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Abstract

The logarithmic derivative (or quantum score) of a positive definite density matrix appear-
ing in the quantum Fisher information has been discussed, and its exact expression has been
presented. The problem of estimating the parameters in a class of the Werner-type N -qudit
states has been studied in the context of the quantum Cramér-Rao inequality. The largest
value of the lower bound to the error of estimate by the quantum Fisher information has been
shown to coincide with the separability point only in the case of two qubits. It has been found,
on the other hand, that such largest values give rise to the universal fidelity that is independent
of the system size.
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Quantum states are characterized by a set of parameters, in general, and, accord-
ingly, it is of significant importance to estimate their values as precisely as possible,
leading to the quantum-mechanical counterpart of statistical estimation theory [1-4].
Recent examples are estimations of outputs of quantum channels [5], coupling param-
eters in quantum critical systems [6], parameters in quantum optical states [7], and
thermal degree of freedom in thermofield dynamics [8], to name a few. Nowadays, its
fundamental importance for quantum information technology is also widely appreciated
[9, 10].

Let p(6) be a density matrix of the system under consideration and dependent on the
parameter, 6. Here, we require p(f) to be positive definite, although a generic density
matrix can be positive semidefinite. The task is to estimate the values of the parameter
by measuring a relevant quantity of the system. Let this quantity be an observable, A.
It has a spectral decomposition, A = Y aF,, , where the collection, {E, }, , forms a posi-

(6%
tive operator-valued measure, i.e., E, > 0 and Y E, = I with I being the identity

operator. Outcome, «, occurs with the probability p,(0) = tr[E,p(0)], which satisfies

the normalization condition, > p,(0) = 1. Let #(A) be an unbiased estimator:

(b(a)) =0, (1)
which should hold, at 6, for the expectation value of the observable, 0(A) = S 0(a)E,,
where <é(A)> =tr {é(A)p(@)} = 30(a)pa(8). The mean square error of estimation is
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given by the variance

(80)* = > _pa(8)[0(c) — 6. (2)

Then, the Cramér-Rao inequality states that

Ao 1
(60) > m7 (3)

where J4[p(6)] is the Fisher information defined by

2
81npa(9)} . (4)

Lab0)] = ra(0)| 210

Given a problem, it is generally hard to identify an observable A to be measured
(or, equivalently, an associated positive operator-valued measure) that can minimize
the right-hand side of Eq. (3). Accordingly, the quantum Fisher information,

J[p(0)] = tr[p(0)L*(0)], (5)

as the lower bound of J4[p(6)] is often examined. This quantity gives an approximate
scale of errors. L, in Eq. (5), stands for the logarithmic derivative (or quantum score)
of the density matrix, p(f). Widely employed are the symmetric and right logarithmic
derivatives defined by

82(99) - %[P(G)Lw)(a) + L(S)(G)pw)]» (6)
agi(;) = p(0)L(9), @)

respectively. Clearly, the right logarithmic derivative is not Hermitian, in general. Ac-
cordingly, the right-hand side of Eq. (5) need be modified as tr{ [L(R) (9)} Tp(H)L(R) (9)} ,
for example.

Our purpose here is to examine the scheme for estimating entanglement. To our
knowledge, estimation of entanglement has recently been discussed in [11, 12].
The authors of [11] have used the estimation scheme for an interpretation of entangle-
ment as a resource for parameter estimation. The discussion in [12] is about estimating
the amount of entanglement. In contrast to these works, here we examine the scheme
in connection with the separability condition on a class of mixed states of multipar-
tite systems. In particular, we consider a class of N-qudit states, i.e., the Werner-type
states of an N partite d-level system and estimate the values of the parameters de-
scribing strength of correlations. We evaluate the quantum Fisher information in Eq. (5)
and analyze its property. Remarkably, our findings show that the fidelity, F', between
the Werner-type states and the maximally entangled states at the values of the para-
meter yielding the minimum quantum Fisher information is

F=-, 8
; ©
which is universal in the sense that it does not depend on the system size.
Before discussing the problem of estimating entanglement, here we make a brief
comment on the logarithmic derivative of a positive definite density matrix. The sym-
metric and right logarithmic derivatives in Eqgs. (6) and (7) are clearly useful because
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of their simplicities. However, they are not the rigorous logarithmic derivative, in gene-
ral. To directly calculate the logarithmic derivative, it is useful to employ the following
representation:

I p(0) = / ) (9)
0

x

by which the logarithmic derivative is transformed to the derivative of an exponential
operator. Then, the formula

1

DeA0) sacg) OA(0)

- (0) ZL\7) L(1=X)A(0)

50 /d)\e 50 € (10)
0

combined with the familiar one, e¥ Xe™Y = X + [V, X] + (1/2)[Y, Y, X]] + - - -, leads
to the exact logarithmic derivative. It may be possible to obtain a closed and compact
form if p(6) possesses a Lie-algebraic structure, for example.

Now, let us address the problem of estimating entanglement in the N-qudit Werner-
type states.

