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Abstract

Deep neural networks composed of several pre-trained layers have been successfully applied
to various tasks related to audio processing. Some configurations of deep neural networks
(including deep recurrent networks) which can be pretrained with the help of stacked denoising
autoencoders are proposed and examined in this paper in application to feature extraction for
audio chord recognition task. The features obtained from an audio spectrogram using such
network can be used instead of conventional chroma features to recognize the actual chords in
the audio recording. Chord recognition quality that was achieved using the proposed features
is compared to the one that was achieved using conventional chroma features which do not
rely on any machine learning technique.
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Introduction

One of the important areas of music information retrieval is the estimation of ele-
ments related to musical concepts. The concepts such as note, chord, melody, key can
be determined from musical score, but their extraction from an audio signal is a very
difficult task even for the human.

The ultimate goal of estimating automatically all musical concepts of a given musical
audio, or obtaining its transcription, can hardly be solved. Instead, many researchers
work on different aspects of this task, such as audio melody extraction, beat detection or
audio chord estimation. The information about chords contained in a recording can be
useful for other tasks related to music processing, for example structural segmentation.
This information is valuable per se, as it can be used to index musical recordings by
their content, to help musicologists to analyse harmony of a song or to let amateur
musicians play their favourite songs when chords are not available from other sources.

More formally, the task of audio chord recognition consists in following. Given a dig-
ital musical audio recording one needs to determine the sequence of chords that were
played in this recording together with their boundaries: for each chord the name and
the times of its beginning and end must be specified. Chord names are usually chosen
from a fixed set of 12 major and 12 minor chords plus a N symbol for a missing chord
(e.g. when no pitched musical instrument is playing or when there is silence).

During chord recognition various properties of music are exploited, such as the pre-
sence of rhythm, the presence of harmonic frequencies of pitched instruments, repeated
sections, polyphony. But other factors, such as noises, unpitched musical instruments,
a voice singing out-of-tune, can bring negative influence and need to be dealt with.

A common approach to the task of chord recognition can be divided into 3 steps. At
first, audio recording is pre-processed (beat detection is often performed here) and trans-
formed to the time-frequency domain (e.g. using fast Fourier transform or constant-Q
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transform [1], resulting in a so-called spectrogram. Each spectrogram column represents
the spectrum of a short fragment of the original recording.

Then a series of transforms is applied to the spectrogram to consider the music
properties and factors mentioned above and transform it to a sequence of feature vectors.
Some widely used feature types are pitch class profile vectors [2] and chroma DCT-
reduced log-pitch [3]. They are generally called chroma vectors, because they have
12 components, one component per pitch class (a pitch class unites all frequencies that
correspond to equally named notes that belong to different octaves).

Finally, the sequence of feature vectors is converted to the sequence of chord symbols.
Chord boundaries appear naturally, because of initial division of the recording into a set
of fragments with fixed boundaries. Probabilistic models such as hidden Markov models
(e.g. [4]) and dynamic Bayesian networks [5] are often used here because of their ability
to model series of sequential events and include various factors (bass note, musical key).
The target sequence of chord labels can be obtained from the sequence of observed
feature vectors by application of the Viterbi algorithm to the model.

Simpler algorithms that only compare the feature vectors with predefined template
vectors for chords [6] perform a little worse, but do not require training and therefore
cannot be overfitted to concrete chord sequences or music style. We believe that a good
chord recognition quality can be achieved without probabilistic models, using better
features with simpler classifier instead.

Promising results in this direction were obtained in [7] with the help of deep convolu-
tional neural network. In this paper we investigate another type of deep neural networks
in application to chord recognition – multi-layer perceptrons pre-trained as stacked de-
noising autoencoders. Unlike convolutional neural networks they process spectrogram
as a sequence of columns, not as a composition of rectangles. Networks of this type have
been successfully applied to automatic speech recognition [8]. With the introduction of
recurrent connections it becomes possible to model the dependency on the chord playing
during previous fragments of a recording.

This paper continues the work started in [9] and gives better understanding of some
important facets of the network construction and the system at large. It is also shown
how the configuration of the network impacts its training and test times.

