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Abstract

In the present paper, we focus our attention on the integrability and holomorphic conditions
of a Norden - Walker structure (M,g"VT,¢). We also give a characterization of a Kihler -
Norden - Walker metric g™ .
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Introduction

Let M be a C°°-manifold of finite dimension 4. We denote by 37 (M) the module
over F(M) of all C*-tensor fields of type (r,s) on M, i.e., of contravariant degree r
and covariant degree s, where F'(M) is the algebra of C'*°-functions on M.

A neutral metric “g on a 4-manifold M is said to be Walker metric if there exists
a 2-dimensional null distribution D on M , which is parallel with respect to “g. From
Walker’s theorem [1], there is a system of coordinates with respect to which “g takes
the local canonical form

: (1)

Y9 = (“gi5) =

o= O o
— o o o
o 8 O
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where a, b, ¢ are smooth functions of the coordinates (z,y,z,¢). The parallel null
2-plane D is spanned locally by {0., 0y}, where 0, = 0/0z, 0, = 0/0y.

In [2, Fact 1], a proper almost complex structure with respect to *g is defined
as a “g-orthogonal almost complex structure ¢ so that ¢ is a standard generator of
a positive 7/2 rotation on D, i.e., 90, = 0, and 0, = —J,. Then for the Walker
metric “g, such a proper almost complex structure ¢ is determined uniquely as

0 -1 —c 1(a—1b)

1 0 i(a-b ¢

00 0 -1 @
0 O 1 0

In [3], for such a proper almost complex structure ¢ on Walker 4-manifold M,
an almost Norden structure (g™, ) is constructed, where gV+ is a metric on M,
with properties ¢V (¢ X, ¢Y) = —¢gVT(X,Y). In fact, as one of these examples, such
a metric takes the form (see Proposition 6 in [3]):

0 —2 0 —b
—2 0 —a —2c
Nt _
=10 -a 0 l1-ab)| 3)

—b —2c 3(1—ab) —2bc
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We may call this an almost Norden — Walker metric. The construction of such a struc-
ture in [3] is to find a Norden metric for a given almost complex structure, which is
different form the Walker metric.

In [3], for a given proper almost complex structure ¢, an another Norden — Walker
metric GV is also constructed:

-2 0 —a —2c
0 2 0 b
N+ _
= —a 0 i(1-a? —ac ’ )
—2c b —ac (b —4c? —1)

The purpose of the present paper is to study Kéhler and quasi-K&hler conditions of
Norden — Walker metrics g™+ and GN*.

1. Kaihler — Norden — Walker metrics

Let ¢ be an affinor field on M i.e., p € I}(M). A tensor field ¢ of type (r,s) is
called pure tensor field with respect to ¢ if

1 T

1 T
t((leaan gaag) = t(X1;7SDX57 57’5)

L1
= t(X1,..., Xs; ©E,...,8)

= t(Xl,--st; €aa(p§)

12 T ,
for any X1, Xa,...,Xs € S§(M) and &,€,...,& € SY(M), where ¢ is the adjoint
operator of ¢ defined by ,
( P& (X) = &(pX),
X € SH(M), € € SYUM).
We denote by 37%(M) the module of all pure tensor fields of type (r,s) on M with
respect to the affinor field ¢. We now fix a positive integer \. If K and L are pure

tensor fields of types (p1,¢q1) and (p2,q2) respectively, then the tensor product of K
and L with contraction

C . .
KL= (K" La w2 s)

J1e-day
is also a pure tensor field.

