UDK 530.12

DIFFERENTIAL GEOMETRY OF WALKER MANIFOLDS

A.A. Salimov, M. Iscan, S. Turanli

Abstract

In the present paper, we focus our attention on the integrability and holomorphic conditions of a Norden–Walker structure (M, g^{N+}, φ) . We also give a characterization of a Kähler–Norden–Walker metric g^{N+} .

Key words: Norden – Walker structure, Walker manifolds, pure tensor field, Kähler – Norden – Walker metrics, holomorphic tensor field, twin metrics.

Introduction

Let M be a C^{∞} -manifold of finite dimension 4. We denote by $\Im_s^r(M)$ the module over F(M) of all C^{∞} -tensor fields of type (r,s) on M, i.e., of contravariant degree r and covariant degree s, where F(M) is the algebra of C^{∞} -functions on M.

A neutral metric wg on a 4-manifold M is said to be Walker metric if there exists a 2-dimensional null distribution D on M, which is parallel with respect to wg . From Walker's theorem [1], there is a system of coordinates with respect to which wg takes the local canonical form

$${}^{w}g = ({}^{w}g_{ij}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & a & c \\ 0 & 1 & c & b \end{pmatrix}, \tag{1}$$

where a, b, c are smooth functions of the coordinates (x, y, z, t). The parallel null 2-plane D is spanned locally by $\{\partial_x, \partial_y\}$, where $\partial_x = \partial/\partial x$, $\partial_y = \partial/\partial y$.

In [2, Fact 1], a proper almost complex structure with respect to wg is defined as a wg -orthogonal almost complex structure φ so that φ is a standard generator of a positive $\pi/2$ rotation on D, i.e., $\varphi \partial_x = \partial_y$ and $\varphi \partial_y = -\partial_x$. Then for the Walker metric wg , such a proper almost complex structure φ is determined uniquely as

$$\begin{pmatrix}
0 & -1 & -c & \frac{1}{2}(a-b) \\
1 & 0 & \frac{1}{2}(a-b) & c \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$
(2)

In [3], for such a proper almost complex structure φ on Walker 4-manifold M, an almost Norden structure (g^{N+}, φ) is constructed, where g^{N+} is a metric on M, with properties $g^{N+}(\varphi X, \varphi Y) = -g^{N+}(X, Y)$. In fact, as one of these examples, such a metric takes the form (see Proposition 6 in [3]):

$$g^{N+} = \begin{pmatrix} 0 & -2 & 0 & -b \\ -2 & 0 & -a & -2c \\ 0 & -a & 0 & \frac{1}{2}(1-ab) \\ -b & -2c & \frac{1}{2}(1-ab) & -2bc \end{pmatrix}.$$
 (3)

We may call this an almost Norden – Walker metric. The construction of such a structure in [3] is to find a Norden metric for a given almost complex structure, which is different form the Walker metric.

In [3], for a given proper almost complex structure φ , an another Norden–Walker metric G^{N+} is also constructed:

$$G^{N+} = \begin{pmatrix} -2 & 0 & -a & -2c \\ 0 & 2 & 0 & b \\ -a & 0 & \frac{1}{2}(1-a^2) & -ac \\ -2c & b & -ac & \frac{1}{2}(b^2 - 4c^2 - 1) \end{pmatrix}. \tag{4}$$

The purpose of the present paper is to study Kähler and quasi-Kähler conditions of Norden–Walker metrics g^{N+} and G^{N+} .

1. Kähler-Norden-Walker metrics

Let φ be an affinor field on M, i.e., $\varphi \in \mathfrak{S}^1_1(M)$. A tensor field t of type (r,s) is called pure tensor field with respect to φ if

$$t(\varphi X_1, \dots, X_s; \stackrel{1}{\xi}, \dots, \stackrel{r}{\xi}) = t(X_1, \dots, \varphi X_s; \stackrel{1}{\xi}, \dots, \stackrel{r}{\xi})$$

$$= t(X_1, \dots, X_s; \varphi \stackrel{1}{\xi}, \dots, \stackrel{r}{\xi})$$

$$\vdots$$

$$= t(X_1, \dots, X_s; \stackrel{1}{\xi}, \dots, \stackrel{r}{\varphi} \stackrel{r}{\xi})$$