The remainder of the paper is organized as follows. Section 1. introduces autoen-
coders and their modifications. In section 2. the experimental setup and evaluation
methods are described. In section 3. the results are presented and discussed. Section 4.
provides the directions for future work.

1. Autoencoders and recurrent networks

1.1. Theoretical background. The definitions here are given in concordance
with [10].

An autoencoder (also often called autoassociator) can be represented as a pair of
transforms

y = fθ(x) = s(Wx + b), (1)

z = gθ′(y) = s(W ′y + b′). (2)

Here x is an input vector, z is the reconstructed output vector, y is the internal
representation of x , θ = {W, b} and θ′ = {W ′, b′} are parameters (with a typical
restriction W ′ = WT ), s is a non-linear activation function, natural choice for it is
the sigmoid function or the hyperbolic tangent function. In (2) a linear function s is
sometimes used. A convenient representation for an autoencoder is a neural network
with one hidden layer.
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During autoencoder training the cost function L(X,Z(X)) is minimized, where X
is a set of possible inputs. A natural choice in case when X is a set of spectrogram
columns is the squared error objective function L(x, z) = ‖x− z‖2 .

To avoid learning the identity mapping, the internal representation often has less
dimensions than the input vector. Alternative way is to make the internal representation
having more dimensions than the input vector, and introduce the sparsity restriction
on the hidden layer, so that most of its activations are close to zero. In this case the
internal representation becomes a sparse representation of the input. If we denote as
f j

θ (x) the activation of hidden unit j for an input x , then we can define the average
activation of this hidden unit over the whole training set of size m :

ρ̂j =
1
m

m∑

i=1

f j
θ

(
x(i)

)
. (3)

We would like to enforce ρ̂j = ρ , where ρ is a sparsity parameter, typically close to
zero, we choose ρ = 0.05 . To achieve this, an extra penalty term Lρ is added to the
cost function L . Many choices for this term are possible, we apply the one proposed
in [11]:

Lρ = β




h∑

j=1

(
ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j

)
 , (4)

where h is the number of units in the hidden layer.
A denoising autoencoder is trained to reconstruct the input vector x from its cor-

rupted version x̃ . It was shown (see [12]) that internal representations obtained from
a denoising autoencoder are more stable and robust and capture better the internal
structure of the input distribution. Two often used noise types are additive isotropic
Gaussian noise x̃|x ∼ N (x, σ2I) and masking noise, that forces a fraction ν of elements
chosen at random to be 0.

Denoising autoencoders can be stacked by connecting the hidden layer outputs of
one autoencoder to the inputs of another autoencoder, thus forming more complex
data representations in the deeper layers. The layers are then pre-trained one by one in
an unsupervised manner.

Recurrent denoising autoencoder can be constructed from the conventional denois-
ing autoencoder by adding a recurrent connection from its hidden layer to itself (which
results essentially in the Elman network [13]). Then the output of this layer is com-
puted as

y(xt) = s (Wxt + b + Uy(xt−1)) . (5)

Output of a recurrent layer depends both on current input vector and on the hidden
representation of previous input vectors. Any layer (and even several layers) can be
turned into a recurrent one.

1.2. Adaptation to audio chord recognition. A serious shortcoming of neural
networks is the lack of an evident interpretation of values in hidden layers. So an addi-
tional logistic regression layer with 12 outputs can be added to make network output
interpretable. This additional layer is connected to the hidden layer of the innermost
autoencoder, and its output will be treated as chroma vector. Reconstruction layers of
autoencoders are then discarded, and the whole network is fine-tuned in a supervised
manner. In fact, autoencoders are used to pre-train the network layers and put their
parameters in the area where their best values probably reside. Fine tuning is needed
to adjust parameters of the last logistic regression layer.
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The training data is obtained from known chord labels. Each of them can be repre-
sented as an ideal 12-dimensional vector which has 1 on the positions that correspond
to the notes of a given chord, and 0 on the other positions. These vectors are often
called binary chord templates. No chord (N) corresponds to null vector, and therefore
can be detected when the element of the resulting vector with maximum absolute value
is no greater than ∆ – the parameter, which is adjusted empirically.

