление ЯМР спектров пяти соединений
ЗАКЛЮЧЕНИЕ И ВЫВОДЫ 40
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

введение

Сердечно-сосудистые заболевания сердца являются основной причиной смерти во всем мире [1]. Ишемическая болезнь сердца и ишемические инсульты являются мировыми лидерами среди сердечно-сосудистых заболеваний. Иx агрессивное клиническое поведение вызвано атеросклеротическим сосудов. Атеросклероз поражением кровеносных поражение тромбоцитов вызывает стенок сосудов, активации И коагуляционного гемостаза, приводит К образованию тромбов ЧТО И прекращению кровотока в жизненно важные органы. Тромбоз является причиной адгезии и агрегации тромбоцитов и активации плазменных прокоагулянтов на фосфолипиды клеточной поверхности, которые имеют кровью. Эти изменения могут контакт с быть вызваны различными физиологическими и патологическими агентами, которые приводят к активации специфических рецепторов. Это приводит к нарушению работы клеточной асимметрии и появлению мезоморфных структур [2].

Используемые в настоящее время препараты не гарантируют достаточной профилактики и лечения острых сердечно-сосудистых заболеваний. Поиск веществ, способных оказывать влияние на процессы образования тромбов и позволяющих контролировать их, является основной целью создания новых антитромботических препаратов. Предполагается, что серосодержащие монотерпеноиды могут обладать такими свойствами. Следует отметить, что они до сих пор никогда не рассматривались в качестве антикоагулянтов.

Спектроскопия ядерного магнитного резонанса (ЯМР) является одним из наиболее мощных инструментов, позволяющих устанавливать пространственную структуру соединений, что и необходимо знать при разработке медикаментов. Терпеноиды имеют широкий спектр биологического действия и поэтому представляют большой интерес для поиска новых лекарственных препаратов. Подобные соединения применяются в качестве лекарств при расстройствах печени, почек, при мочекаменных болезнях,

обладают противогрибковой активностью, противоязвенной активностью, антитромботической активностью, противоопухолевой активностью, способствуют более быстрому заживлению ран, применяются как антисептики и болеутоляющие [3-5].

В настоящее время для установления структуры вещества вместе с одномерными спектрами ЯМР на различных ядрах используют двумерные спектры. Эти спектры часто позволяют решить проблемы, связанные с перекрыванием сигналов. Использование двумерных методик ЯМР спектроскопии привело к тому, что процесс определения химической и пространственной структуры исследуемого образца стал намного проще.

Целью работы являлось определение значений химических сдвигов и соотнесение ¹H и ¹³C ЯМР сигналов новых серосодержащих терпеноидов для подтверждения их химической структуры с помощью ряда двумерных ЯМР экспериментов: ¹H -¹H COSY, ¹H -¹³C HSQC и ¹H -¹³C HMBC.

Задачами дипломной работы являются:

- Освоение техники проведения ЯМР экспериментов;
- Постановка ряда двумерных ЯМР экспериментов 1 H 1 H COSY, 1 H 13 C HSQC и 1 H 13 C HMBC;
- Соотнесение ЯМР сигналов исследуемых веществ с их химической структурой;
- Определение значений химических сдвигов ¹Н и ¹³С ЯМР сигналов и подтверждение химической структуры исследуемых веществ.

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Физические основы спектроскопии ядерного магнитного резонанса

Физические основы спектроскопии ядерного магнитного резонанса (ЯМР) определяются магнитными свойствами атомных ядер. Взаимодействие внешнего магнитного поля B_0 с магнитным моментом ядра приводит к расщеплению ядерных энергетических уровней, при этом энергия ядра может принимать дискретные, т. н. собственные значения E_i . Этим собственным значениям энергии соответствуют собственные состояния, т.е. состояния, в которых только и может находиться элементарная частица. С помощью внешнего источника радиочастотного (РЧ) излучения можно вызвать переходы между собственными состояниями на диаграмме энергетических уровней [6, 7]. Поглощение энергии можно записать как спектральную линию, или т. н. резонансный сигнал.

Этим способом можно получить ЯМР спектр соединения, содержащего атомы с ненулевыми ядерными магнитными моментами. Все ядра с нечетными массовыми числами, а также ядра, имеющие нечетное число протонов и нейтронов, обладают магнитным моментом (спин ядра $I \neq 0$). В первом случае I принимает полуцелые значения, во втором - целые. Из практически важных элементов спиновым числом I = 1/2 обладают следующие ядра: ¹H, ¹³C, ¹⁹F, ³¹P,¹⁵N. Ядра ²H и ¹⁴N имеют I = I; ядра ¹¹B, ³⁵Cl, ³⁷Cl, ⁷⁹Br и ⁸¹Br - I = 3/2 [8]. Ядро углерода ¹²C, которое является важным для органической химии и его распространенность в природе составляет 98,9%, не имеет магнитного момента, также, как и все другие ядра с четным массовым числом и четным атомным номером. Поэтому можно исследовать методом ЯМР только изотоп ¹³C, природное содержание которого составляет лишь 1,1%. Спин ядра является важной характеристикой, он определяет число разрешенных ориентаций магнитного момента ядра в постоянном магнитном поле [9].

В отсутствие внешнего магнитного поля спиновые состояния вырождены по энергии. При помещении магнитного момента ядра μ с ненулевым спином в постоянное магнитное поле B_0 , μ начнет прецессировать вокруг направления вектора магнитной индукции постоянного поля с частотой

$$\omega_0 = \gamma B_0,\tag{1}$$

(здесь γ - коэффициент пропорциональности, называемый гиромагнитным отношением), составляя с ним некоторый угол θ (рисунок 1), и энергетическое вырождение ядер снимается. Появляется возможность энергетического перехода с одного на другой уровень (рисунок 2).

