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Abstract

The problem of minimax detection of a Gaussian random signal vector in white Gaussian
additive noise has been considered. We suppose that an unknown vector σ of the signal vector
intensities belongs to the given set E . We have investigated when it is possible to replace
the set E (and, in particular, by a single point σ0 ) by a smaller set E0 without quality loss.
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Introduction

1. Simple hypotheses. There are two simple hypotheses H0 (“noise”) and H1

(“noise + stochastic signal”) on observations y = (y1, . . . , yn) ∈ Rn :

H0 : y = ξ,

H1 : y = s + ξ,
(1)

where ξ = (ξ1, . . . , ξn) are the independent N (0, 1)-Gaussian random variables, and
s = (s1, . . . , sn) are independent on ξ , independent N (0, σ2

i ) , i = 1, . . . , n -Gaussian
random variables (i.e., E(s2

i ) = σ2
i ). Let us denote σ = (σ1, . . . , σn) , where all σi ≥ 0 ,

and introduce the function

D(σ) =
n∑

i=1

ln(1 + σ2
i ). (2)

Then, for conditional probability densities, we have

p(y|H0) = (2π)−n/2 exp

(
−1

2

n∑

i=1

y2
i

)
,

p(y|σ) = (2π)−n/2 exp

(
−1

2

n∑

i=1

y2
i

(1 + σ2
i )
− 1

2
D(σ)

)
.

(3)

Let us denote also

r(y, σ) = ln
p(y|σ)
p(y|H0)

=
1
2

n∑

i=1

σ2
i y2

i

1 + σ2
i

− 1
2

D(σ). (4)

The optimal solution of the problem of testing the simple hypothesis H0 against
the simple alternative H1 (Neyman–Pearson criteria) has the form

y ∈ A(A,σ) ⇒ H0, y 6∈ A(A,σ) ⇒ H1, (5)
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where the set (ellipsoid)) A(A,σ) is

A(A,σ) =

{
y :

n∑

i=1

σ2
i y2

i

1 + σ2
i

≤ D(σ) + A

}
, σ = (σ1, . . . , σn). (6)

The level A of this test is determined by the given first-kind error probability (“false
alarm probability”) α = α(A, σ) :

α(A,σ) = P(y 6∈ A|H0)) = P

(
n∑

i=1

σ2
i ξ2

i

1 + σ2
i

> D(σ) + A

)
. (7)

If hypothesis H1 is true, then yi = ξi + σiηi ∼
√

1 + σ2
i ηi , where (η1, . . . , ηn)

are independent N (0, 1) -Gaussian random variables. The second-kind error probability
(“miss probability”) β(A, σ) is defined by the following formula

β(A,σ) = P(y ∈ A|H1) = P

(
n∑

i=1

σ2
i ξ2

i < D(σ) + A

)
. (8)

For the given value α , we denote by β(α, σ) the minimum possible value β(A,σ)
for the optimal choice of the level A (according to formulas (7), (8)).

2. Simple hypothesis against composite alternative. Let a set E of non-nega-
tive vectors σ = (σ1, . . . , σn) be given. Let us assume that on the vector σ , describing
the hypothesis H1 from (1), it is known only that σ ∈ E , but the vector σ itself is not
known (i.e., the hypothesis H1 is composite). Similarly to (5), for testing hypotheses
H0 and H1 , we choose a decision region A ∈ Rn , such that

y ∈ A ⇒ H0, y 6∈ A ⇒ H1.

The first- and second-kind error probabilities are defined, respectively, by the following
formulas

α(A) = P(y 6∈ A|H0)

and
β(A, E) = P(y ∈ A|H1) = sup

σ∈E
P(y ∈ A|σ).

In other words, the minimax problem of testing hypotheses H0 and H1 is considered.
Provided that the first-kind error probability α , 0 < α < 1 , is given, we are inte-

rested in finding the minimal possible second-kind error probability

β(α, E) = inf
A:α(A)≤α

β(A, E) (9)

and the corresponding decision region A(α) .
Without any loss of generality, we assume that the set E is closed and Lebeques mea-

surable on Rn . Formally speaking, the optimal solution of the problem (9) of minimax
testing of hypotheses H0 and H1 is described in Wald’s general theory of statistical
decisions [1]. For this solution, we need to find the “ least favorable” prior distribution
πlf(dE) on E , replace the composite hypothesis H1 by the simple hypothesis H1(πlf) ,
and then investigate characteristics of the corresponding Neyman-Pearson criteria for
testing simple hypotheses H0 and H1(πlf) . Unfortunately, all that can be done only
in some very special cases. It is natural then to separate cases when that “least favor-
able” prior distribution on E has the simplest form (e.g., it is concentrated in one point
from E ).
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Clearly, for the value β(α, E) , the lower bound holds

β(α, E) ≥ sup
σ∈E

β(α, σ). (10)

The function β(α, σ) , α ∈ [0, 1] , σ ∈ Rn
+ is continuous on both arguments. Since

the set E ∈ Rn
+ is supposed to be closed, then there exists σ0 = σ0(E , α) ∈ E , such

that
β(α, σ0) = sup

σ∈E
β(α, σ).