We shall now make the direct sum (M) = 3 _ S5(M) into an algebra over the

C *
real number R by defining the pure product (denoted by @ or " o”) of K € 371(M)

and L € 3P2(M) as follows:

’L‘l,,,mx...i 177T1-Tpoy
Kjlqul ’ Ifsq...'n“...sq2 for A <p1,q

() is a fixed positive integer),

01...4 T1e My T
S (KoL) — (KoL) = § Kty Lo for < 2y
’ (u is a fixed positive integer),
0 for p1 =0, py =0,

0 for q; =0, g2 =0.
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In particular, let K = X € S§(M), and L € A,(M) be a g-form. Then the pure

c
product X ® L coincides with the interior product tx L.
Definition 1 [4]. Letp € 3}(M), and (M) = Z'C:Z‘:O ST (M) be a tensor algebra
over R. A map ¢, : (M) — (M) is called a ¢,-operator on M if

a) ¢, is linear with respect to constant coefficients;
b) ¢y : SL(M) — % (M) for all 7, s;

)
c c c *
¢) oo(K®@L)=(¢,K)® L+ K ® ¢,Lifor all K,L € I(M);
d) poxY = —(Lyp)X X,Y € S§(M), where Ly is the Lie derivation with respect
to Y;
e) dox (yw) = (d(yw)) (0 X) = (d(y (w 0 9)))(X) = (pX)(tyw) = X (1pyw) for all

weSY(M) and X,Y € (M), where 1yw = w(Y) = w%Y.

Let (M,"g) be a Walker 4-manifold with a Norden — Walker metric g™+ and proper
almost complex structure ¢. If the Nijenhuis tensor field N, € S3(M) vanishes, then
¢ is a complex structure and moreover M is a C-holomorphic manifold X5(C) whose
transition functions are C-holomorphic mappings. IV, = 0 is equivalent to the condition
V¢ = 0, where V is a torsion-free affine connection. A metric ¢Vt is a Norden — Walker
metric [3, 5-8] if

gV (eXY) = gV (X, pY) (5)
for any X,Y € S§(M), i.e., gVt is pure with respect to the proper almost complex
structure . If (M, ) is an almost complex manifold with Norden — Walker metric g™V,
we say that (M, g, g™V ") is an almost Norden — Walker manifold. If ¢ is integrable, we
say that (M, o, gV *) is a Norden — Walker manifold.

Let ¢ € J7(X2(C)) be a complex tensor field on X2(C). The real model of such
a tensor field is a pure tensor field ¢ € Q% (M) with respect to ¢, which in general is
not C-holomorphic. When ¢ is a proper complex structure on M and the tensor field

¢t vanishes, the complex tensor field t on X2(C) is said to be holomorphic [9]. Thus

a holomorphic tensor field t on X2(C) is realized on M in the form of a pure tensor
field ¢, such that

1 2
(d)kpt)(XaYl;Yéw"7&;575;"'75):0

12 T
for any X,Yq,...,Ys € S§(M) and £,¢,....& € SY(M), where
((btpt) (X,Yl’...,}/;7§17...,fr) = (CPX)t(Yla"w}/sagla"'afr) -

- Xt(cle,...,Ys,gl,...,g’")+Zt(Yl,...,(LyAga)X,...,Ys,fl,...,f’“) -
A=1

T

- Zt(Yla"'7}/;a§1a"'7L<pX£M7LX (EMOSD);"WST)' (6)

p=1
In a Norden—Walker (almost Norden — Walker) manifold a Norden — Walker metric
g™t is called holomorphic (almost holomorphic) if
(b )XY, Z) = (pX) (6" (Y, 2)) = X (6" (9Y. 2)) +
+ " (Lye) X, 2) + g™ (Y, (Lzp) X) = 0
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for any X, Y, Z € S§(M). If (M, p, gV ") is a Norden — Walker manifold with a holo-
morphic Norden — Walker metric ¢g™¥*, we say that (M, ¢, gV ") is a holomorphic Nor-
den — Walker manifold.

In some aspects, holomorphic Norden— Walker manifolds are similar to K&hler—
Norden — Walker manifolds. The following theorem is an analogue to the next known
result: an almost Hermitian manifold is K&ahler if and only if the almost complex struc-
ture is parallel with respect to the Levi— Civita connection.

Theorem 1. An almost Norden — Walker manifold is a holomorphic Norden —
Walker manifold if and only if the proper almost complex structure ¢ is parallel with
respect to the Levi— Civita connection of gV ¥ .