Рисунок 1 - Ядро с магнитным моментом μ в постоянном магнитном поле

Величина проекции магнитного момента

$$\mu_Z = \gamma h m_I / 2\pi, \tag{2}$$

где у – гиромагнитное отношение;

h – постоянная Планка;

 m_I – магнитное квантовое число. Для протонов эта величина составляет $\pm \gamma h/2\pi$ [6].

Рисунок 2 - Магнитный момент ядра (*I*= 1/2) в магнитном поле *B_o* и расщепление энергетических уровней протона в магнитном поле

Этот переход и является физической основой спектроскопии ЯМР, основанной на поглощении электромагнитного излучения ядрами образца, помещенного в магнитное поле.

Сигналы в спектре ЯМР обладают следующими информативными характеристиками: химический сдвиг, интегральная интенсивность и мультиплетность. Рассмотрим каждый из этих параметров.

Во-первых, различным протонам в молекуле соответствуют разные сигналы в ¹Н ЯМР спектре. Значение резонансной частоты определенного ядра зависит от молекулярной структуры. Это эффект вызван различным химическим окружением протонов, его называют химическим сдвигом. По его значению можно сказать о том, в каком химическом окружении находится ядро, дающее данный резонансный сигнал.

Во-вторых, сигналы в спектре имеют разные интенсивности. Площадь под резонансным сигналом пропорциональна числу протонов, дающих этот сигнал. Ее можно измерить интегрированием спектра, и таким образом появляется возможность сделать выводы об относительных количествах ядер, дающих сигналы.

В-третьих, не все спектральные линии имеют простую форму, т. е. не все они синглеты. Для некоторых сигналов наблюдается характерное расщепление,

приводящее к образованию мультиплетов. Это расщепление является следствием спин-спинового взаимодействия — магнитного взаимодействия между отдельными ядрами, которое передается через электроны химических связей, косвенно соединяющих эти ядра. Такое взаимодействие дает возможность определить положения ядер относительно друг друга, т. к. константа спин-спинового взаимодействия J, зависит от числа и типа связей, разделяющих ядра. Вместе с тем, мультиплетности резонансных сигналов и распределение интенсивностей внутри этих мультиплетов в простых случаях строго определяются числом ядер в соседних группировках [8, 9].

Основу применения спектроскопии ЯМР для определения структуры неизвестных веществ составляют связи между выше перечисленными параметрами.

1.2 Двумерная спектроскопия ядерного магнитного резонанса

В настоящий момент вместе с одномерными спектрами на различных ядрах используют двумерные спектры. Эти ЯМР спектры часто позволяют решить проблемы, связанные с перекрыванием сигналов. Для того, чтобы облегчить анализ спектров, проводят двумерное Фурье-преобразование функции двух временных переменных. полученного в виде сигнала. Совокупность таких методов называется двумерной Фурье-спектроскопией ЯМР. Использование двумерных методик ЯМР спектроскопии привело к тому, что процесс определения химической И пространственной структуры исследуемого образца стал намного проще.

Основной двумерный ЯМР эксперимент схематически представлен на рисунке 3. Его можно разделить во временной области на 4 этапа [10]:

- 1. Подготовка;
- 2. Эволюция *t*₁;
- 3. Смешивание;

4. Детектирование t_2 ;

Рисунок 3 - Схематическое представление 2D ЯМР эксперимента

Период подготовки обычно состоит из 90°-ного импульса, который формирует поперечную намагниченность. На протяжении времени эволюции t_1 поперечная компонента намагниченности изменяется. Далее следует период смешивания, в течение которого происходит перенос поляризации между компонентами поперечной намагниченности, которые связаны между собой различными взаимодействиями. Во время детектирования сигналы регистрируются через равные промежутки времени t_2 , после проводится двумерное Фурье-преобразование [11].

1.2.1 СОЅҮ ЯМР эксперимент

Спектры COSY (COrrelation SpectroscopY) являются простейшей разновидностью гомоядерной двумерной спектроскопии ЯМР, которая

используется для определения корреляций химических сдвигов ¹Н ядер, которые связаны между собой спин-спиновым взаимодействием [11].

Импульсная последовательность ЯМР эксперимента COSY представлена на рисунке 4. На рисунке 5 показано поведение вектора намагниченности во время эксперимента. Первый импульс создает компоненты поперечной намагниченности, которые определяют химический сдвиг и гомоядерную связь в течение времени эволюции t_1 . Второй импульс смешивает компоненты намагничивания среди всех переходов, принадлежащих к связанным спиновым системам. Окончательное распределение компонентов намагниченности определяется путем измерения их частот прецессии в течение времени обнаружения t_2 . Спектр COSY обрабатывается с помощью двумерного преобразования Фурье.

Спектры COSY позволяют выявить спин-спиновую связь между протонами. Спектры являются симметричными относительно диагонали. В них различают два типа пиков. Первый тип сигналов - это диагональные сигналы, расположенные вдоль диагонали спектра, являются полными аналогами сигналов в соответствующем одномерном спектре. Если спроектировать диагональные пики на вертикальную ось двумерного спектра COSY, получим соответствующие проекции, которые ничем не отличаются от обычных одномерных спектров. Второй тип сигналов – недиагональные пики или кросспики. Проекции кросс-пиков на оси двумерного спектра соответствуют сигналам ядер, между которыми имеется спин-спиновая корреляция.