for any $X_1, X_2, \ldots, X_s \in \Im_0^1(M)$ and $\overset{1}{\xi}, \overset{2}{\xi}, \ldots, \overset{r}{\xi} \in \Im_1^0(M)$, where φ is the adjoint operator of φ defined by

$$(\varphi \xi)(X) = \xi(\varphi X),$$

$$X \in \Im_0^1(M), \xi \in \Im_1^0(M).$$

We denote by $\mathfrak{S}_s^r(M)$ the module of all pure tensor fields of type (r,s) on M with respect to the affinor field φ . We now fix a positive integer λ . If K and L are pure tensor fields of types (p_1,q_1) and (p_2,q_2) respectively, then the tensor product of K and L with contraction

$$K \overset{C}{\otimes} L = (K^{i_1 \dots m_{\lambda} \dots i_{p_1}}_{j_1 \dots j_{q_1}} L^{r_1 \dots r_{p_2}}_{s_1 \dots m_{\lambda} \dots s_{q_2}})$$

is also a pure tensor field.

We shall now make the direct sum $\Im(M) = \sum_{r,s=0}^{\infty} \Im_s^r(M)$ into an algebra over the real number \mathbb{R} by defining the *pure product* (denoted by $\overset{c}{\otimes}$ or " \circ ") of $K \in \Im_{q_1}^{p_1}(M)$ and $L \in \Im_{q_2}^{p_2}(M)$ as follows:

$$\overset{C}{\otimes}: (K,L) \rightarrow (K \overset{C}{\otimes} L) = \left\{ \begin{array}{ll} K_{j_1 \dots j_{q_1}}^{i_1 \dots m_{\lambda} \dots i_{p_1}} L_{s_1 \dots m_{\lambda} \dots s_{q_2}}^{r_1 \dots r_{p_2}} \text{ for } \lambda \leq p_1, q_2 \\ \qquad \qquad (\lambda \text{ is a fixed positive integer}), \\ K_{j_1 \dots m_{\mu} \dots j_{q_1}}^{i_1 \dots i_{p_1}} L_{s_1 \dots s_{q_2}}^{r_1 \dots m_{\mu} \dots r_{p_2}} \text{ for } \mu \leq p_2, q_1 \\ \qquad \qquad (\mu \text{ is a fixed positive integer}), \\ 0 \qquad \qquad \text{for } p_1 = 0, \ p_2 = 0, \\ 0 \qquad \qquad \text{for } q_1 = 0, \ q_2 = 0. \end{array} \right.$$

In particular, let $K = X \in \mathfrak{F}_0^1(M)$, and $L \in \Lambda_q(M)$ be a q-form. Then the pure product $X \overset{C}{\otimes} L$ coincides with the interior product $\iota_X L$.

Definition 1 [4]. Let $\varphi \in \Im_1^1(M)$, and $\Im(M) = \sum_{r,s=0}^{\infty} \Im_s^r(M)$ be a tensor algebra over \mathbb{R} . A map $\phi_{\varphi}: \overset{*}{\Im}(M) \to \Im(M)$ is called a ϕ_{φ} -operator on M if a) ϕ_{φ} is linear with respect to constant coefficients;

- $b) \ \phi_{\varphi}: \overset{*}{\Im}^r_s(M) \to \Im^r_{s+1}(M) \ \text{for all} \ r,s;$
- c) $\phi_{\varphi}(K \otimes L) = (\phi_{\varphi}K) \otimes L + K \otimes \phi_{\varphi}L$ for all $K, L \in \mathfrak{F}(M)$; d) $\phi_{\varphi X}Y = -(L_{Y}\varphi)X \ X, Y \in \mathfrak{F}_{0}^{1}(M)$, where L_{Y} is the Lie derivation with respect
- e) $\phi_{\varphi X}(\imath_Y \omega) = (d(\imath_Y \omega))(\varphi X) (d(\imath_Y (\omega \circ \varphi)))(X) = (\varphi X)(\imath_Y \omega) X(\imath_{\varphi Y} \omega)$ for all $\omega \in \mathfrak{J}_0^0(M)$ and $X, Y \in \mathfrak{J}_0^1(M)$, where $\imath_Y \omega = \omega(Y) = \omega \overset{C}{\otimes} Y$.