To compensate for uneven distribution of chords in training data, the following trick
can be applied. Note that binary templates for all chords of a given type (e.g. major
chords) can be obtained from the C major chord template by cyclic permutations of its
components. So for each spectrogram column it is possible to generate 12 input vectors
(and 12 corresponding output vectors from the corresponding chord label) by applying
cyclic permutation in one direction 12 times. This way, equal counts of all chords of
one type in the training data can be achieved. But cyclic permutation of spectrum
components is unnatural, because highest spectral components are moved before lowest
ones. So it is better to replace it with a sliding window and let the initial spectrum
span 1 octave more, thus providing 12 additional values.

Cyclic permutation of inputs or chroma vector components is a common trick when
learning model parameters in chord recognition algorithms. We propose here to use it
both when training a stacked denoising autoencoder and when testing it on unknown
inputs. Chroma vectors for a new spectrogram can be calculated 12 times with 12 dif-
ferent roots, then rotated to the same root and averaged. This can potentially result in
better recognition quality.

To compensate for the difference in total numbers of major and minor chords within
the training set, we restricted this difference to be no more than 100 (which turns to
1200 due to cyclic permutation) in the generated set of examples for neural network
training.

2. Experimental setup

2.1. Pre-processing and spectrogram. A thorough description of the spectro-
gram calculation process can be found in [14]. We will further assume that the initial
spectrogram spans 6 octaves: from C2 (65.41 Hz) to B7 (3951 Hz) and has 1 row per
note. Therefore each spectrogram column consists of 72 values that represent the in-
tensity of the corresonding note on a given sound fragment. When less components are
required for calculations, the lowest ones are always used. A logarithmic transformation
is applied to each value to mimic the human perception of sound intensity: each value
v is replaced with log10(1000v + 1) , as proposed in [3]. Each spectrogram column was
normalized to fit its values into [0, 1] before passing it to the neural network.

2.2. Feature vectors and neural networks. Twelve-dimensional chroma fea-
ture vectors are obtained from the neural network trained as described above. We exper-
imented with various network layouts. The network in all experiments has 12 outputs,
but the number of inputs, the number of hidden layers and their size varied across
experiments. The following options were considered:

• the described network with 48 or 60 inputs, 1, 2 or 3 hidden layers and no recurrent
connections (SDA);

• the described network with 48 or 60 inputs, 1, 2 or 3 hidden layers and recurrent
connection from the innermost hidden layer to itself (RSDA).

2.3. Post-processing. At first, each feature vector is replaced with a linear com-
bination of 10% of most similar vectors, where each vector’s weight is its similarity to
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the source feature vector. Similarity is calculated as Euclidean distance between 2 vec-
tors. This makes it possible to take into account the repetition of music phrases. Similar
technique was employed in [5], but they only preserved the diagonals in self-similarity
matrix which are parallel to the main diagonal. We do not put such restriction on this
matrix.

Additionally, two heuristics were implemented to correct chord detection errors of
certain types. First heuristic consists in searching for all intervals where multiple chords
of the same root but different type are arranged next to each other, and then replacing
each interval with a single chord label. This chord is chosen as the nearest one to
the sum of all feature vectors within the interval. Another heuristic was introduced
to fix chord sequences like (A, B, C), where 3 successive beats are marked with 3 diffe-
rent chords. Each similar sequence is replaced with the one of (A, A, C), (A, C, C),
(B, B, C), (A, B, B) for which the sum the of distances from successive feature vectors
to corresponding chord labels is minimal.

2.4. Evaluation. The experiments were conducted on the combination of Iso-
phonics [15] and RWC [16] datasets. The former consists of 218 songs by The Beatles,
Queen and Zweieck. The latter consists of 100 Japanese pop songs. This dataset of 318
tracks was randomly divided into 2 groups of same size, which were treated by turns as
train and test sets.