Рисунок 4 - Импульсная последовательность COSY ЯМР эксперимента

Рисунок 5 - Поведение вектора намагниченности в ЯМР эксперименте COSY

1.2.2 HSQC ЯМР эксперимент

HSQC (Heteronuclear Single Quantum Coherence) – гетероядерная одноквантовая корреляционная спектроскопия ЯМР. Данный эксперимент позволяет установить корреляцию между химическими сдвигами протонов и

химическими сдвигами ядер X (в основном, ¹³C или ¹⁵N) через прямое спинспиновое взаимодействие (^{1}J) между ядрами, [12] т.е. эксперименты HSQC позволяют найти корреляцию между сигналами протонов и сигналами непосредственно связанных с ними углеродов (1 H- 13 C). Связи проявляются в виде кросс-пиков, расположенных на перпендикулярах, которые проведены через соответствующие сигналы в одномерных спектрах. Метод дает возможность легко соотнести сигналы всех напрямую связанных с протонами атомов углерода.

Каждому углеродному сигналу обычно соответствует один сигнал протона. Но могут быть случаи, когда у одного углеродного сигнала несколько кросс-пиков, которые отвечают неэквивалентным протонам. Только для геминальных пар протонов имеет место корреляция с одним углеродным атомом (рисунок 6). Бывают случаи, когда у сигнала протона не наблюдается кросс-пиков. Это говорит о том, что протон не связан с атомом углерода, а связан с другим атомом [11].

Импульсная последовательность ЯМР эксперимента HSQC ЯМР представлена на рисунке 7 [11].

Рисунок 6 - Пример спектра 1 H- 13 C HSQC ЯМР эксперимента

Рисунок 7 - Импульсная последовательность ¹H-¹³C HSQC ЯМР эксперимента

1.2.3 НМВС ЯМР эксперимент

HMBC (Heteronuclear Multiple Bond Correlation) — корреляция между протонами и ядрами X (в основном, ¹³C или ¹⁵N), разделенными двумя или тремя связями (в редких случаях большим числом связей) [12].

На рисунке 8 показан пример ¹H-¹³С НМВС ЯМР эксперимента. Импульсная последовательность эксперимента НМВС представлена на рисунке 9 [10].

Использование ¹H-¹³C HSQC эксперимента не решает проблемы отнесения сигналов углерода, не связанных непосредственно с протонами, и таких атомов в молекулах бывает довольно много. Поэтому для этой цели используется другой метод, в котором выявляются спин-спиновые взаимодействия (ССВ) между ядрами через 2-3 химические связи.

Анализ полученных данных с помощью метода HMBC дает возможность определить весь скелет органических молекул. Метод является одним из самых информативных для исследования строения химических соединений [11].

Рисунок 8 - Пример спектра ¹H-¹³С НМВС ЯМР эксперимента

Рисунок 9 - Импульсная последовательность ¹H-¹³С НМВС ЯМР эксперимента

2 ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1 Материалы, методы и объекты исследования

Все ЯМР эксперименты выполнены на спектрометрах Bruker Avance IITM – 500 (500 MHz (¹H)) и Bruker Avance IIITM - HD – 700 (700 MHz (¹H)), которые представляют собой многофункциональные спектрометры со сверхпроводящим магнитом, работающие в импульсном режиме с преобразованием Фурье. Единица измерения химического сдвига - м.д. Температура, при которой проводились эксперименты, 303 К.

С целью подтверждения химической структуры исследуемых веществ были получены 1D ¹H и ¹³C, а также 2D ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC ЯМР спектры [13, 14] серосодержащих терпеноидов в таких растворах, как CDCl₃, D₂O и ацетон.

Химические структурные формулы исследуемых веществ представлены на рисунке 10.

Рисунок 10 - Химические структурные формулы борнановых (а-г) и камфенового (д) терпеноидов

Первые четыре соединения имеют одинаковый цикл - борнановый, но немного отличаются количеством атома кислорода О и составом второго радикала. У соединений 1 и 2 разница только в одном атоме кислорода О около атома серы S. Соединение 1 является борнановым сульфоном, 2 – борнановым сульфоксидом. Соединения 3 и 4 имеют различие на концах заместителя второго радикала. Соединение 3 является борнановой солью сульфона, 4 – борнановым сульфидом. Соединение 5 имеет камфеновый цикл, является сульфидом. От соединения 4 отличается первым радикалом, где -CH₃ группы имеют разные местоположения, а второй радикал для обоих одинаковый.

Следует отметить, что все пять соединений были синтезированы в КГМУ группой под руководством Никитиной Лилии Евгеньевны впервые и ранее их структура не исследовалась.

2.2 ЯМР исследование соединения 1

Образец соединения 1 – борнанового сульфона (рисунок 10а) был приготовлен путем растворения в смеси D_2O +ацетон (1:1) в концентрации 11,5 г/л. С целью подтверждения химической структуры соединения 1 были получены 1D ¹H (рисунок 11) и ¹³C ЯМР спектры и были проведены 2D ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC ЯМР эксперименты (рисунки 12 - 14). Соотнесение сигналов в спектрах было основано на анализе мультиплетности сигналов, интегральных интенсивностей и характеристик химических сдвигов (х. с.), а также кросс-пиков, наблюдаемых в двумерных спектрах.

В ¹Н ЯМР спектре соединения 1 (рисунок 11) протоны С<u>Н</u>₃-8, С<u>Н</u>₃-9 и С<u>Н</u>₃-10 наблюдаются в виде трех синглетов с химическими сдвигами 1,00; 0,85 и 1,19 м.д. соответственно. С<u>Н</u>₂-12 резонирует как мультиплет с δ = 3,99 м.д. Небольшие сигналы вблизи С<u>Н</u>₃-8, С<u>Н</u>₂-9, С<u>Н</u>₂-11 и С<u>Н</u>₂-12, вероятнее всего, являются сигналами примеси.