Let $(M, {}^wg)$ be a Walker 4-manifold with a Norden–Walker metric g^{N+} and proper almost complex structure φ . If the Nijenhuis tensor field $N_{\varphi} \in \mathbb{S}_2^1(M)$ vanishes, then φ is a complex structure and moreover M is a \mathbb{C} -holomorphic manifold $X_2(\mathbb{C})$ whose transition functions are \mathbb{C} -holomorphic mappings. $N_{\varphi}=0$ is equivalent to the condition $\nabla \varphi=0$, where ∇ is a torsion-free affine connection. A metric g^{N+} is a Norden–Walker metric [3, 5-8] if

$$g^{N+}(\varphi X, Y) = g^{N+}(X, \varphi Y) \tag{5}$$

for any $X, Y \in \mathfrak{S}_0^1(M)$, i.e., g^{N+} is pure with respect to the proper almost complex structure φ . If (M, φ) is an almost complex manifold with Norden–Walker metric g^{N+} , we say that (M, φ, g^{N+}) is an almost Norden–Walker manifold. If φ is integrable, we say that (M, φ, g^{N+}) is a Norden–Walker manifold.

Let $\overset{*}{t} \in \Im_s^r(X_2(\mathbb{C}))$ be a complex tensor field on $X_2(\mathbb{C})$. The real model of such a tensor field is a pure tensor field $t \in \Im_s^r(M)$ with respect to φ , which in general is not \mathbb{C} -holomorphic. When φ is a proper complex structure on M and the tensor field $\phi_{\varphi}t$ vanishes, the complex tensor field \tilde{t} on $X_2(\mathbb{C})$ is said to be holomorphic [9]. Thus a holomorphic tensor field \hat{t} on $X_2(\mathbb{C})$ is realized on M in the form of a pure tensor field t, such that

$$(\phi_{\varphi}t)(X, Y_1, Y_2, \dots, Y_s, \xi, \xi, \dots, \xi) = 0$$

for any $X, Y_1, \ldots, Y_s \in \mathfrak{T}_0^1(M)$ and $\xi, \xi, \ldots, \xi \in \mathfrak{T}_1^0(M)$, where

$$(\phi_{\varphi}t)\left(X,Y_{1},\ldots,Y_{s},\xi^{1},\ldots,\xi^{r}\right) = (\varphi X)t\left(Y_{1},\ldots,Y_{s},\xi^{1},\ldots,\xi^{r}\right) - Xt\left(\varphi Y_{1},\ldots,Y_{s},\xi^{1},\ldots,\xi^{r}\right) + \sum_{\lambda=1}^{s}t\left(Y_{1},\ldots,(L_{Y_{\lambda}}\varphi)X,\ldots,Y_{s},\xi^{1},\ldots,\xi^{r}\right) - \sum_{\mu=1}^{r}t\left(Y_{1},\ldots,Y_{s},\xi^{1},\ldots,L_{\varphi X}\xi^{\mu} - L_{X}\left(\xi^{\mu}\circ\varphi\right),\ldots,\xi^{r}\right).$$
(6)

In a Norden-Walker (almost Norden-Walker) manifold a Norden-Walker metric g^{N+} is called holomorphic (almost holomorphic) if

$$(\phi_{\varphi}g^{N+})(X,Y,Z) = (\varphi X) (g^{N+}(Y,Z)) - X (g^{N+}(\varphi Y,Z)) + q^{N+}((L_{X}\varphi)X,Z) + q^{N+}(Y,(L_{Z}\varphi)X) = 0$$

for any $X,\ Y,\ Z\in \Im_0^1(M)$. If (M,φ,g^{N+}) is a Norden–Walker manifold with a holomorphic Norden–Walker metric g^{N+} , we say that (M,φ,g^{N+}) is a holomorphic Norden–Walker manifold.

In some aspects, holomorphic Norden-Walker manifolds are similar to Kähler-Norden-Walker manifolds. The following theorem is an analogue to the next known result: an almost Hermitian manifold is Kähler if and only if the almost complex structure is parallel with respect to the Levi-Civita connection.

