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ON THE EINSTEIN EQUATION ON LORENTZIAN
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Abstract

Some recent results about Einstein Lorentzian manifolds that admit parallel distributions
of isotropic lines are reviewed. We find all holonomy algebras of such manifolds and describe
special coordinates that allow us to simplify the Einstein equation. Examples in dimension 4
are considered.
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Introduction

Let (M, g) be a Lorentzian manifold admitting a parallel distribution of isotropic
lines. On any such manifold (of dimension n + 2, n > 0) there exist local coordinates

v,zt, ..., 2", u, the so-called Walker coordinates, such that the metric g has the form

g=2dvdu+h+2Adu+ H - (du)?, (1)
where h = h;j(x',...,2" u)dz*dz? is a u-dependent family of Riemannian metrics,
A= A;(zt,..., 2" u)da’ is a u-dependent family of one-forms, and H is a local func-

0
tion on M [1]. The vector field 9, = e defines the parallel distribution of isotropic

lines. Lorentzian manifolds with this pro%erty are of interest both in differential geom-
etry and theoretical physics (e.g. [1-6]). Recently in [5] G.W. Gibbons and C.N. Pope
studied the Einstein equation on such Lorentzian manifolds (M,g) and gave some
physical interpretation for its solutions.

In Section 1 the Einstein equation for the metric (1) is rewritten as a system of
partial differential equations with respect to the components i, A and H defining the
metric g. In Section 2 it is shown that the Walker coordinates on an Einstein manifold
(M, g) can be chosen in such a way that A = 0, this gives a simplification of the Einstein
equation. In Section 3 we consider examples in dimension 4. In Section 4 all holonomy
algebras of the Einstein manifolds (M, g) are given.

1. The form of the Einstein equation

A manifold (M, g) is called an Einstein manifold if g satisfies the equation
Ric=Ag, A€eR,

where Ric is the Ricci tensor of the metric g. The number A € R is called the cos-
mological constant. If A = 0, i.e. Ric = 0, then (M,g) is called Ricci-flat or vacuum
Einstein.



166 AS. GALAEV

A special example of the metric (1) is the metric of a pp-wave

g=2dvdu+ (da')? + H - (du)?, 9,H =0. (2)

i=1

If such metric is Einstein, then it is Ricci-flat, and it is Ricci-flat if and only if
n

> 0?H =0.

i=1

In [5] it is shown that the Einstein equation for a Lorentzian metric of the form (1)
implies
H:A’U2+’UH1+H0, (3)

where Hp and H; do not depend on v. Furthermore, in [5] it is proved that Eq. (2) is
equivalent to Eq. (3) and the following system of equations:

AHy — §F”Fij —2A'0;H, — H1V'A; + 2AA'A; — 2V A; +

1. .. 1 .
+ §h” hij + hY hij + §h”hin1 =0, (4)

VIFij + 0iHy — 20A; + Vhij — 9;(h*hji) = 0, (5)
AH, —2AV'A; + ARy = 0, (6)
RiCij = Ahij, (7)

where AHy = hij(c')iajHo — Fi—“jc')kHo) is the Laplace — Beltrami operator of the metrics
h(u) applied to Hy, F;; = 0;A; — 0;A; are the components of the differential of the
one-form A = A;dz’. A dot denotes the derivative with respect to w.

2. Simplification of the Einstein equation
The Walker coordinates are not defined canonically and any other Walker coordi-
nates v, z',...,2", u such that 0y = 9, are given by the following transformation
(see [6, 7]):
v=v+ f(2',... 2" ), T =7(t, ..., 2" ), T=u+tc
Using this, in [7] the following theorem is proved:

Theorem 1. Let (M,g) be a Lorentzian manifold of dimension n + 2 (n > 2)
admitting a parallel distribution of isotropic lines. If (M,g) is Einstein with the non-
zero cosmological constant A, then there exist local coordinates (’U,:L'l, .. .,x”,u) such
that the metric g has the form

g =2dvdu + hy; do’ da? + (Av? + Hp)(du)?