По данным экспериментов ¹H -¹H COSY (рисунок 12) и ¹H -¹³C HSQC (рисунок 13) были определены все сигналы протонов, связанных между собой, а также химические сдвиги сигналов углерода, связанных напрямую с соответствующими протонами. Было установлено, что геминальные протоны H5 и H5', H6 и H6', которые относятся к метиленовым группам C<u>H</u>₂-5 и C<u>H</u>₂-6, неэквивалентны. На основании анализа 2D спектра ¹H -¹³C HSQC (рис. 13) были определены химические сдвиги протонов, соответствующих метиленовым группам C<u>H</u>₂-5, C<u>H</u>₂-6: 1,77 и 1,22; 1,60 и 1,34 м.д. соответственно. Также C<u>H</u>-3 и C<u>H</u>-3' попарно неэквивалентны, и соответствующие им значения химических сдвигов являются 2,13 и 1,78 м.д. Был определен химический сдвиг протонного сигнала C<u>H</u>-4, который перекрывается с линиями резонанса C<u>H</u>-3' и C<u>H</u>-5, ему соответствует значение химического сдвига 1,80 м.д. Сигналу C<u>H</u>-2 по данным ¹H -¹³C HSQC (рисунок 13) спектра соответствует значение химического сдвига 5 = 3,42 м.д. Сигналы геминальных протонов H11 и H11' группы C<u>H</u>₂-11

резонируют как мультиплеты со значениями химического сдвига 3,20 и 3,29 м.д. соответственно.

Химические сдвиги С-1 и С-7 были определены на основе ¹H -¹³C HMBC (рисунок 14) эксперимента. Также все связи между протонами и углеродами, соответствующие химической структуре вещества, были подтверждены ¹H-¹³C HMBC корреляциями. Все значения химических сдвигов δ ¹H и ¹³C ЯМР сигналов соединения 1 приведены в таблице 1.

Таблица 1 - ¹Н и ¹³С ЯМР химические сдвиги (δ , м.д.) соединения 1 при температуре 303 К

Атомы	в растворе D ₂ O+ацетон (1:1)					
	δ ¹ Н, м.д.	δ ¹³ C, м.д.				
C-1	_	51,52				
CH-2	3,42 м	70,08				
CH ₂ -3	1,78; 2,13м, пс	32,32				
CH-4	1,80м	44,70				
CH ₂ -5	1,22; 1,77 м, пс	26,18				
CH ₂ -6	1,34; 1,60 м	39,66				
C-7	-	47,48				
CH ₃ -8	1,00 c	20,09				
CH ₃ -9	0,85 c	19,67				
CH ₃ -10	1,19 c	12,70				
CH ₂ -11	3,20; 3,29 м	55,42				
CH ₂ -12	3,99 м	55,04				

*с – синглет, пс – перекрывающиеся сигналы, м – мультиплет.

Рисунок 11 - ¹Н ЯМР спектр соединения 1 в растворе D₂O+ацетон (1:1). T=303 К. Нумерация атомов соответствует цифрам на рисунке 10а. Знак * сигнал растворителя

Рисунок 12 - ¹H - ¹H COSY спектр соединения 1 в растворе D₂O+ацетон (1:1). T=303 К. Нумерация атомов соответствует цифрам на рисунке 10а

Рисунок 13 - ¹H - ¹³C HSQC спектр соединения 1 в растворе D₂O+ацетон (1:1). T=303 К. Нумерация атомов соответствует цифрам на рисунке 10а. Знак * -

сигнал растворителя

Рисунок 14 - 1 H - 13 C HMBC спектр соединения 1 в растворе D₂O+ацетон (1:1). T=303 К. Нумерация атомов соответствует цифрам на рисунке 10а. Знак * -

сигнал растворителя

2.3 ЯМР исследование соединения 2

Образец соединения 2 – борнанового сульфоксида (рисунок 10б) был приготовлен путем растворения в смеси D_2O +ацетон (1:1) в концентрации 26,6 г/л. С целью подтверждения химической структуры соединения 2 были получены 1D ¹H (рисунок 15) и ¹³C ЯМР спектры и были проведены 2D ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC ЯМР эксперименты. Соотнесение сигналов в спектрах было основано на анализе мультиплетности сигналов, интегральных интенсивностей и характеристик химических сдвигов (х.с.), а также кросс-пиков, наблюдаемых в двумерных спектрах.

На рисунке 16 представлены 1D ¹Н ЯМР спектры соединений 1 и 2. Данный и остальные полученные спектры соединения 2 полностью идентичны спектрам соединения 1. В спектрах соединений, этих содержащих гидроксильную группу – ОН, присоединение дополнительного атома кислорода О к атому серы S, который уже связан с одним атомом кислорода O, не привел к изменениям в ¹Н и ¹³С ЯМР спектрах. Отсюда следует, что структуры этих соединений одинаковы, однако про количество атомов кислорода определить на основании наших ЯМР данных невозможно, а значит, невозможно также однозначно утверждать, полученные спектры относятся к соединению 1 или 2. Для уточнения структуры требуется соединению ИХ проведение дополнительных экспериментов.

Рисунок 15 - ¹Н ЯМР спектр соединения 2 в растворе D₂O+ацетон (1:1). Т=303 К. Нумерация атомов соответствует цифрам на рисунке 10б. Знак * - сигнал растворителя

Рисунок 16 - ¹Н ЯМР спектры соединений 1 и 2 в растворе D₂O+ацетон (1:1). T=303 К. Нумерация атомов соответствует цифрам на рисунке 10 а, б. Знак * сигнал растворителя

2.4 ЯМР исследование соединения 3

Образец соединения 3-борнанового сульфона натрия (рисунок 10в) был приготовлен путем растворения в растворе D_2O . С целью подтверждения химической структуры соединения 3 были получены 1D ¹H (рисунок 17) и ¹³C ЯМР спектры и были проведены 2D ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC ЯМР эксперименты (рисунки 18 - 21). Соотнесение сигналов в спектрах было основано на анализе мультиплетности сигналов, интегральных интенсивностей и характеристик химических сдвигов (х. с.), а также кросс-пиков, наблюдаемых в двумерных спектрах.