Firstly, we are interested in for what kind of E the “least favorable” prior distribution
is concentrated in the point σ0 , and then the following equality holds

β(α, E) = β(α, σ0). (11)

If the equality (11) holds for the set E , then, without any loss of detection quality,
we may replace the composite hypothesis H1 = {E} by the simple hypothesis H1 = σ0 ,
and the optimal solution (5), (6) for the simple hypothesis H1 = σ0 remains optimal
(in the minimax sense) for the composite hypothesis H1 = {E} as well (see similar ques-
tion for shifts of measures [2]). Some sufficient conditions for having the equality (11)
are given below in proposition 2. Clearly, these conditions set rather strong limitations
on the set E .

Earlier, it was shown in proposition 1 that sometimes it is possible to replace the set
E by a smaller set E0 (i.e., to make a reduction of the set E ) without any loss of
detection quality.

The probability β(α, E) should be very small. For this reason, often, instead of
the strong condition (11), a simpler asymptotic analogue is investigated comparing
exponents of the error probabilities (see, e.g. [3]). In this case, we are interested in
validity of a weaker condition:

ln β(α, E) = ln β(α, σ) + o (lnβ(α, σ)) , | lnβ(α, σ)| → ∞. (12)

Obviously, the condition (12) should hold under weaker restrictions on the set E than
in the case of the condition (11). These results will be discussed in the forthcoming
paper [4].

Below, as usual, σ ≤ λ means σi ≤ λi , i = 1, . . . , n .

1. Results

1. Reduction of the set E . Sometimes it is possible to replace the set E by
a smaller set E0 without any loss of detection quality. Let us define such set E0 = E0(E)
as any set having the following property:

for any σ ∈ E there exists σ0 ∈ E0 with σ0 ≤ σ . (13)

Since the set E is closed, then E0 ⊆ E . Generally, the set E0 can be chosen non-uniquely.
We show below that, for any Bayes criteria of testing a simple hypothesis H0 against

a composite alternative H1 = {E} , the set E can be replaced by the set E0 without any
loss of quality. It remains valid for likelihood ratio criteria as well. In the one-dimensional
case, these properties are similar to the case of distributions with monotone likelyhood
ratio [5]. Introduction of such set E0 (when it is possible) simplifies the test used.

2. Bayes criteria. Let us consider the Bayes criteria with a prior distribution π(dE)
on E and corresponding decision set A ∈ Rn (y ∈ A ⇒ H0 , y 6∈ A ⇒ H1 ) of the form

A = A(A) = {y : r(y, E , π) ≤ A} , (14)
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where (see (3) and (4))

p(y|H1, π) =
∫

σ∈E

p(y|σ)π(dE) =

= (2π)−n/2

∫

σ∈E

exp

(
−1

2

n∑

i=1

y2
i /(1 + σ2

i )− 1
2

D(σ)

)
π(dE)

and

r(y, E , π) = ln
p(y|H1, π)
p(y|H0)

= ln
∫

σ∈E

exp

(
1
2

n∑

i=1

y2
i σ2

i /(1 + σ2
i )− 1

2
D(σ)

)
π(dE).

Then, A is a convex set in Rn , and if y = (y1, . . . , yn) ∈ A , then all (±y1, . . . ,±yn)
belong to A , i.e., the set A is symmetric with respect to any coordinate axis or plane.
In particular, such A is also a centrally symmetric set (i.e., if y ∈ A , then (−y) ∈ A).