with Oyhi; = 0,Ho = 0, h;; defines a u-dependent family of Riemannian Finstein
metrics with the cosmological constant A, satisfying the equations:

1 ..
AHQ + Eh”hij = O7 (8)
Vihij =0, (9)
hijhij =0, (10)
RiCij = Ahij, (11)

where h” = Oyhij . Conversely, any such metric is Einstein.
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Thus, we reduce the Einstein equation with A # 0 on a Lorentzian manifold with
a parallel distribution of isotropic lines to the study of families of Einstein Riemannian
metrics satisfying Eqs. (9) and (10).

The required coordinates may be found in the following way. Let g be an Einstein
metric written with respect to some coordinates v, x!,..., 2", u by (1). Since g is an
Einstein metric, h satisfies (3). Consider the transformation

i i

Tu), x'—at, u—u.

vis v+ f(at.
1
Then H; changes to H; —2Af. Taking f = ﬁHl, we get new coordinates such that

H; = 0. Consider another transformation such that its inverse one has the form
v=uv, 2'=2'(2",...,7"0), u=7u. (12)

We get
~  0xd ox*
Hence, if the equality _
oz’
ou
holds, then A; = 0. Impose the conditions z'(Z',...,3", %) = &'. Then for each
set of numbers % there exists a unique solution x%(%) of the above system of equa-
tions. Since the solution depends smoothly on the initial conditions, we may write

= —A;h" (13)

the solution in the form z¢(z',...,2",%). The obtained functions satisfy Eq. (13).
ozt _ 2" ~ ~

Since det é(uo) # 0, we get that det o # 0 for w near ug. Under this
oz’ oz’

transformation, Hy = Hy = 0. We obtain the required transformation.
Consider now the case A = 0. In [7] the following theorem is proved:

Theorem 2. Let (M,g) be a Lorentzian manifold with a parallel distribution of
isotropic lines and assume that (M, g) is Ricci-flat. Then there exist local coordinates
(v, AT ,x”,u) such that the metric is given as

g =2dvdu + hijdz’ do? + vH;(du)?,

where Hy and hi; are smooth functions with Oyhy = 0,H1 = 0, satisfying the equa-
tions:

%hiihij + h¥hg; + %hijhijﬂl =0, (14)
OiHy + Vi hij — 9;(h*hp,) = 0, (15)
AH, =0, (16)

Ric;; = 0. (17)

Conversely, any such metric is Ricci-flat.

To find the required coordinates it is enough to start with some Walker coordinates

v,zt ..., 2" u and to solve the system of equations (13) for transformation (12).
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3. Examples in dimension 4

In [8] it is proved that metric (1) for n = 2 satisfies the Einstein equation (2) if
and only if after a proper choice of coordinates v, x, y, u the metric has the following
form:

2 _
9= 53 dzdz + (2dv +2Wdz + 2W dz + (Av® + Ho) du) du, (18)
where

A 2
z=x+iy, 2P?=|A]2P? =|A] (1 + mzz) , W=i0.L,
the function L is R-valued depending on z, Z, u and satisfying the equation

A
AL=-2—1,
A

2
where A = 2P2 0, 0; is the Laplace— Beltrami operator of the metric ﬁdz dz of the

2-dimensional sphere (or Lobachevsky space). All such functions are given by

L = 2Re ((b@z(ln Py) — % Z¢) , (19)

where ¢ = ¢(z,u) is an arbitrary function holomorphic in z and smooth in u. The
function Hy = Hy(z,Z,u) can be expressed in a similar way in terms of ¢ and another
arbitrary function ¢1(z,u) holomorphic in z and smooth in «.

In [9] it is shown that the Petrov type of any Einstein metric of the form (1) for
n = 2 is either IT or D and it may change from point to point, moreover, it is of type
IT at generic points.