Theorem 1. An almost Norden-Walker manifold is a holomorphic Norden-Walker manifold if and only if the proper almost complex structure φ is parallel with respect to the Levi-Civita connection of g^{N+} .

Proof. By virtue of (5) and with $\nabla q = 0$ we have

$$g^{N+}(Z,(\nabla_Y\varphi)X) = g^{N+}((\nabla_Y\varphi)Z,X). \tag{7}$$

Using (7), we can transform (6) as follows:

$$(\Phi_{\varphi}g^{N+})(X, Z_1, Z_2) = -g^{N+}((\nabla_X \varphi)Z_1, Z_2) + g^{N+}((\nabla_{Z_1} \varphi)X, Z_2) + g^{N+}(Z_1, (\nabla_{Z_2} \varphi)X).$$
(8)

From this we have

$$(\Phi_{\varphi}g^{N+})(Z_2, Z_1, X) = -g^{N+}((\nabla_{Z_2}\varphi)Z_1, X) + q^{N+}((\nabla_{Z_1}\varphi)Z_2, X) + q^{N+}(Z_1, (\nabla_X\varphi)Z_2).$$
(9)

If we add (8) and (9), we find

$$(\Phi_{\varphi}g^{N+})(X, Z_1, Z_2) + (\Phi_{\varphi}g^{N+})(Z_2, Z_1, X) = 2g^{N+}(X, (\nabla_{Z_1}\varphi)Z_2). \tag{10}$$

By substituing $\Phi_{\varphi}g^{N+}=0$ in (10), we find $\nabla\varphi=0$. Conversely, if $\nabla\varphi=0$, then the condition $\Phi_{\varphi}g^{N+}=0$ follows from (8). Thus the proof is complete.

Remark. Recall that a Kähler – Norden – Walker manifold can be defined as a triple (M,φ,g^{N+}) which consists of a manifold M endowed with a proper almost complex structure φ and a pseudo-Riemannian Norden – Walker metric g^{N+} such that $\nabla \varphi = 0$, where ∇ is the Levi – Civita connection of g^{N+} . Therefore, there exist a one-to-one correspondence between Kähler – Norden – Walker manifolds and complex manifolds with a holomorphic Norden – Walker metric as they were defined in [9].

Let (M, φ, q^{N+}) be an almost Norden-Walker manifold. If

$$(\Phi_{\varphi}g^{N+})_{kij} = \varphi_k^m \partial_m g_{ij}^{N+} - \varphi_i^m \partial_k g_{mj}^{N+} + g_{mj}^{N+} (\partial_i \varphi_k^m - \partial_k \varphi_i^m) + g_{im}^{N+} \partial_j \varphi_k^m = 0, \quad (11)$$

then by virtue of Theorem 1 the triple (M, φ, g^{N+}) is called a holomorphic Norden–Walker or a Kähler–Norden–Walker manifold.

By substituting (2) and (3) in (11), we obtain

$$\begin{split} \left(\Phi_{\varphi} g^{N+} \right)_{xxz} &= \left(\Phi_{\varphi} g^{N+} \right)_{xzx} = a_x, \quad \left(\Phi_{\varphi} g^{N+} \right)_{xxt} = \left(\Phi_{\varphi} g^{N+} \right)_{xtx} = -b_y + 2c_x, \\ \left(\Phi_{\varphi} g^{N+} \right)_{xyz} &= \left(\Phi_{\varphi} g^{N+} \right)_{xzy} = -a_y, \quad \left(\Phi_{\varphi} g^{N+} \right)_{xyt} = \left(\Phi_{\varphi} g^{N+} \right)_{xty} = -b_x - 2c_y, \\ \left(\Phi_{\varphi} g^{N+} \right)_{xzz} &= aa_x, \quad \left(\Phi_{\varphi} g^{N+} \right)_{xzt} = \left(\Phi_{\varphi} g^{N+} \right)_{xtz} = -\frac{1}{2} (ab)_y + (ac)_x, \end{split}$$