Let us assume that the Bayes criteria with a prior distribution π(dE) on E0 is used
for y = s + ξ , σ ∈ E from (1) and A ∈ Rn of the form (14) is the corresponding
decision region. Let us also assume that for the second-kind error probability and some
β ≥ 0 we have

β(A, σ0) = P(y ∈ A|σ0) = P {r(y, E0, π) ≤ A|σ0} ≤ β, σ0 ∈ E0. (15)

Let us show that the inequality (15) remains valid for any σ ∈ E , i.e.,
β(A,σ) = P(y ∈ A|σ) = P {r(y, E0, π) ≤ A|σ} ≤ β, σ ∈ E . (16)

In other words, the second-kind error probability does not increase for any Bayes
criteria extension of the set E0 up to the set E (the first-kind error probability α(A)
does not change). In particular, since E0 ⊆ E , we get

β(α, E0) = β(α, E), 0 ≤ α ≤ 1. (17)

Let us prove the relation (16). Let σ ∈ E , but σ 6∈ E0 . Then, there exists σ0 ∈ E0

with σ0 < σ . Let s0 be a Gaussian “signal” in (1) in the case of σ0 . Then, in the case
of σ , such “signal” s has the form s = s0 + η , where η is independent of s0 Gaussian
random vector. The inequality (16) follows from the auxiliary result (the set A satisfies
its conditions).

Lemma 1. Let B ∈ Rn be a convex set, such that if y = (y1, . . . , yn) ∈ B , then
all points of the form (±y1, . . . ,±yn) belong to B . Let also ξ, η be independent zero
mean Gaussian vectors consisting of independent (probably, with different distributions)
components. Then

P(ξ + η ∈ B) ≤ P(ξ ∈ B). (18)

Proof. If n = 1 , then B = [−a, a] , a > 0 , and, clearly, the inequality (18) holds.
Let n = 2 and vectors (ξ1, ξ2) and (ξ1 + η1, ξ2 + η2) be compared. We compare first
vectors (ξ1, ξ2) and (ξ1 + η1, ξ2) . Let us denote

Bx = {y ∈ B : y2 = x} ∈ R1.

Due to assumptions of the lemma, we have Bx = [−a(x), a(x)] , a(x) > 0 for any x .
Therefore, for fixed ξ2 , the problem reduces to the case n = 1 and

P{ξ1 + η1 ∈ Bξ2} ≤ P{ξ1 ∈ Bξ2}, (19)
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and then
P{(ξ1 + η1, ξ2) ∈ B} ≤ P{(ξ1, ξ2) ∈ B}. (20)

Let us compare vectors (ξ1 + η1, ξ2) and (ξ1 + η1, ξ2 + η2) . Similarly to (19) and (20),
we get

P{ξ2 + η2 ∈ Bξ1+η1} ≤ P{ξ2 ∈ Bξ1+η1}
and

P{(ξ1 + η1, ξ2 + η2) ∈ B} ≤ P{(ξ1 + η1, ξ2) ∈ B}. (21)

Then, from (20) and (21), the inequality (18) follows for n = 2 . Similarly, the case
n = 3 reduces to the case n = 2 , etc. It proves the inequality (18) for any n .

3. Likelihood ratio criteria. For any function A(σ) , the critical region AML(A, E)
of that criteria is defined by the relation

AML(A, E) =
{
y : sup

σ∈E
[2r(y, σ)−A(σ)] ≤ 0

}
(22)

and then y ∈ AML(A, E) ⇒ H0 , y 6∈ AML(A, E) ⇒ H1 .
We show that, without any loss of quality, we can replace the set E in (22) by a

smaller set E0 (see (13)), i.e., we can use the criteria:

AMLR(A, E) =
{
y : sup

σ∈E0
[2r(y,σ)−A(σ)] ≤ 0

}
, (23)

keeping the same decision making method. In other words, the second-kind error pro-
bability does not increase (the 1-st kind error probability α(A) does not change) for
likelihood ratio criteria expansion of the set E0 up to the set E .

Indeed, if σ ∈ E , but σ 6∈ E0 , then there exists σ0 ∈ E0 with σ0 < σ . Using
the definition (23) and formulas (25) and (26) below, we have

β(A,σ) = P
{

sup
λ∈E0

[2r(y, λ)−A(λ)] ≤ 0|σ
}

=

= P

{
sup
λ∈E0

[
n∑

i=1

λ2
i (1 + σ2

i )η2
i

1 + λ2
i

−D(λ)−A(λ)

]
≤ 0

}
≤

≤ P

{
sup
λ∈E0

[
n∑

i=1

λ2
i (1 + σ2

0i)η
2
i

1 + λ2
i

−D(λ)−A(λ)

]
≤ 0

}
=

= P
{

sup
λ∈E0

[2r(y, λ)−A(λ)] ≤ 0|σ0

}
= β(A, σ0). (24)

The obtained results (16) and (24) can be formulated as follows.

Proposition 1. Let us consider the minimax problem of testing a simple hypothesis
H0 against a composite alternative H1 = {E0} and let E0 ⊆ E . If for the set E the con-
dition (13) is satisfied, then, for any Bayes criteria and the likelihood ratio criteria,
the first- and second-kind error probabilities do not change if the set E0 is replaced by
the set E . In particular, the equality (17) holds.