В ¹Н ЯМР спектре соединения (рисунок 17) протоны С<u>H</u>₃-8, С<u>H</u>₃-9 и С<u>H</u>₃-10 наблюдаются в виде трех синглетов с химическими сдвигами 0,79; 0,69 и 0,84 м.д. соответственно. С<u>H</u>₂-11 резонирует так же как синглет с $\delta = 3,06$ м.д. Небольшие сигналы вблизи С<u>H</u>₃-9 и С<u>H</u>₂-11, вероятнее всего, являются сигналами примеси. Протон С<u>H</u>-2 группы наблюдается в спектре как мультиплет со значением химического сдвига 2,67 м.д.

По данным экспериментов ¹H -¹H COSY (рисунок 18) и ¹H -¹³C HSQC (рисунок 19) были определены все сигналы протонов, связанных между собой, а также химические сдвиги сигналов углерода, связанных напрямую с соответствующими протонами. Было установлено, что геминальные протоны Н5 и Н5', Н6 и Н6' неэквивалентны, относящиеся соответственно к метиленовым группам CH_2 -5 и CH_2 -6, и они попарно перекрываются между собой. На основании анализа 2D спектра ¹Н -¹³С HSQC (рисунок 19) были определены химические сдвиги протонов соответствующих метиленовых групп CH₂-5, CH₂-6: 1,01 и 1,55; 1,06 и 1,53 м.д. соответственно. Также был определен химический сдвиг протонного сигнала СН-4, который перекрывается с линиями резонанса С<u>H</u>₂-5 и С<u>H</u>₂-6 и ему соответствует значение химического сдвига 1,58 м.д. Геминальные протоны СН-3 и СН-3' попарно неэквивалентны, и соответствующие им значения химических сдвигов 1.66 и 1.79 м.д. соответственно.

Химические сдвиги С-1, С-7 и С-12 были определены на основе ${}^{1}\text{H} - {}^{13}\text{C}$ НМВС (рисунки 20, 21) эксперимента. Также все связи между протонами и углеродами, соответствующие химической структуре вещества, были подтверждены ${}^{1}\text{H} - {}^{13}\text{C}$ НМВС корреляциями. Все значения химических сдвигов $\delta {}^{1}\text{H}$ и ${}^{13}\text{C}$ ЯМР сигналов соединения 3 приведены в таблице 2.

Таблица 2 - ¹Н и ¹³С ЯМР химические сдвиги (б м.д.) соединения 3 при температуре 293 К

Атомы	в растворе D ₂ O				
	δ ¹ Н, м.д.	δ ¹³ C, м.д.			
C-1	-	46,73			
CH-2	2,67 м	54,47			
CH ₂ -3	1,66; 1,79 м	39,65			
CH-4	1,58 пс	45,50			
CH ₂ -5	1,01; 1,55 пс	26,58			
CH ₂ -6	1,06; 1,53 пс	37,83			
C-7	-	48,88			
CH ₃ -8	0,79 c	19,82			
CH ₃ -9	0,69 c	19,43			
CH ₃ -10	0,84c	13,00			
CH ₂ -11	3,06 c	39,06			
C-12	-	179,00			

*с – синглет, пс – перекрывающиеся сигналы, м – мультиплет.

Рисунок 17 - ¹Н ЯМР спектр соединения 3 в растворе D₂O. Т=293 К. Нумерация атомов соответствует цифрам на рисунке 10в

Рисунок 18 - ¹H - ¹H COSY спектр соединения 3 в растворе D₂O. T=293 К. Нумерация атомов соответствует цифрам на рисунке 10в

Рисунок 19 - ¹Н - ¹³С HSQC спектр соединения 3 в растворе D₂O. Т=293 К. Нумерация атомов соответствует цифрам на рисунке 10в

Рисунок 20 - ¹H - ¹³C HMBC спектр соединения 3 в растворе D₂O. T=293 К. Нумерация атомов соответствует цифрам на рисунке 10в

Рисунок 21 – Выделенная область 1 H - 13 C HMBC спектра соединения 3 в растворе D₂O. T=293 К. Нумерация атомов соответствует цифрам на рисунке

10в

2.5 ЯМР исследование соединения 4

Образец соединения 4 – борнанового сульфида (рисунок 10г) был приготовлен путем растворения вещества в растворе CDCl₃ в концентрации 23 г/л. С целью подтверждения химической структуры соединения 4 были получены 1D ¹H (рисунок 22) и ¹³C ЯМР спектры и были проведены 2D ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC ЯМР эксперименты (рисунки 23 - 25). Соотнесение сигналов в спектрах было основано на анализе мультиплетности сигналов, интегральных интенсивностей и характеристик химических сдвигов (х.с.), а также кросс-пиков, наблюдаемых в двумерных спектрах.

В ¹Н ЯМР спектре соединения 4 (рисунок 22) протоны С<u>Н</u>₃-8, С<u>Н</u>₃-9 и С<u>Н</u>₃-10 наблюдаются в виде трех синглетов с химическими сдвигами 0,99; 0,86

и 1,04 м.д. соответственно. С<u>H</u>₂-11 резонирует так же как синглет с $\delta = 3,29$ м.д. Небольшие сигналы вблизи С<u>H</u>₃-9 и С<u>H</u>₂-11, вероятнее всего, являются сигналами небольших примесей. Протон С<u>H</u>–2 группы наблюдается в спектре как мультиплет со значением химического сдвига 2,89 м.д.