$$\begin{split} & \left(\Phi_{\varphi} g^{N+} \right)_{xtt} = 4cc_x - bb_x - 2(bc)_y, \quad \left(\Phi_{\varphi} g^{N+} \right)_{yxz} = \left(\Phi_{\varphi} g^{N+} \right)_{yzx} = a_y, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{yxt} = \left(\Phi_{\varphi} g^{N+} \right)_{ytx} = b_x + 2c_y, \quad \left(\Phi_{\varphi} g^{N+} \right)_{yyt} = \left(\Phi_{\varphi} g^{N+} \right)_{yty} = -b_y + 2c_x, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{yzz} = aa_y, \quad \left(\Phi_{\varphi} g^{N+} \right)_{yzt} = \left(\Phi_{\varphi} g^{N+} \right)_{ytz} = \frac{1}{2}(ab)_x + (ac)_y, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{ytt} = 4cc_y - bb_y + 2(bc)_x, \quad \left(\Phi_{\varphi} g^{N+} \right)_{zxz} = \left(\Phi_{\varphi} g^{N+} \right)_{zzx} = b_z - \frac{1}{2}a(a-b)_x, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{zxx} = 2(b_x - a_x), \quad \left(\Phi_{\varphi} g^{N+} \right)_{zxy} = \left(\Phi_{\varphi} g^{N+} \right)_{zyx} = 2c_x - a_y + b_y, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{zxt} = \left(\Phi_{\varphi} g^{N+} \right)_{ztx} = 2cb_x - \frac{1}{2}(a-b)b_y + 2c_z - ca_x - a_t + bc_x, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{zyy} = 4c_y, \quad \left(\Phi_{\varphi} g^{N+} \right)_{zyz} = \left(\Phi_{\varphi} g^{N+} \right)_{zzy} = ca_x - aa_y + \frac{1}{2}(ab)_y - a_t + 2c_z, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{zyt} = \left(\Phi_{\varphi} g^{N+} \right)_{zty} = 2bc_y + 2cc_x - b_z - (ac)_y + cb_y, \quad \left(\Phi_{\varphi} g^{N+} \right)_{zzz} = ab_z, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{zzt} = \left(\Phi_{\varphi} g^{N+} \right)_{ztz} = \frac{1}{2}c(ab)_x - \frac{1}{2}(a+b)a_t - \frac{1}{4}(a-b)(ab)_y + (bc)_z + ac_z, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{txt} = 2c(bc)_x + 4cc_z - (a-b)(bc)_y - 2ca_t - bb_z, \quad \left(\Phi_{\varphi} g^{N+} \right)_{txx} = -4c_x, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{txy} = \left(\Phi_{\varphi} g^{N+} \right)_{txy} = b_x - 2c_y - a_x, \quad \left(\Phi_{\varphi} g^{N+} \right)_{txz} = \left(\Phi_{\varphi} g^{N+} \right)_{tzx} = a_t - ac_x - 2c_z, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{txt} = \left(\Phi_{\varphi} g^{N+} \right)_{txx} = bb_x - \frac{1}{2}(ab)_x - 2cc_x - cb_y + b_z, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{tyy} = 2(b_y - a_y), \quad \left(\Phi_{\varphi} g^{N+} \right)_{tyz} = \left(\Phi_{\varphi} g^{N+} \right)_{tzy} = b_z - \frac{1}{2}(a-b)a_x - (ac)_y, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{tyt} = \left(\Phi_{\varphi} g^{N+} \right)_{tty} = (b-a)c_x - 4cc_y + 2c_z - a_t - \frac{1}{2}b(a-b)_y, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{tzt} = aa_t - 2ac_z, \quad \left(\Phi_{\varphi} g^{N+} \right)_{ttt} = (b-a)(bc)_x - 2c(bc)_y + 2bc_z - ba_t, \\ & \left(\Phi_{\varphi} g^{N+} \right)_{tzt} = \left(\Phi_{\varphi} g^{N+} \right)_{ttz} = -\frac{1}{4}(a-b)(ab)_x - \frac{1}{2}c(ab)_y + ca_t - 2cc_t + \frac{1}{2}(a+b)b_z. \\ & \left(\Phi_{\varphi} g^{N+} \right)_{tzt} = \left(\Phi_{\varphi} g^{N+} \right)_{ttt} = \left(\Phi_{\varphi}$$