Given the reference sequence of chord labels and the estimated sequence of chord
labels for a recording the evaluation was performed as follows. At first, the recording is
separated into segments using all chord boundaries from both reference and estimated
sequences. Then on each segment a “Triads” score was calculated as described in [17]. Its
value s equals to 1 on a segment when estimated and reference chord on this segment
reduced to their corresponding triads (first 3 notes) are equal or are both no chord
symbols. Otherwise s = 0 . Then the overlap ratio is calculated for this recording as:

OR =
Nsegm∑

i=1

si`i

/ Nsegm∑

i=1

`i, (6)

where si is the score on ith segment, `i is the length of ith segment, Nsegm is the total
number of segments in the recording. Weighted average overlap ratio is defined for the
whole dataset as:

WAOR =
Ntracks∑

i=1

ORi · Li

/ Ntracks∑

i=1

Li, (7)

where ORi is the overlap ratio for ith recording, Li is the total length of ith recording
and Ntracks is the size of the dataset (318 recordings).

The values of weighted average overlap ratio calculated during the MIREX Audio
Chord Estimation 2013 contest on the Isophonics collection 1 are between 0.71 and
0.82 . Average segmentation defined in [5] is not commonly used, but we also provide its
values here. It characterizes the chord boundaries estimation quality.

We also performed statistical significance tests to determine if there is a significant
difference between algorithm variations. Friedman’s ANOVA with post-hoc Tukey HSD
is used in MIREX Audio Chord Estimation and other MIREX contests [18]. In this
work the R [19] implementation [20] was employed using the code by Tal Galili2.

1 http://www.music-ir.org/mirex/wiki/2013:Audio_Chord_Estimation_Results_MIREX_2009
2 http://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code)
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Table 1. Chord recognition quality achieved with various neural network configurations

Configuration Overlap Segmentation
SDA (48, 200) 0.7639 0.8035
SDA (48, 200, 200) 0.7616 0.8009
SDA (60, 100) 0.7616 0.7991
SDA (60, 200) 0.7637 0.8010
SDA (60, 300) 0.7649 0.8011
SDA (60, 200, 100) 0.7664 0.8011
SDA (60, 300, 300) 0.7650 0.8012
SDA (60, 100, 100, 100) 0.7671 0.7996
SDA (60, 300, 300, 300) 0.7674 0.8011
RSDA (48, 200) 0.7616 0.7963
RSDA (48, 200, 200) 0.7660 0.7982
RSDA (60, 300) 0.7613 0.7955
RSDA (60, 300, 300) 0.7672 0.7982
RSDA (60, 300, 300, 300) 0.7686 0.7986

3. Results

The number of inputs in the network is relatively small. Therefore we only experi-
mented with 1, 2 and 3 hidden layers. Learning rate for autoencoder pre-training and
network learning were set to 0.03 and 0.01 respectively; both pre-training and network
learning were run for 15 epochs. Batch size for batch gradient descent was set to 5.
Standard deviation for isotropic Gaussian noise was set to 0.2, and the noise was ap-
plied to each spectral component with probability p = 0.7 . Probability of setting vector
component to 0 was set to 0.2 for masking noise.

Below in parentheses are written the numbers of units in input layer and hidden
layers of neural networks (SDA or RSDA) or the number of spectral components used
to calculate PCP, CLP or CRP features. In the experiments only the last pre-trained
layer was made recurrent.

The first experiment is targeted at discovering the best performing network layout.
Same layouts were used with and without recurrent connections. The spectrum was
calculated from 6 or 5 octaves using sliding 5 or 4 octaves wide window (60 and 48
inputs respectively). Both logarithmic transformation and post-processing were applied.
The results are summarized in Table 1.

In spite of the fact that the configurations with more units achieved a little better
result, there was no significant differences between the results. Neither the presence of
recurrent connections, nor the increase of input vector size improve chord recognition
much. Only for some pairs the difference was statistically significant. But it can be seen
from Table 2 that the total time of training and testing grows strongly with addition
of more layers and recurrent connections. Because of that only the SDA (60, 300, 300)
was used in the following experiments.

It was mentioned above that a logarithmic transformation is applied to the spec-
trogram before passing its values to a neural network. To check whether a network can
perform at the same level without this transform, the SDA (60, 300, 300) network was
trained using spectral data without logarithmic transformation. The results are shown
in Table 3. It can be concluded that this transformation is an important part of data
preparation process, as its absence drops the result significantly.