По данным экспериментов ¹H-¹H COSY (рисунок 23) и ¹H-¹³C HSQC (рисунок 24) были определены все сигналы протонов, связанных между собой, а также химические сдвиги сигналов углерода, связанных напрямую с соответствующими протонами. Было установлено, что геминальные протоны H5 и H5', H6 и H6', относящиеся соответственно к метиленовым группам CH₂-5 и CH₂-6, неэквивалентны, и попарно перекрываются между собой. На основании анализа 2D спектра ¹H-¹³C HSQC (рисунок 24) были определены химические сдвиги протонов, соответствующих метиленовым группам СН2-5, CH₂-6: 1,19 и 1,75; 1,22 и 1,71 м.д. соответственно. Также был определен химический сдвиг протонного сигнала CH₂-4, который перекрывается с линиями резонанса CH₂-5 и CH₂-6 и ему соответствует значение х. с. 1,76 м.д. Геминальные протоны CH-3 И CH-3' попарно неэквивалентны, И соответствующие им значения химических сдвигов лежат в интервале 1,89 -1,99 м.д.

Химические сдвиги С-1, С-7 и С-12 были определены на основе ${}^{1}\text{H} - {}^{13}\text{C}$ HMBC (рисунок 25) эксперимента. Также все связи между протонами и углеродами, соответствующие химической структуре вещества, были подтверждены ${}^{1}\text{H} - {}^{13}\text{C}$ HMBC корреляциями. Все значения химических сдвигов $\delta {}^{1}\text{H}$ и ${}^{13}\text{C}$ ЯМР сигналов соединения 4 приведены в таблице 3.

Таблица 3 - ¹Н и ¹³С ЯМР химические сдвиги (δ , м.д.) соединения 4 при температуре 303 К

Атомы	в paстворе CDCl ₃					
	δ ¹ Н, м.д.	δ ¹³ C, м.д.				
C-1	-	47,31				
CH-2	2,89 м	55,31				
CH ₂ -3	1,91; 1,96 м	40,47				
CH-4	1,76 пс	46,07				
CH ₂ -5	1,19; 1,75 пс	27,27				
CH ₂ -6	1,22; 1,71 пс	38,54				
C-7	-	49,82				
CH ₃ -8	0,99 c	20,33				
CH ₃ -9	0,86 c	20,00				
CH ₃ -10	1,04 c	13,50				
CH ₂ -11	3,29 c	35,80				
C-12	-	175,95				

*с – синглет, пс – перекрывающиеся сигналы, м – мультиплет.

Рисунок 22 - ¹Н ЯМР спектр соединения 4 в растворе CDCl₃, T=303 К. Нумерация атомов соответствует цифрам на рисунке 10г

Рисунок 23 - ¹H - ¹H COSY спектр соединения 4 в растворе CDCl₃, T=303 К. Нумерация атомов соответствует цифрам на рисунке 10г

Рисунок 24 -¹H - 13 C HSQC спектр соединения 4 в растворе CDCl₃, T=303 К.

Нумерация атомов соответствует цифрам на рисунке 10г

Рисунок 25 - ¹Н - ¹³С НМВС спектр соединения 4 в растворе CDCl₃,T=303 К Нумерация атомов соответствует цифрам на рисунке 10г

2.6 ЯМР исследование соединения 5

Соединение 5 — камфеновый сульфид, со структурной формулой, показанной на рисунке 10д. Образец был приготовлен путем растворения в растворах D_2O и ацетона в концентрации 7 ϵ/n .

С целью подтверждения химической структуры исследуемого вещества был получен 1D ¹H ЯМР спектр (рисунок 26) и были проведены 2D ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC ЯМР эксперименты (рисунки 27 - 30). Изучение было основано на анализе мультиплетности сигналов, интегральных интенсивностей и характеристик химических сдвигов, а также кросс-пиков, наблюдаемых в двумерных спектрах.

В ¹Н ЯМР спектре (рисунок 26) протоны С<u>Н</u>₃-8, С<u>Н</u>₃-9 и С<u>Н</u>₃-10 наблюдаются в виде трех синглетов с химическими сдвигами 1,14; 0,96 и 1,34 м.д. соответственно. С<u>Н</u>₂-11 резонирует так же как синглет с δ = 3,24 м.д. Небольшие сигналы вблизи С<u>Н</u>₃-9, С<u>Н</u>₂-10 и С<u>Н</u>₂-11, вероятнее всего, являются сигналами примеси.

По данным экспериментов ¹H -¹H COSY (рисунок 27) и ¹H -¹³C HSQC (рисунок 28) были определены все сигналы протонов, связанных между собой спин-спиновым взаимодействием, а также химические сдвиги сигналов углерода. Было установлено, что геминальные протоны Н5 и Н5', Н6 и Н6' не эквивалентны. На основании анализа 2D спектра 1 H - 13 C HSQC (рисунок 28) были химические протонов, определены сдвиги соответствующих метиленовым группам С<u>H</u>₂-5, С<u>H</u>₂-6: 1,60 и 1,28; 1,53 и 1,36 м.д. соответственно. Также был определен химический сдвиг протонного сигнала СН-4, который наблюдается как отдельный уширенный сигнал, ему соответствует значение химического сдвига 1,70 м.д. СН-7 и СН-7' попарно неэквивалентны, и соответствующие им значения химических сдвигов – 2,20 и 1,11 м.д. CH-1 резонирует вблизи сигналов ацетона и сигнала CH-7, и по данным 1 H - 13 C HSQC спектра (рисунок 28) сигналу CH-1 соответствует значение химического сдвига $\delta = 2.18$ м.д.