Proof. By virtue of (5) and with Vg = 0 we have
9" H(Z, (Vye)X) = gV (Vye)Z, X). (7)

Using (7), we can transform (6) as follows:

(®pg™ )X, Z1, Z2) = =N T (V) 21, Z2) +
+ gN+((V2190)X7 ZQ) +9N+(Zla(vzzsa)X)' (8)

From this we have

(9™ ") (Z2, 21, X) = =gV (V2,0) 21, X) +
+ gV (V2,0 Z2, X) + gV (Z1,(Vx0) Z2). (9)

If we add (8) and (9), we find
(Ppg" )X, 21, Z2) + (Dpg" ) (Z2, 21, X) = 29V (X, (V2,0) 22). (10)

By substituing ®,¢V* = 0 in (10), we find Vo = 0. Conversely, if V¢ = 0, then the
condition ®,g" T = 0 follows from (8). Thus the proof is complete.
O

Remark. Recall that a Kihler — Norden — Walker manifold can be defined as a triple
(M, ¢,gN*) which consists of a manifold M endowed with a proper almost complex
structure ¢ and a pseudo-Riemannian Norden — Walker metric ¢Vt such that Vo =0,
where V is the Levi— Civita connection of ¢™¥* . Therefore, there exist a one-to-one cor-
respondence between Kédhler — Norden — Walker manifolds and complex manifolds with
a holomorphic Norden — Walker metric as they were defined in [9].

Let (M, p, gV ") be an almost Norden — Walker manifold. If
(Pog™ i = CFOmgly ¥ — 0 gy + gyt (Oupil — Opi") + gi 05 = 0, (11)

then by virtue of Theorem 1 the triple (M, p,g™¥*) is called a holomorphic Norden —
Walker or a Kéhler — Norden — Walker manifold.
By substituting (2) and (3) in (11), we obtain
(‘I)MNJF)MZ = (‘I)ngJr)mm = Qa, (‘I)vgNJr)mt = (‘I)vgNJr)zm = —by + 2¢,,
(q)‘PgN+)zyz = (q)‘PgN+)azzy = 0y, ((I)‘PgN+)zyt = ((I)‘PgN+)azty = _bx - 203/’
((I)q)gNJr)mz = aa,, (@¢9N+)1Zt = (@¢9N+)mtz = —1(ab), + (ac),
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(@,9™T),, =4cca — bby — 2(be)y, (%gM)W: (%gm)ym:ay,

(@pg™) = (Peg™ ) o =be 26y, (Rpg™) = (g™ T) |, ==by +2c.,
(Pog™"),..=aay,  (Ppg™7), = (2ag™),, =5 (ab)s + (ac),,

(85" 0) = ey = b, + 20000, (Bog™)., = (2p6™") ., =0: — Jala— b
(@pg™*) =20 —ar),  (Peg™) = (®pg™T)_ =2¢, —a, +b,

(@pg™ )., = (Pog™™) ., =2cbs — 3(a — )by, + 2¢. — cay — az + bey,
(@ngJr)zyy:‘Lcy’ (‘I)sogN+)zyz = (‘I’ngJr)zzy =ca, — aay + 3(ab), — a; + 2c.,

(q)‘PgN+)zyt = ((I)WgNJr) _2bc’y + 20090 - bz - (ac)y + bea ((I)ngJr) :ab27

2ty zZzZz

(¢¢QN+ = (@¢9N+)thzéc(ab)x - %(a +b)as — i(a —b)(ab), + (be), + acs, (12)
P,gNT i =2c(bc)y + dec, — (a — b)(be)y, — 2cay — bb., (<I><pgN+)tm=—4(:gc7

N N N N
d.g + toy = d.g +)tym:bmecyfaI, (CIDLPg +)mz: (<I><pg +)t2x:atfacm720m

by —ay), ((I)ngJr)tyz = (CI)LPQNJr)tZy:bz - %(a —b)a, — (ac)y,
= (Q)‘PgN+)tty:(b — G)Cz — 4CCy -+ 262 — Q¢ — %b(a - b)y,
=aa; — 2ac,, ((I><PgN+)ttt =(b—a)(bc)y — 2¢(be)y + 2bc, — bay,

= <I>¢gN+) = fl(a —b)(ab),— %c(ab)ercat - QCCZ+%(G, +b)b..

