Том 149, кн. 3

Физико-математические науки

2007

УДК 538.945

ЭФФЕКТ БЛИЗОСТИ В НАНОСТРУКТУРЕ ФЕРРОМАГНИТНЫЙ МЕТАЛЛ/СВЕРХПРОВОДНИК В СЛАБОМ МАГНИТНОМ ПОЛЕ

М.В. Авдеев, Ю.Н. Прошин, М.Г. Хусаинов, С.Л. Царевский

Аннотация

Рассмотрено влияние внешнего слабого магнитного поля на эффект близости в бипленке ферромагнитный металл/сверхпроводник (FM/S). Показано, что, как и в случае без магнитного поля, зависимость критической температуры FM/S-контакта T_c от толщины FM-слоя носит качественно различный характер при изменении параметров, характеризующих контакт: выход на плато, затухающие осцилляции, возвратная сверхпроводимость, периодически-возвратная сверхпроводимость. Внешнее магнитное поле приводит к уменьшению T_c и к изменению границ перехода в нормальное состояние при возникновении возвратной сверхпроводимости.

Современная нанотехнология позволяет создавать тонкопленочные многослойные структуры из материалов, обладающих различными свойствами, сочетание которых в естественной природе часто даже невозможно. Особый интерес представляют гетероструктуры сверхпроводник/ферромагнетик, поскольку сосуществование синглетной сверхпроводимости и ферромагнитного упорядочения в объемных образцах трудноосуществимо. Однако в слоистых структурах благодаря тому, что куперовские пары могут проникать в ферромагнитный слой на некоторую глубину (так называемому эффекту близости), такое сосуществование становится возможным. Оказалось, что указанные искусственные многослойные среды могут иметь совершенно новые физические свойства, которыми можно управлять в широких пределах, меняя параметры структуры [1]. В настоящей работе рассмотрено влияние внешнего слабого магнитного поля на эффект близости в бипленке ферромагнитный металл/сверхпроводник (FM/S).

Прежде всего отметим параметры, характеризующие FM/S-гетероструктуру. S-слой характеризуется двумя параметрами размерности длины: длиной когерентности ξ_s и длиной свободного пробега электронов проводимости l_s . Для FM-слоя наряду с двумя аналогичными параметрами ξ_f и l_f необходимо ввести еще длину спиновой жесткости $a_f = v_f/2I$ (v_f – скорость электронов проводимости FM-слоя на поверхности Ферми, I – эффективное обменное магнитное поле, действующее на спин электронов проводимости со стороны локализованных спинов ферромагнетика). Длина спиновой жесткости определяет характерную длину модуляции электроной спиновой плотности в ферромагнитном металле благодаря раздвижке ферми-поверхности для электронов проводимости с различной ориентацией спина [2, 3]. К этим параметрам следует добавить еще две геометрические длины: толщины сверхпроводящего d_s и ферромагнитного d_f слоев. Во внешнем магнитном поле добавляется еще один параметр – длина проникновения магнитного поля в сверхпроводник λ . Собственно FM/S-контакт характеризуется коэффициентом прозрачности, который может принимать произвольные значения в зависимости

Рис. 1. FM/S-структура во внешнем магнитном поле H_0

от условий приготовления контакта. Введенные параметры ξ_s , l_s , ξ_f , l_f , a_f , λ и коэффициент прозрачности допускают несколько качественно различных вариантов зависимости температуры сверхпроводящего перехода FM/S-контакта для разных значений толщины ферромагнитного слоя $T_c(d_f)$ [1].

Рассмотрим систему из наложенных друг на друга ферромагнитной металлической пленки и сверхпроводящей пленки, толщины которых равны d_f и d_s соответственно. Пусть рассматриваемая система находится в однородном внешнем магнитном поле \mathbf{H}_0 , направленном вдоль пленок (рис. 1). Будем считать, что H_0 мало по сравнению с величиной обменного поля I, так что оно не меняет магнитную структуру FM-слоя. Для рассматриваемого плоского контакта в простейшем случае можно считать, что сверхпроводящий параметр порядка (ПП) зависит только от x. Для рассматриваемой системы $\lambda \gg d_s$, d_f , так что магнитное поле на протяжении контакта можно считать однородным. Векторный потенциал \mathbf{A} внешнего магнитного поля в кулоновской калибровке (div $\mathbf{A} = 0$) в рассматриваемой геометрии будет иметь вид $\mathbf{A}(0,0,A(x))$, причем $A(x) = H_0x + H_0d_f$. Аддитивная константа в A(x) выбрана таким образом, чтобы при $H_0 = 0$ векторный потенциал l_s , $l_f \ll \xi_s$, ξ_f величина ПП $\Delta(x)$ определяется через функцию Узаделя $F(x,\omega)$ [4]:

$$\Delta(x) = 2\pi V(x)N(x)T\operatorname{Re}\sum_{\omega>0} F(\mathbf{x},\omega), \qquad (1)$$