Химические сдвиги С-2, С-3 и С-12 были определены на основе анализа 1 H - 13 C HMBC (рисунки 29, 30) эксперимента. Также все связи между протонами и углеродами, соответствующие химической структуре вещества, были подтверждены 1 H- 13 C HMBC корреляциями. Все значения химических сдвигов δ 1 H и 13 C ЯМР сигналов соединения 5 приведены в таблице 4.

Таблица 4 - ¹Н и ¹³С ЯМР химические сдвиги (δ , м.д.) соединения 5 при температуре 303 К

Атомы	в растворе D ₂ O+ацетон (1:1)					
	δ ¹ Н, м.д.	δ ¹³ C, м.д.				
CH-1	2,18 пс	49,36				
C-2	-	59,19				
C-3	-	43,84				
CH-4	1,70 c	51,06				
CH ₂ -5	1,36; 1,53 м, пс	23,62				
CH ₂ -6	1,28; 1,60 м	23,12				
C H ₂ -7	1,11; 2,20 пс	35,29				
CH3-8	1,14 c	27,30				
CH ₃ -9	0,96 c	22,77				
CH ₃ -10	1,34 c	21,14				
CH ₂ -11	3,24 c	32,32				
C-12	-	174,20				

*с – синглет, пс – перекрывающиеся сигналы, м – мультиплет.

Рисунок 26 - ¹Н ЯМР спектр соединения 5 в растворе D₂O+ацетон (1:1). T=303 К. Нумерация атомов соответствует цифрам на рисунке 10д. Знак * соответствует сигналу растворителя

Рисунок 27 - 1 H - 1 H COSY спектр соединения 5 в растворе D₂O+ацетон (1:1). Т=303 К. Нумерация атомов соответствует цифрам на рисунке 10д

Рисунок 28 - ¹H - ¹³C HSQC спектр соединения 5 в растворе D₂O+ацетон (1:1). T=303 К. Нумерация атомов соответствует цифрам на рисунке 10д. Знак * соответствует сигналу растворителя

Рисунок 29 - 1 H - 13 C HMBC спектр соединения 5 в растворе D₂O+ацетон (1:1). Т=303 К. Нумерация атомов соответствует цифрам на рисунке 10д

Рисунок 30 - Выделенная область¹Н - ¹³С НМВС спектра соединения 5 в растворе D₂O+ацетон (1:1). Т=303 К. Нумерация атомов соответствует цифрам на рисунке 10д. Знак * соответствует сигналу растворителя

2.7 Общее представление ЯМР спектров пяти соединений

Соотнесенные ¹Н ЯМР спектры всех пяти соединений представлены на рисунке 31. Все значения ¹Н и ¹³С ЯМР химических сдвигов сигналов исследуемых веществ представлены в таблице 5.

Рисунок 31 -¹Н ЯМР спектры пяти исследуемых веществ

Борнановое					Камфеновое						
	Соедине	ние 1	Соединен	ие 2	Соединение 3 Соединение 4				Соединен	ние 5	
	в раст	воре D ₂ C	О+ацетон (1:1)	в pacтворе D ₂ O		в pacтвоpe CDCl ₃			в раство	ope
		12			2		5			D ₂ O+ацето	н (1:1)
Атомы	δ ¹ Н, м.д.	δ^{13} C,	δ ¹ Н, м.д.	δ	δ ¹ Н, м.д.	δ^{13} C,	δ ¹ Н, м.д.	δ^{13} C,	Атомы	δ ¹ Н, м.д.	$\delta^{13}C$,
		М.Д.		¹³ C,		М.Д.		М.Д.			М.Д.
				М.Д.							
C-1	-	51,52	_	51,43	-	46,73	-	47,31	CH-1	2,18 пс	49,36
CH-2	3,42 м	70,08	3,42 м	70,08	2,67 м	54,47	2,89 м	55,31	C-2	-	59,19
CH ₂ -3	1,78; 2,13	32,32	2,12; 1,78 м,	32,23	1,66; 1,79	39,65	1,91; 1,96	40,47	C-3	-	43,84
	м, пс		пс		Μ		Μ				
CH-4	1,80 м	44,70	1,79 м	44,58	1,58 пс	45,50	1,76пс	46,07	CH-4	1.70 c	51,06
CH ₂ -5	1,22; 1,77 м,	26,18	1,21; 1,76 м,	26,13	1,01; 1,55	26,58	1,19; 1,75	27,27	CH ₂ -5	1,36; 1,53 м,	23,62
	пс		пс		пс		пс			пс	
CH ₂ -6	1,34; 1,60	39,66	1,32; 1,60 м	39,59	1,06; 1,53	37,83	1,22; 1,71	38,54	CH ₂ -6	1,28; 1,60 м	23,12
	М				пс		пс				
C-7	-	47,48	-	47,42	-	48,88	-	49,82	CH ₂ -7	1,11; 2,20 пс	35,29
CH ₃ -8	1.00 c	20,09	0,99 c	20,11	0,79 c	19,82	0,99 c	20,33	CH ₃ -8	1,14 c	27,30
CH ₃ -9	0,85 c	19,67	0,84 c	19,59	0,69 c	19,43	0,86 c	20,00	CH ₃ -9	0,96 c	22,77
CH ₃ -10	1,19 c	12,70	1,18 c	12,64	0,84 c	13,00	1,04 c	13,50	CH ₃ -10	1,34 c	21,14
CH ₂ -11	3,20; 3,29	55,42	3,29; 3,20 м	55,37	3,06 c	39,06	3,29 c	35,80	CH ₂ -11	3,24 c	32,32
	М										
C(H ₂)-12	3,99 м	55,04	3,99 м	54,99	-	179,00	-	175,95	C-12	-	174,20

Таблица 5 - Значения ¹Н и ¹³С ЯМР химических сдвигов (б, м.д.) борнановых и камфенового терпеноидов