From these equations we have

Theorem 2. The $triple(M, \varphi, g^{N+})$ is $K\ddot{a}hler-Norden-Walker$ if and only if the following PDEs hold:

$$a_x = a_y = c_x = c_y = b_x = b_y = b_z = 0, \quad a_t - 2c_z = 0.$$
 (13)

Example. Let c=0 (for Walker metrics wg with c=0, see [10]). Then the triple (M,φ,g^{N+}) with metric

$$g^{N+} = \begin{pmatrix} 0 & -2 & 0 & -b(t) \\ -2 & 0 & -a(z) & 0 \\ 0 & -a(z) & 0 & \frac{1}{2}(1 - a(z)b(t)) \\ -b(t) & 0 & \frac{1}{2}(1 - a(z)b(t)) & 0 \end{pmatrix}$$

is always Kähler-Norden-Walker.

Let (M, φ, g) be an almost Hermitian manifold. The Goldberg conjecture [11, 12] states that an almost Hermitian manifold (M, φ, g) must be Kähler (or φ must be integrable) if the following three conditions are imposed: (G_1) if M is compact and (G_2) g is Einstein, and (G_3) if the fundamental 2-form is closed. Despite many papers by various authors concerning the Goldberg conjecture, there are only two papers by Sekigawa [13, 14] which obtained substantial results to the original Goldberg conjecture. Let (M, φ, g) be an almost Hermitian manifold, which satisfies the three conditions $(G_1), (G_2)$ and (G_3) . If the scalar curvature of M is nonnegative, then φ must be integrable.

Let now $(M, \varphi, {}^w g)$ be an Hermitian–Walker manifold with the proper almost complex structure φ and the metric ${}^w g$ (see (1)). From Theorem 1, we have

Theorem 3. Let $(M, \varphi, {}^w q)$ be an Hermitian-Walker manifold with the proper almost complex structure φ . The proper almost complex structure φ on a Walker manifold $(M, {}^wg)$ is integrable if $\phi_{\varphi}g^{N+}=0$, where g^{N+} is a Norden-Walker metric defined by(3).

Twin Norden-Walker metrics

Let (M, φ, g^{N+}) be an almost Norden-Walker manifold. The associated Norden-Walker metric of almost Norden-Walker manifold is defined by

$$G(X,Y) = (g^{N+} \circ \varphi)(X,Y) \tag{14}$$

for all vector fields X and Y on M. One can easily prove that G is a Norden-Walker metric G^{N+} (see (4)), which is called the twin metric of g^{N+} and it plays a role similar to the Kähler form in Hermitian Geometry. We shall now apply the ϕ_{φ} -operator to the pure metric G^{N+} :

$$(\phi_{\varphi}G^{N+})(X,Y,Z) = (\varphi X) (G^{N+}(Y,Z)) - X (G^{N+}(\varphi Y,Z)) + G^{N+}((L_{Y}\varphi)X,Z) + G^{N+}(Y,(L_{Z}\varphi)X) = (L_{\varphi X}G^{N+} - L_{X}(G^{N+}\circ\varphi))(Y,Z) + G^{N+}(Y,\varphi L_{X}Z) - G^{N+}(\varphi Y,L_{X}Z) = (\varphi_{\varphi}G^{N+})(X,\varphi Y,Z) + G^{N+}(N_{\varphi}(X,Y),Z).$$
(15)

Thus (15) implies the following

Theorem 4. In an almost Norden-Walker manifold (M, φ, g^{N+}) , we have

$$\phi_{\wp}G^{N+} = (\phi_{\wp}q^{N+}) \circ \varphi + q^{N+} \circ (N_{\wp}).$$

Corollary 1. In a Norden-Walker manifold (M, φ, q^{N+}) the following conditions are equivalent:

- a) $\phi_{\varphi}g^{N+} = 0$, b) $\phi_{\varphi}G^{N+} = 0$.