где V(x) – потенциал спаривательного взаимодействия, N(x) – плотность состояний на поверхности Ферми, T – температура. Суммирование в (1) происходит по мацубаровским частотам ω с ограничением по дебаевской частоте ω_D . Кроме того, здесь и ниже $\hbar = k_B = \mu_B = 1$. Уравнения для функции Узаделя для рассматриваемой системы в S- и FM-областях имеют вид:

$$\left[\omega - \frac{1}{2}D_s\left(\frac{\partial^2}{\partial x^2} + \left(\frac{2ie}{c}\right)^2 A^2(x)\right)\right]F_s(x,\omega) = \Delta_s(x), \qquad (2)$$

$$\omega + i I - \frac{1}{2} D_f \left(\frac{\partial^2}{\partial x^2} + \left(\frac{2ie}{c} \right)^2 A^2(x) \right) \right] F_f(x, \omega) = \Delta_f(x) = 0.$$
(3)

Здесь D_s , D_f – коэффициенты диффузии электронов проводимости в S- и FMслоях. Отметим, что D_f для различных FM-слоев становится комплексным, зависит от I и времени свободного пробега τ_f электронов проводимости в FM-слое, что приводит либо к волновому, либо к диффузионному типам движения квазичастиц.

Рис. 2. Зависимость приведенной температуры перехода $t = T_c/T_{cs}$ от приведенной толщины FM-слоя d_f/a_f для FM/S-контакта в различных магнитных полях $h = H_0/H_c$

Рис. 3. Осциллирующая зависимость $t~{\rm FM/S}$ -контакта от d_f/a_f в различных полях h

Рис. 4. Возвратно-периодическая сверхпроводимость ${\rm FM}/{\rm S}$ -контакта в различных полях h

Для простоты мы полагаем, что в FM-слое ПП $\Delta_f = 0$. К уравнениям (2), (3) следует добавить граничные условия [5]:

$$\frac{\partial F_s}{\partial x} = \frac{\sigma_s v_s}{4D_s} \left(F_s \left(+0, \omega \right) - F_f \left(-0, \omega \right) \right), \quad \text{при } x = +0, \tag{4}$$

$$\frac{\partial F_f}{\partial x} = \frac{\sigma_f v_f}{4D_f} \left(F_s \left(+0, \omega \right) - F_f \left(-0, \omega \right) \right), \quad \text{при} \quad x = -0$$
(5)

для внутренней границы, а на свободных границах:

$$\frac{\partial F_{f,s}}{\partial x} = 0. \tag{6}$$

Здесь σ_s , σ_f – коэффициенты прозрачности контакта со стороны S- и F-металла, v_s , v_f – скорости электронов проводимости на поверхностях Ферми в S- и FMслоях. Отметим, что граничные условия (4), (5) учитывают соотношение детального баланса, основанное на равенстве числа переходов электронов проводимости из S-слоя в FM-слой и обратно [6].

Векторный потенциал внутри пленки будет слабо меняться ($\lambda \gg d_s$, d_f), так что $A^2(x)$ в уравнениях (2), (3) можно усреднить по толщине пленки. Тогда решение можно искать в одномодовом режиме, справедливость которого была показана в работах [7–9]:

$$F_s = C_s \cos\left(k_s \left(x - d_s\right)\right),$$

$$F_f = C_f \cos\left(k_f \left(x + d_f\right)\right).$$
(7)

Рис. 5. Уменьшение t и изменение границ перехода в нормальное состояние при возникновении возвратной сверхпроводимости FM/S-контакта во внешнем магнитном поле ($\sigma_s = 2$)

Решение в таком виде уже учитывает граничное условие (6). Тогда из уравнений (2), (3) с учетом граничных условий (4), (5) и условия самосогласования (1) получим замкнутую систему уравнений для k_s , k_f и $t = T_c/T_{cs}$ (T_{cs} – температура сверхпроводящего перехода для изолированного S-слоя):

$$\ln(t) = \Psi\left(\frac{1}{2}\right) - \operatorname{Re}\Psi\left(\frac{1}{2} + \frac{D_s\left(k_s^2 + 12h^2\frac{\langle x_s^2 \rangle}{d_s^2\xi_0^2}\right)}{4\pi T_{cs}t}\right),\tag{8}$$

$$D_s k_s \text{tg} (k_s d_s) = \frac{\sigma_s v_s}{4 - \frac{\sigma_s n_{sf} v_f}{D_f k_f} \text{ctg} (k_f d_f)},$$
(9)

$$k_f^2 = -\frac{2iI}{D_f} - 12h^2 \frac{\left\langle x_f^2 \right\rangle}{d_s^2 \xi_0^2}.$$
 (10)

Рис. 6. То же, что на рис. 5, для $\sigma_s = 3$ (см. текст)

Здесь $\Psi(x)$ – дигамма-функция, $n_{sf} = N_s v_s / N_f v_f$, $h = H_0 / H_c$, H_c – критическое поле S-слоя при T = 0, $\langle x_s^2 \rangle, \langle x_f^2 \rangle$ – средние значения x^2 на толщинах S- и FM-слоев, ξ_0 – длина когерентности S-слоя при T = 0.