*с – синглет, м – мультиплет, пс – перекрывающиеся сигналы.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

В ходе экспериментальной работы были приобретены навыки работы с ЯМР спектрометрами Bruker Avance IITM - 500 (500 MHz (1H)) и Bruker Avance IIITM - HD – 700 (700 MHz (1H)). Получены ¹Н и ¹³С, а также 2D ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC ЯМР спектры новых серосодержащих терпеноидов в таких растворителях как CDCl₃, D₂O и ацетон. По данным экспериментов ¹H -¹H COSY и ¹H -¹³C HSQC были определены все сигналы протонов, связанных между собой, а также химические сдвиги сигналов углерода, связанных напрямую с соответствующими протонами. Также все связи между протонами и углеродами, соответствующие химической структуре вещества, были подтверждены ¹H-¹³С HMBC корреляциями. На основании анализа ¹H-¹³C HMBC спектра были определены сигналы углеродов, не связанных непосредственно с атомами водорода. Получены значения химических сдвигов δ^{1} H и 13 C ЯМР всех сигналов борнановых и камфенового терпеноидов.

общий Исследованные терпеноиды содержали кроме ДЛЯ BCCX, терпеноида с камфеновым циклом, борнановый цикл в структуре, но отличались количеством и местоположением атомов кислорода в заместителе. В спектрах соединений 1 и 2, содержащих гидроксильную группу -ОН, присоединение дополнительного атома кислорода О к атому серы S, который уже связан с одним атомом кислорода O, не приводит к изменениям в 1 H и 13 C ЯМР спектрах, из чего был сделан вывод, что это спектр одного и того же соединения, а значит структура одного из соединений не соответствует предполагаемой. Требуется уточнение структуры соединений 1 И 2. Химические структуры соединений 3–5 подтверждены.

Результаты представлены:

 Итоговая научно-образовательная конференция студентов ИФ КФУ
2018 г. Устный доклад «Исследование серосодержащих борнановых и камфеновых терпеноидов в растворе методами спектроскопии ядерного магнитного резонанса» (3 место);

2. Конкурс на лучшую научную работу КФУ 2018 г. (КЛНР КФУ 2018). «Исследование серосодержащих борнановых и камфеновых терпеноидов в растворе методами спектроскопии ядерного магнитного резонанса».

Благодарности

Выражаю благодарность группе из КГМУ под руководством Никитиной Лилии Евгеньевны за предоставление новых синтезированных веществ для исследований.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Finegold, J.A. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations [Text]
/ J.A. Finegold, P. Asaria, D.P. Fransis // Int. J .Cardiol. – 2013. - №168. – P. 934-945.

2. Киселев, С.В. Взаимодействие фактора X человека с тканевым тромбопластином [Текст] / С.В. Киселев, Д.М. Зубаиров, В.Н. Тимербаев // Биомедицинская химия. - 2003. - Т. 49.- № 5.- С. 443-450.

3. Nikitina, L.E. Synthesis and antifungal activity of compounds of the pinane series [Text] / L.E. Nikitina, V.A. Startseva, I.A. Vakulenko, I.M. Khismatulina., S.A. Lisovskaya, N.P. Glushko, R.S. Fassakhov // Pharmaceutical Chemistry Journal. – 2009. – V. 43. - №5. – P. 251-254.

Gavrilov, V.V. Synthesis and antifungal activity of sulfides, sulfoxides, and sulfones based on (1S)-(-)-β-pinene [Text] / V.V. Gavrilov, V.A. Startseva, L.E. Nikitina, O.A. Lodochnikova, O.I. Gnezdilov, S.A. Lisovskaya, N.I. Glushko, E.N. Klimovitskii // Pharmaceutical Chemistry Journal. – 2010. – V. 44. - №3. – P. 126-129.

 Godevac, D. Composition and antimicrobial activity of the essential oil from Galatella linosyris (L.) Rchb. f. (Asteraceae) [Text] / D. Godevac, L. Vulsic, I. Vuckovic, V. Vajs, M. Sokovic, P.D. Marin, V. Tesevic, J. Serb // Chem. Soc. – 2012– V. 77. - №5. – P. 619-626.

Бонтер, Х. Введение в курс спектроскопии ЯМР [Текст] / Х.
Гюнтер. – М.: Мир, 1984. – 478 с.

7. Дероум, Э. Современные методы ЯМР для химических исследований [Текст] / Э. Дероум. – М.: Мир, 1992. – 403 с.

Нифантьев, И.Э. Практический курс спектроскопии ядерного магнитного резонанса [Текст] / И.Э. Нифантьев, П.В. Ивченко. – М.: Изд-во МГУ, 2006. – 200 с.

9. Устынюк, Ю.А. Лекции по спектроскопии ядерного магнитного резонанса [Электронный ресурс] / Ю.А. Устынюк - 1997 – 2017 – URL: http://www.chem.msu.ru. (Дата обращения: 22.09.2017).

10. Jaun, B. Structure Determination by NMR [Text] / B. Jaun – 2013. –103 p.

11. Воловенко, Ю.М. Спектроскопия ядерного магнитного резонанса для химиков [Текст] / В.Г. Карцев, И.В. Комаров, А.В. Туров, В.П. Хиля. – 2011. – 704 с.

12. Ядерный магнитный резонанс (ЯМР). Двумерные спектры [Электронный ресурс]. – URL: http://researchpark.spbu.ru. (Дата обращения: 27.02.2018).

13. Bruker. Avance 1D and 2D Course. [Textbook] / Bruker. – 2001.- 206 p.

Braun, S. 150 and More Basic NMR Experiments [Text] / S. Braun, H.-O. Kalinowski, S. Berger. - 2000. – 129 p.