)
) 2
)iy = (
q)q)gNJr) _ (q)q)gzw)tm =bb, — 1(ab), — 2ccy — by + b2,
) 2
)
)
) ttz 4

From these equations we have

Theorem 2. The triple(M, ¢, gV *) is Kihler - Norden — Walker if and only if the
following PDEs hold:

Uy =Qy=Cp =Cy=by =by,=b,=0, ar—2c,=0. (13)

Example. Let ¢ =0 (for Walker metrics g with ¢ = 0, see [10]). Then the triple
(M, p, gN+) with metric

0o -2 0 —b(t)
N+ = -2 0 —a(z) 0
0 —a(z) 0 1(1—a(2)b(t))
—b(t) 0 1(1—a(2)b(t)) 0

is always Ké&hler - Norden — Walker.

Let (M, ¢,g) be an almost Hermitian manifold. The Goldberg conjecture [11, 12]
states that an almost Hermitian manifold (M, p,g) must be Kdhler (or ¢ must be
integrable) if the following three conditions are imposed: (Gp) if M is compact and
(G2) g is Einstein, and (G3) if the fundamental 2-form is closed. Despite many papers
by various authors concerning the Goldberg conjecture, there are only two papers by
Sekigawa [13, 14] which obtained substantial results to the original Goldberg conjecture.
Let (M,¢,g) be an almost Hermitian manifold, which satisfies the three conditions
(G1),(G2) and (G3). If the scalar curvature of M is nonnegative, then ¢ must be
integrable.

Let now (M, ,"g) be an Hermitian — Walker manifold with the proper almost com-
plex structure ¢ and the metric “g (see (1)). From Theorem 1, we have
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Theorem 3. Let (M, p,"g) be an Hermitian— Walker manifold with the proper al-
maost complex structure . The proper almost complex structure o on a Walker manifold
(M,*g) is integrable if gZ)QPgNJr = 0, where ¢Vt is a Norden - Walker metric defined

by (3).

2. Twin Norden— Walker metrics
Let (M,p,g™T) be an almost Norden — Walker manifold. The associated Norden —
Walker metric of almost Norden — Walker manifold is defined by
G(X,Y) = (" op)(X,Y) (14)

for all vector fields X and Y on M. One can easily prove that G is a Norden — Walker
metric GV (see (4)), which is called the twin metric of g™+ and it plays a role similar
to the Kéhler form in Hermitian Geometry. We shall now apply the ¢, -operator to the
pure metric GN7:

(0,GN )XY, Z) = (pX) (GNT (Y, 2)) — X (GN (9Y, 2)) +
+ GV ((Ly@) X, Z2) + GN* (Y, (Lzp) X) =
= (LexGNt — Lx(GNT o 0))(V, Z) +
+ GNY(Y,oLxZ) -GNt (Y, LxZ) =
= (¢GM ) (X, 9V, 2) + GNF (N, (X,Y), Z).  (15)

Thus (15) implies the following
Theorem 4. In an almost Norden — Walker manifold (M, ¢,g™ "), we have

¢<PGN+ = (d’@gNJr) op+ 9N+ o (Ny).

Corollary 1. In a Norden - Walker manifold (M, p, gN*t) the following conditions
are equivalent:

a) (b@gNJr = 07
b) p,GNT =0.

We denote by V ~v+ the covariant differentiation of Levi— Civita connection of Nor-
den metric ¢Vt . Then we have

Vont GV = (Vi gV ) oo+ gVt o (Vynip) = g o (Vyni9),
which implies V v+ GN* =0 by virtue of Theorem 1 (Vgn+@ =0). Therefore, we have

Theorem 5. Let (M, p, g ") be a Kihler — Norden — Walker manifold. Then the
Levi — Civita connection of Norden — Walker metric gNt coincides with the Levi - Civita
connection of twin Norden— Walker metric GN* .