In paragraph 1.1. various noise types have been mentioned. Noise is added to input
vectors to let autoencoder learn better representation of input data in the hidden leayer.
Table 4 confirms this assumption. The results obtained with 2 different types of noise are
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Table 2. Total training and test times for different network configurations

Configuration Training time Test time
SDA (60, 100) 43 min 49 s 4 min 38 s
SDA (60, 200) 1 h 2 min 19 s 4 min 56 s
SDA (60, 300) 1 h 20 min 48 s 5 min 17 s
SDA (60, 200, 100) 2 h 19 min 52 s 7 min 6 s
SDA (60, 300, 300) 6 h 21 min 28 s 8 min 18 s
SDA (60, 300, 300, 300) 15 h 21 min 19 s 13 min 21 s
RSDA (60, 300) 6 h 55 min 43 s 1 h 52 min 01 s

Table 3. The effect of non-linear transformations

Algorithm Overlap Segmentation
SDA (60, 300, 300) (no log) 0.7350 0.7890
SDA (60, 300, 300) 0.7672 0.7982

Table 4. The effect of various noise types during autoencoder pre-training

Noise type Triads Segmentation
additive 0.7672 0.7982
masking 0.7677 0.8018
no noise 0.7620 0.7989

Table 5. The effect of sliding window application during testing

Configuration Triads Segmentation
SDA (60, 300, 300) (no sliding window) 0.7703 0.8020
SDA (60, 300, 300) 0.7672 0.7982

better than the one obtained without noise addition, and this difference is statistically
significant. But there is no significant difference between additive noise and masking
noise.

In paragraph 1.2. we proposed to use sliding window to imitate cyclic permutations
both during training and testing phases. It is definitely important during training to
equalize the numbers of training examples per chord. But it needs to be checked whether
this procedure is helpful on testing phase. As can be seen from Table 5, its effect is even
negative.

Finally, these numbers can be compared to the result obtained under the same
configuration, but using one of the best conventional chroma features – DCT-reduced
log pitch (CRP) [3] – instead: Triads – 0.7720, Segmentation – 0.8141. The difference
between this result and the one obtained using the SDA (60, 300, 300) network is not
so big, but statistically significant.

4. Conclusions and future work

It can be concluded, that the features calculated with the proposed deep network
make it possible to achieve practically the same chord recognition quality as the best
conventional features. But the configuration of the network and the type of noise added
during layerwise pre-training are of less importance than the method of data prepara-
tion. Better spectrum data can improve both conventional features and neural network
based ones.
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Another important conclusion is that the addition of layers and units improves the
result slightly at the cost of multiplied training time. The same is true for recurrent
connections. In addition they make testing process a lot slower, because the output
vector at every step depends on all previous steps, and therefore separate input vectors
cannot be processed in parallel.

In this paper we have investigated how a deep neural network that processes a spec-
trogram column by column (as opposed to convolutional neural networks) can produce
effective chroma features that can be used for audio chord recognition. In the future
we plan to investigate whether aggregating these features with conventional ones can
lead to better chord recognition quality. A separate problem is to find another way
of inclusion of time information into the model, because recurrent connections do not
bring much improvement within the current network configuration.

Резюме

Н.Ю. Глазырин. Промежуточное представление звуковых данных с использованием
многослойной нейронной сети для задачи распознавания аккордов.

Глубокие нейронные сети, состоящие из нескольких предварительно обученных слоёв,
успешно применяются в задачах, связанных с обработкой звука. В данной работе пред-
ложены и рассмотрены применительно к задаче распознавания аккордов некоторые кон-
фигурации глубоких нейронных сетей (в том числе рекуррентных), допускающие предва-
рительное послойное обучение при помощи многослойных очищающих автоассоциаторов.
Рассмотренные нейронные сети позволяют преобразовывать спектрограмму звукозаписи
в последовательность векторов признаков, по которой затем определяются звучащие ак-
корды. Качество распознавания аккордов, достигнутое с использованием описанных при-
знаков, сравнивается с качеством распознавания аккордов, достигнутым при помощи ча-
сто используемых хроматических признаков, при вычислении которых не используются
методы машинного обучения.

Ключевые слова: распознавание аккордов, автоассоциатор, рекуррентная нейрон-
ная сеть, глубокое обучение.
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