We denote by $\nabla_{g^{N+}}$ the covariant differentiation of Levi–Civita connection of Norden metric g^{N+} . Then we have

$$\nabla_{g^{N+}}G^{N+} = (\nabla_{g^{N+}}g^{N+})\circ\varphi + g^{N+}\circ(\nabla_{g^{N+}}\varphi) = g^{N+}\circ(\nabla_{g^{N+}}\varphi),$$

which implies $\nabla_{a^{N+}}G^{N+}=0$ by virtue of Theorem 1 ($\nabla_{a^{N+}}\varphi=0$). Therefore, we have

Theorem 5. Let (M, φ, g^{N+}) be a Kähler-Norden-Walker manifold. Then the $Levi-Civita\ connection\ of\ Norden-Walker\ metric\ q^{N+}\ coincides\ with\ the\ Levi-Civita$ connection of twin Norden – Walker metric G^{N+} .

Quasi-Kähler - Norden - Walker manifolds

The basis class of non-integrable almost complex manifolds with Norden metric is the class of the quasi-Kähler manifolds. An almost Norden manifold (M, φ, g^{N+}) is called quasi-Kähler [15] if

$$\underset{X,Y,Z}{\sigma} g^{N+}((\nabla_X \varphi)Y, Z) = 0,$$

where σ is the cyclic sum by three arguments.

By setting $(L_Y\varphi)X = L_Y(\varphi X) - \varphi(L_YX) = \nabla_Y(\varphi X) - \nabla_{\varphi X}Y - \varphi(\nabla_Y X) + \varphi(\nabla_X Y)$ and using (8), we see that $(\Phi_\varphi g^{N+})(X,Y,Z)$ may be expressed as

$$(\Phi_{\varphi}g^{N+})(X,Y,Z) = -g^{N+}((\nabla_X\varphi)Y,Z) + g^{N+}((\nabla_Y\varphi)Z,X) + g^{N+}((\nabla_Z\varphi)X,Y).$$

If we add $(\Phi_{\varphi}g^{N+})(X,Y,Z)$ and $(\Phi_{\varphi}g^{N+})(Z,Y,X)$, then by virtue of $g^{N+}(Z,(\nabla_{Y}\varphi)X)=g^{N+}((\nabla_{Y}\varphi)Z,X)$, we find

$$(\Phi_{\varphi}g^{N+})(X, Y, Z) + (\Phi_{\varphi}g^{N+})(Z, Y, X) = 2g^{N+}((\nabla_{Y}\varphi)Z, X).$$

Since $(\Phi_{\varphi}g^{N+})(X,Y,Z) = (\Phi_{\varphi}g^{N+})(X,Z,Y)$, from last equation we have

$$(\Phi_{\varphi}g^{N+})(X,Y,Z) + (\Phi_{\varphi}g^{N+})(Y,Z,X) + (\Phi_{\varphi}g^{N+})(Z,X,Y) = \underset{X \ Y \ Z}{\sigma} g^{N+}((\nabla_X \varphi)Y,Z).$$

Thus we have

Theorem 6. Let (M, φ, g^{N+}) be an almost Norden-Walker manifold. Then the Norden-Walker metric g^{N+} is quasi-Kähler-Norden-Walker if and only if

$$(\Phi_{\omega}g^{N+})(X,Y,Z) + (\Phi_{\omega}g^{N+})(Y,Z,X) + (\Phi_{\omega}g^{N+})(Z,X,Y) = 0$$
(16)

for any $X, Y, Z \in \mathfrak{I}_0^1(M_{2n})$.

From (1.) and (16) we have

Theorem 7. A triple (M, φ, g^{N+}) is a quasi-Kähler-Norden-Walker manifold if and only if the following PDEs hold:

$$b_x = b_y = b_z = 0, a_y - 2c_x = 0, a_x + 2c_y = 0, (b - a)c_x - 2cc_y + 2c_z - a_t = 0.$$

We thank Professor Yasuo Matsushita for valuable comments. This paper is supported by The Scientific and Technological Research Council of Turkey (TBAG-108T590).

Резюме

А.А. Салимов, М. Исчан, С. Туранли Дифференциальная геометрия многообразий Уокера.

В статье рассматриваются интегрируемость и голоморфность структуры Нордена – Уокера (M,g^{N+},φ) , а также дается характеризация метрики Кэлера – Нордена – Уокера q^{N+} .