Firstly, we consider the case of the smallest system that is a bipartite two-level
system. Its Werner state [13, 14] reads

1-6
p(0) = —— 11 & 1LY +0|0)(¥], (11)

where 6 € [0,1), |¥) = (|0)1]0)2 + [1)1|1)2)/v/2, and Il-(Q) (¢ = 1,2) denotes the 2 x 2
identity operator in the space of the i-th particle. This is a convex combination of the
completely random state and the maximally entangled state and can experimentally
be generated [15-17]. It is known [18, 19] (see also [20]) that the separation point
between separable and entangled states is at 6* = 1/3, i.e., the state in Eq. (11)
is separable if 8 < 1/3. (Recall that the total density matrix, which is expressed as
a convex combination of the tensor products of the marginal density matrices of all
particles, is called separable, and correlations contained in such a density matrix is
not of entanglement and can be described by models with local hidden variables.) The
derivative and inverse of the density matrix are given by dp(6)/06 = (71/4)152) ®I§2) +
|U)(P| and p~1(0) = [4/(1 — O)I\P @ 12 — 160/[(1 — 0)(1 + 30)]|¥)(T|, respectively.
Since these commute with each other, the expressions for the logarithmic derivative of
the density matrix in Egs. (6), (7), and (10) coincide with each other. J[p(6)] in Eq.
(5) is then calculated to be J[p(#)] = 3/[(1 — 0)(1 + 36)]. The divergence in the limit
@ — 1_ essentially comes from the absence of the inverse of a pure-state density matrix.
The minimum is at § = 1/3, which coincides with the separation point, 8*. Therefore,
a lower bound on the error of estimation evaluated by 1/J[p(6)] becomes largest at the
separation point.

It turns out, however, that the coincidence mentioned above occurs only in the case
of the bipartite 2-level system. To see this, let us consider the N-qudit Werner-type
state, which reads

p(0) = ——I"e 1" @ .. @ I!) + 6|®)(®], (12)

where 6 € [0,1), Ii(d) (i = 1,2,---,N) is the d x d identity operator, and |®) =
d—1

(1/v/d) 3> |m)1 |m)g---|m)n with {Im)i}—01... 4_1 being a complete orthonormal
0

m=
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system in the space of the ¢-th particle with d levels. The separation point of this
state is known to be at 0* = 1/(1+d"V~1) [21-24]. Again, the derivative and inverse of

the density matrix, dp(6)/00 = (fl/dN)Ifd) ® Iéd) ® - ® IJ(\?) +|®)(®| and p~1(0) =
@ /1 -1 @1 @ 0 1® — d®No/{(1 - 6)[1 + (dV — 1)6]}|®)(®|, are seen to
commute with each other. The quantity in Eq. (5) is calculated to be

av —1
= . 1
Its minimum is seen to be at N
dvy —2
b= 2(aN - 1)’ 14

which is equal to or larger than the separation point, 0* (6 = 6* iff N =2 and d = 2,
i.e., the bipartite two-level system). In other words, the values of 6 in Eq. (14) are
always in the ranges, in which the states are entangled.

The result in Eq. (14) has an implication of interest. 1/J[p(6)] with the value of
0 in Eq. (14) indicates us the scale of errors in estimation. Since entanglement is not
associated with local observables, a quantity to be considered for the state in Eq. (12)
may be the fidelity [25, 26] (see also [27, 28|), which in the present case is given by

2
F = Flo,p(8)] = [tr(ﬁp(@)\/&)l/ﬂ with the entangled state, o = |®)(®|. Its value
is found to be

_1—-0+4dY0
= i .
The allowed range of F in consistency with that of § is [1/d"V,1). By substituting
the value of 6 in Eq. (14) into this expression, we obtain the result in Eq. (8).

In conclusion, we have discussed the problem of entanglement in a class of N-
qudit states in the context of parameter estimation. We have found that the value of
the parameter at which the quantum Fisher information takes its minimum is always
in the range where the state is entangled and remarkably the corresponding value of
the fidelity is independent of the system size.
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OrieHKa KBAHTOBOM CIIyTAHHOCTHU B KJjiacce N -KyIUT COCTOSIHUIA
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Koanedotc ungopmamuru u unotcenepuu, Yrnusepcumem Xyauso, 2. Camvimn, 361021, Kumati
Ynusepcumem Mua, e. Iy, 514-8507, Anonus
Kasanckuti gpedeparvrviit ynusepcumem, 2. Kasanw, 420008, Poccus

AnanoTanus

Paccmorpena sorapudmMudeckast Npou3BoHast (KBAHTOBDIH CKOP) MOJO0XKATEIBHO OIIPEJIe-
JIEHHOW MaTPHIlbI IJIOTHOCTH, BO3HUKAIOIIEH B KBaHTOBON mHMoOpMaruu Duinepa; mosrydeHo
eé TouHOoe TipecTaBiienne. [IpoBeeHo nccaeoBanme 3a1a91 ONEHUBAHNS TTAPAMETPOB B KJIacC-
ce turta Bepuepa N -KyJIuT COCTOSHMI B KOHTEKCTEe KBAaHTOBOro HepaseHcTBa Kpamepa—Pao.
Tlokazano, uro HauboJIbIllee 3HAYEHNE HUXKHEN T'PAHUIBI JIJIsI OMMOKNA ONEHKU KBaHTOBON WH-
dopmanmetr Durmepa coBmagaer ¢ cenapabesibHOM TOYKON TOJBKO B CIydae ABYX KyOWTOB.
Kpome Toro, 661710 06HAPYKEHO, YTO TAKOE HAUOOJIbIIIee 3HAYECHNE MOXKET OBITH MCIIOJIB30BAHO
KaK yHUBepcaJbHAasl OIEHKA JIOCTOBEPHOCTH, HE 3aBUCSINAsl OT pa3Mepa CUCTEMBI.

KuroueBsbie ciioBa: onieHKa KBAaHTOBO! CIiyTaHHOCTH, [N -KyIUT coCTOsiHUS Tulla BepHepa,
KBaHTOBast nHpOpMarusi Purepa
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