3. Quasi-Kihler — Norden — Walker manifolds

The basis class of non-integrable almost complex manifolds with Norden metric
is the class of the quasi-K#hler manifolds. An almost Norden manifold (M, o, g™ 7F) is
called quasi-Kéahler [15] if

N+ _
X,%,Zg ((VX QD)Y) Z) =0,

where o is the cyclic sum by three arguments.
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By setting (Ly )X = Ly (¢X)—p(Ly X) = Vy (pX)=Vox Y —p(Vy X)+o(VxY)
and using (8), we see that (®,¢™)(X,Y,Z) may be expressed as

(o)XY, Z2) = gV (Vx)Y, Z) + gV T ((Vy9) Z, X) + gV T (Vz9) X, Y).

If we add (®,¢V")(X,Y.Z) and (®,9"")(Z,Y,X), then by virtue of
gNJr(Za (VYQO)X) - gNJr((vYSD)ZaX): we find

((I)<P9N+)(Xa Y, Z) + (q)tPgNJr)(Zv Y, X) = 29N+((VY90)Za X)
Since (P9 1) (X,Y,Z) = (9N ") (X, Z,Y), from last equation we have

(29" )(X,Y, Z2) + (Rpg" )Y, 2. X) + (2" )Z,X,Y) = g g™ (Vx@)Y. 2).

Thus we have

Theorem 6. Let (M, p,gN*t) be an almost Norden - Walker manifold. Then the
Norden — Walker metric gN*t is quasi-Kdhler — Norden — Walker if and only if

((I)<P9N+)(Xa Ya Z) + (q)tPgNJr)(Ya ZvX) + ((I)<P9N+)(Za Xﬂ Y) =0 (16)
for any X, Y, Z € S{(Ma,).
From (1.) and (16) we have

Theorem 7. A triple (M,,g"")is a quasi-Kdihler - Norden - Walker manifold
if and only if the following PDEs hold:

by =by =0, =0,a, —2¢, =0,a, + 2¢, =0, (b—a)cy — 2ccy + 2¢, —ay = 0.

We thank Professor Yasuo Matsushita for valuable comments. This paper is sup-
ported by The Scientific and Technological Research Council of Turkey (TBAG-
108T590).

Pesome

A A. Caaumos, M. Hewan, C. Typanau Juddepennuanbias reomeTpus MHOro00pasuit
Yokepa.

B crarhe paccMaTpwBaIOTCS WHTETPUPYEMOCTHh W TOJIOMOPGHOCTH CTPYKTYypbl Hop/ena —
Yoxkepa (M, gVt ¢), a Tak¥Ke maercs xapakrepusanus merpuku Kasepa—Hopaena— Yokepa
g™t

KuroueBnie cioBa: crpykrypa Hopaena - Yokepa, MHOrOOOpasme YOKepa, UHUCTOE TEH-
3opHoe mosie, merpuka Kanepa—Hopmena— Yokepa, romomMopdHOe TEH30pHOE TOJe, IBOWHAs
MeTpHKA.

References

1. Walker A.G. Canonical form for a Rimannian space with a parallel field of null planes //
Quart. J. Math. Oxford. — 1950. — V. 1, No 2. — P. 69-79.

2. Matsushita Y. Walker 4-manifolds with proper almost complex structure // J. Geom.
Phys. — 2005. — V. 55. — P. 385-398.

3. Bonome A., Castro R., Hervella L.M., Matsushita Y., Construction of Norden structures
on neutral 4-manifolds // JP J. Geom. Topol. — 2005. — V. 5, No 2. — P. 121-140.