На рис. 2 представлены зависимости t от приведенной толщины F-слоя для различных значений внешнего поля h. Как видно из рисунка, даже достаточное слабое поле существенно изменяет график зависимости t от толщины FM-слоя, так что, начиная с некоторого значения h, становится возможным возникновение «возвратной сверхпроводимости». Как и в случае без магнитного поля, зависимость tот толщины FM-слоя носит качественно различный характер при изменении параметров, характеризующих контакт: выход на плато (рис. 2), затухающие осцилляции (рис. 3), возвратная сверхпроводимость (рис. 2), периодически-возвратная сверхпроводимость (рис. 4). В частности, зависимость особенно чувствительна к изменению коэффициентов прозрачности. Увеличение магнитного поля приводит к уменьшению t и к изменению границ перехода в нормальное состояние при возникновении возвратной сверхпроводимости (см. рис. 5–6).

В заключение следует отметить, что даже слабое магнитное поле существенно изменяет транспортные свойства FM/S-контакта.

Работа частично поддержана РФФИ (проект № 05-02-16369).

Summary

M.V. Avdeev, M.G. Khusainov, Yu.N. Proshin, S.L. Tsarevskii. The proximity effect in a ferromagnetic metal/superconductor nanostructure on a low magnetic field.

The influence of a low magnetic field on the proximity effect in a ferromagnetic metal/superconductor (FM/S) bilayer is considered. The critical superconducting temperature $T_c(d_f, H_0)$ of the FM/S-contact is calculated as a function of FM-layer thickness d_f . Both in cases with and without the magnetic field H_0 , the function $T_c(d_f, H_0)$ is shown to have qualitatively different character for various parameters of the FM/S-contact: attainment on plateau, damped oscillations, reentrant superconductivity, periodically-reentrant superconductivity. The magnetic field decreases T_c and changes a reentrant superconductivity limits.

Литература

- 1. Изюмов Ю.А., Прошин Ю.Н., Хусаинов М.Г. Конкуренция сверхпроводимости и магнетизма в гетероструктурах ферромагнетик/сверхпроводник // Усп. физ. наук. – 2002. – Т. 172, № 2. – С. 113–154.
- Ларкин А.И., Овчинников Ю.Н. Неоднородное состояние сверхпроводников // ЖЭТФ. – 1964. – V. 47. – С. 1136.
- Fulde P., Ferrell R.A. Superconductivity in strong spin-exchange field // Phys. Rev. -1964. - V. 135. - P. A550-A563.
- Usadel K.D. The diffusion approximation for supercoducting alloys // Phys. Rev. Lett. -1970. - V. 25, No 8. - P. 507-509.
- Прошин Ю.Н., Хусаинов М.Г. О проявлениях состояния Ларкина-Овчинникова-Фульде-Феррелла в биметаллических структурах ферромагнетик-сверхпроводник // Письма в ЖЭТФ. – 1997. – Т. 66, Вып. 6. – С. 527–532.
- Хусаинов М.Г. Эффект близости при произвольной прозрачности NS-границы // Письма в ЖЭТФ. – 1991. – Т. 53, Вып. 11. – С. 554–557.
- Прошин Ю.Н., Хусаинов М.Г. О природе немонотонного поведения критической температуры в биметаллических структурах ферромагнетик-сверхпроводник // ЖЭТФ. – 1998. – Т. 113. – С. 1708.
- Tagirov L.R. Proximity effect and superconducting transition temperature in superconductor/ferromagnet sandwiches // Physica C. - 1998. - V. 307, No 1. - P. 145-163.
- Radović Z., Dobrosavljević-Grujić L., Buzdin A.I., Clem J.R. Upper critical fields of superconductor-ferromagnet multylayers // Phys. Rev. B. - 1988. - V. 38, No 4. - P. 2388-2393.

Поступила в	редакцию
02.10.07	

Авдеев Максим Викторович – студент физического факультета Казанского государственного университета.

Прошин Юрий Николаевич – доктор физико-математических наук, профессор, заведующий кафедрой теоретической физики Казанского государственного университета. E-mail: *Yurii.Proshin@ksu.ru*

Хусаинов Мансур Гарифович – доктор физико-математических наук, доцент, заведующий кафедрой естественно-научных дисциплин филиала «Восток» КГТУ им. А.Н. Туполева, г. Чистополь.

Царевский Сергей Леонидович – доктор физико-математических наук, профессор кафедры теоретической физики Казанского государственного университета.

E-mail: Sergey. Tsarevskii@ksu.ru