Ключевые слова: структура Нордена – Уокера, многообразие Уокера, чистое тензорное поле, метрика Кэлера – Нордена – Уокера, голоморфное тензорное поле, двойная метрика.

References

- Walker A.G. Canonical form for a Rimannian space with a parallel field of null planes // Quart. J. Math. Oxford. – 1950. – V. 1, No 2. – P. 69–79.
- Matsushita Y. Walker 4-manifolds with proper almost complex structure // J. Geom. Phys. - 2005. - V. 55. - P. 385-398.
- 3. Bonome A., Castro R., Hervella L.M., Matsushita Y., Construction of Norden structures on neutral 4-manifolds // JP J. Geom. Topol. 2005. V. 5, No 2. P. 121–140.

- Salimov A.A., Iscan M., Akbulut K. Some remarks concerning hyperholomorphic B-manifolds // Chin. Ann. Math. Ser. B. 2008. V. 29, No 6. P. 631–640.
- 5. Ganchev G.T., Borisov A.V. Note on the almost complex manifolds with a Norden metric // Compt. Rend. Acad. Bulg. Sci. 1986. V. 39, No 5. P. 31–34.
- 6. Iscan M., Salimov A.A. On Kähler-Norden manifolds // Proc. Indian Acad. Sci. Math. Sci. 2009. V. 119, No 1. P. 71–80.
- 7. Norden A.P. On a certain class of four-dimensional A-spaces // Izvestiya VUZ. Matematika. 1960. No 4. P. 145–157 [in Russian].
- 8. Salimov A.A. Iscan M., Etayo F. Paraholomorphic B-manifold and its properties // Topol. Appl. 2007. V. 154, No 4. P. 925–933.
- 9. Kruchkovich G.I. Hypercomplex structure on a manifold I // Trudy Seminara Vect. Tens. Anal. M.: Moscow Univ., 1972. No 16. P. 174–201 [in Russian].
- Matsushita Y. Four-dimensional Walker metrics and symplectic structure // J. Geom. Phys. - 2004. - V. 52, No 1. - P. 89-99.
- 11. Goldberg S.I. Integrability of almost Kahler manifolds // Proc. Amer. Math. Soc. 1969. V. 21. P. 96–100.
- 12. Matsushita Y. Counterexamples of compact type to the Goldberg conjecture and various version of the conjecture // Proc. of 8th Int. Workshop on Complex Structures and Vector Fields / Ed. by S. Dimiev, K. Sekigawa. World Scientific Publ., 2007. P. 222–233.
- 13. Sekigawa K. On some 4-dimensional compact Einstein almost Kähler manifolds // Math. Ann. 1985. V. 271. P. 333–337.
- 14. Sekigawa K. On some compact Einstein almost Kähler manifolds // J. Math. Soc. Japan. 1987. V. 36. P. 677–684.
- 15. *Manev M., Mekerov D.* On Lie groups as quasi-Kähler manifolds with Killing Norden metric // Adv. Geom. 2008. V. 8, No 3. P. 343–352.
- Salimov A.A., Iscan M. Some properties of Norden Walker metrics // Kodai Math. J. 2010. – V. 33. – P. 283–293.

Поступила в редакцию 27.10.10

Salimov, Arif A. – Doctor of Science, Professor, Department of Mathematics, Faculty of Sciences, Atatürk University, Erzurum, Turkey.

Салимов, Ариф Агаджан оглы – доктор физико-математических наук, профессор отделения математики факультета естественных наук Университета Ататюрка, г. Эрзурум, Турция.

E-mail: asalimov@atauni.edu.tr

Iscan, Murat - PhD, Assistant Professor, Department of Mathematics, Faculty of Sciences, Atatürk University, Erzurum, Turkey.

Исчан, Мурат – доктор наук, и.о. доцента отделения математики факультета естественных наук Университета Ататюрка, г. Эрзурум, Турция.

E-mail: miscan@atauni.edu.tr

Turanli, Sibel - Research Assistant, Department of Mathematics, Faculty of Sciences, Atatürk University, Erzurum, Turkey.

Туранли, Сибел – аспирант отделения математики факультета естественных наук Университета Ататюрка, г. Эрзурум, Турция.

 $\hbox{E-mail: } sibelturanli@hotmail.com$