DIFFERENTIAL GEOMETRY OF WALKER MANIFOLDS 271

4.  Salimov A.A., Iscan M., Akbulut K. Some remarks concerning hyperholomorphic B-
manifolds // Chin. Ann. Math. Ser. B. — 2008. — V. 29, No 6. — P. 631-640.

5.  Ganchev G.T., Borisov A.V. Note on the almost complex manifolds with a Norden met-
ric // Compt. Rend. Acad. Bulg. Sci. — 1986. — V. 39, No 5. — P. 31-34.

6.  Iscan M., Salimov A.A. On Kéhler-Norden manifolds // Proc. Indian Acad. Sci. Math.
Sci. — 2009. — V. 119, No 1. — P. 71-80.

7. Norden A.P. On a certain class of four-dimensional A-spaces // Izvestiya VUZ. Matem-
atika. — 1960. — No 4. — P. 145-157 [in Russian].

8. Salimov A.A. Iscan M., Etayo F. Paraholomorphic B-manifold and its properties //
Topol. Appl. — 2007. — V. 154, No 4. — P. 925-933.

9. Kruchkovich G.I. Hypercomplex structure on a manifold I // Trudy Seminara Vect. Tens.
Anal. — M.: Moscow Univ., 1972. — No 16. — P. 174-201 [in Russian].

10. Matsushita Y. Four-dimensional Walker metrics and symplectic structure // J. Geom.
Phys. —2004. — V. 52, No 1. — P. 89-99.

11.  Goldberg S.I. Integrability of almost Kahler manifolds // Proc. Amer. Math. Soc. — 1969. —
V. 21. — P. 96-100.

12.  Matsushita Y. Counterexamples of compact type to the Goldberg conjecture and various
version of the conjecture // Proc. of 8th Int. Workshop on Complex Structures and Vector
Fields / Ed. by S. Dimiev, K. Sekigawa. — World Scientific Publ., 2007. — P. 222-233.

13.  Sekigawa K. On some 4-dimensional compact Einstein almost K&hler manifolds // Math.
Ann. - 1985. - V. 271. - P. 333-337.

14.  Sekigawa K. On some compact Einstein almost Ké&hler manifolds // J. Math. Soc. Japan. —
1987. — V. 36. — P. 677-684.

15. Manev M., Mekerov D. On Lie groups as quasi-Kdhler manifolds with Killing Norden
metric // Adv. Geom. — 2008. — V. 8, No 3. — P. 343-352.

16.  Salimov A.A., Iscan M. Some properties of Norden—Walker metrics // Kodai Math. J. —
2010. — V. 33. — P. 283-293.

IToctymmna B pemakmumio
27.10.10

Salimov, Arif A. — Doctor of Science, Professor, Department of Mathematics, Faculty
of Sciences, Atatiirk University, Erzurum, Turkey.

Camumos, Apud Araspkas orisl — T0KTOp GU3NKO-MATEMATUIECKUX HAYK, Ipodeccop
OT/IeJIeHNsT MaTeMaTuKu (hakyabTeTa eCTeCTBEHHBIX HayK YHHMBepcuTeTa ATaTiopka, T. Dp3y-
pym, Typums.

E-mail: asalimov@atauni.edu.tr

Iscan, Murat — PhD, Assistant Professor, Department of Mathematics, Faculty of
Sciences, Atatiirk University, Erzurum, Turkey.

WUcuan, Mypar — I0KTOp HayK, U.0. JIONEHTA OTIEJCHUS MATEMATUKN (PAaKyIbTETa ecTe-
CTBEHHBIX HAayK YHuBepcureTa ArarTiopka, r. 9p3ypym, Typiusd.

E-mail: miscan@atauni.edu.tr

Turanli, Sibel — Research Assistant, Department of Mathematics, Faculty of Sciences,
Atatiirk University, Erzurum, Turkey.

Typansn, Cubes — acnupaHT OTIEJIEHUS MATEMATHKN (PAKyIbTETA eCTECTBEHHBIX HAYK
Yuusepcurera Arariopka, r. Dp3ypyMm, Typrms.

E-mail: sibelturanli@hotmail.com