Remark 1. In proposition 1, it would be more natural to start with a set E and
replace it by a set E0 ⊆ E . However, in this case, it would be necessary to describe
“projections” of Bayes criteria from E on E0 .
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Remark 2. Similarly to E0 ,“reduced” sets red1S and red2S have been introduced
earlier in [2], where Gaussian measures had only different shifts. From the analytical
viewpoint, various convexity properties with respect to shifts of the Gaussian measures
were very useful in [2]. For example, owing to them, the set red1S had a very simple
and natural form. Unfortunately, the author does not know similar convexity proper-
ties concerning variances of the Gaussian measures and, for this reason, only certain
monotonicity properties have been used (which is less productive).

4. Exact equality (11). The formula (11) has also another equivalent interpreta-
tion. Let us assume that we know it initially that the “signal” in the hypothesis H1 is
a certain σ , and, therefore, we use the optimal solution (5), (6) for that σ . We assume
additionally that, in fact, the “signal” in the hypothesis H1 can also take other values
λ from a set E . For what E does the solution (5)–(6) (oriented only on σ ) remain
optimal for the set E as well?

If σ is replaced by λ and decision (5), (6) is used, then the first-kind error proba-
bility α does not change. Therefore, it is necessary to check only how the second-kind
error probability βσ(A,λ) may change

βσ(A,λ) = P(y ∈ A|λ) = P

(
n∑

i=1

σ2
i (ξi + si)2

1 + σ2
i

−D(σ) < A|λ
)

=

= P

(
n∑

i=1

ν2
i ξ2

i −D(σ) < A

)
, (25)

since (ξi + si)2 = (1 + λ2
i )η

2
i , i = 1, . . . , n , and where

ν2
i =

σ2
i (1 + λ2

i )
1 + σ2

i

= σ2
i +

σ2
i (λ2

i − σ2
i )

1 + σ2
i

, i = 1, . . . , n, (26)

and {ηi} are independent N (0, 1) -Gaussian random variables.
If, for any λ ∈ E and A , the following inequality holds (ν = (ν1, . . . , νn) is defined

in (26))

βσ(A,λ) = P

(
n∑

i=1

ν2
i ξ2

i −D(σ) < A

)
≤

≤ P

(
n∑

i=1

σ2
i ξ2

i −D(σ) < A

)
= β(A,σ), (27)

then
β(A, E) ≤ sup

λ∈E
βσ(A,λ) ≤ β(A,σ)

and, therefore, the formula (11) is valid.
Some results showing validity of the inequality (27) for certain σ, ν, A can be found,

for example, in [6–8].
Comparing (8), (25) and (26), we get simple

Proposition 2. 1) If σ ≤ λ , then β(A,λ) ≤ β(A, σ) and βσ(A,λ) ≤ β(A, σ) for
any A .

2) If σ ≤ λ for any λ ∈ E , then β(α, E) = β(α, σ) for any α .

Let us consider the following result as an example, which is the part of lemma 1
from [8].
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Lemma 2. Let us assume that the set of indices I = {1, 2, . . . , n} of vectors σ, λ

can be partitioned in k ≥ 1 groups I1, . . . , Ik , such that I =
k⋃

j=1

Ij , Ii

⋂
Ij = ∅ , i 6= j ,

and the following conditions are fulfilled

σi ≤ λ0,j , i ∈ Ij , j = 1, . . . , k,

where

λ0,j =


∏

i∈Ij

λi




1/|Ij |

.

Then, β(A, λ) ≤ β(A, σ) for any A .

Example 1. Let for given D > 0

E =

{
λ ≥ 0 :

n∏

i=1

(
1 + λ2

i

) ≥ (
1 + D2

)n

}
.

Then, by formula (26) and lemma 2 with k = 1 , it follows that the set E can be replaced
(without any loss of quality) by one point σ0 = (D, . . . , D) ∈ E (in the sense of equality
(11)).
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УДК 519.2

Об обнаружении гауссовских сигналов в гауссовском белом шуме

М.В. Бурнашев
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Аннотация

Изучается проблема минимаксного обнаружения случайного гауссовского векторного
сигнала в аддитивном гауссовском белом шуме. Предполагается, что неизвестный вектор
σ интенсивностей вектора сигналов принадлежит заранее заданному множеству E . Ис-
следуются случаи, когда возможно заменить множество E на меньшее множество E0 без
потерь в качестве правила обнаружения. В частности, исследуется возможность замены
единственной точкой σ0 .
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