Example 1 [7]. Let ¢(z,u) be one of c(u), zc(u), 22c(u); then, using Theorem 1,
the above metric can be rewritten as

2 ~
9= 32 dzdz + (Av? + Hp) (du)?,

where Hj is a harmonic function, i.e. AHy = 0.

Although formula (19) gives the complete solution to the Einstein equation, it is
not useful for constructing examples of the form obtained in Theorems 1 and 2, since
“simple” functions ¢ define complicated functions L and metrics (18). For this reason,
in [10] another method of finding partial solutions to the Einstein equation (2) is used.
First, the following proposition is proved:

Proposition 1. Let (M,g) be a Lorentzian manifold of dimension 4 admitting
a parallel distribution of isotropic lines. If (M, q) is Einstein with the cosmological
constant A, then in a neighborhood of each point of M there exist local coordinates v,
x, Yy, u such that the metric g has one of the following forms:

1) if A >0, then

1
g=2dvdu+K((dx) + sin? z (dy) )

( Slnf v+ sinzd, fdy) du+ (Av? + Ho)(du)?, (20)
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where Hy and [ are functions depending on x,y,u and satisfying the equations:
Ag2f = =2f, (21)

Ag2Hy = 4Af% — 2A ((agcf)2 2 (ayf)Q) , (22)

sin? x

where Ag> = 0% + 85 + cot x 0, is the Laplace — Beltrami operator of the sphere

sin?
metric (dz)? + sin® z (dy)?;
2) if A <O, then

g =2dvdu+ % ((dz)? + (dy)?) +2(— 9y fdz + 0, fdy)du+ (Av? + Ho)(du)?, (23)

T

where Hy and [ are functions depending on x,y,u and satisfying the equations:

Apef=2f, (24)
ApzHo = —4Af?* = 202((0:.f)* + (9, 1)°), (25)
1
where Ap> = 1*(92 + 0;) is the Laplace - Beltrami operator of the metric x—((dx)Q—l—

2
+(dy)2) of the Lobachevsky space L>.
Conversely, all such metrics are Finstein with the cosmological constant A .

Partial solutions of Egs. (21) and (24) can be obtained by finding symmetries

of these equations. This can be done using Maple 12. For example, partial solutions

of (24) may be found in the following forms: f(z,y,u) = ¥(z,u), f(z,y,u) = w(g, u) ,
x

2 2
o) = v (-

,u) . Consider several examples from [10].
24,2

Example 2. The functions f = ﬂ, c(u)g, c(u)m -
x x

function) are partial solutions of (24). In each case the new coordinates can be chosen
in such a way that the metric (23) takes the form:

(where ¢(u) is a smooth

g =2dvdu+ ((dz)® + (dy)?) + (Av? + Ho)(du)?,

A2
where IA{TO satisfies AL2ﬁ0 =0.
Example 3. The functions f = z?y and Hy = —Ax*y are partial solutions of Egs.
(24) and (25). We get the following Einstein metric:
g =2dvdu + #((dx)Q + (dy)?) —
_A . x2
— 2% dzdu + 4dzy dy du + (Av? — Az*y?) (du)?. (26)

The Lie algebra of Killing vector fields is spanned by the vector fields 3v0, + x0, +
YOy — 3u0y, Oy .
Consider the transformation with the inverse one given by

v=", z=2(1+3Auz°)"3 y=g1+3Auz*)¥3, wu=u.
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With respect to the obtained coordinates, we get

1
x2(1+ 3Au:c3)2) (dz)
— 12A(1 + 3Aux®)yu da dy +

1
g = 2dvdu + A ((36A2x2y2u2 +

6

N (14 3Aux®)? x
(14 3Aua?)?

5 - (dy)2) - (Av2 + 3Azty? + ) (du)?. (27)

x
The metric g is indecomposable and it is of Petrov type II everywhere.

Example 4. The function f = c(u)cosz (where c(u) is a smooth function) is
a partial solution of (21). In each case the new coordinates can be chosen in such a way
that the metric (20) takes the form

g =2dvdu+ %((dl’)Q +sin?z (dy)Q) + (Av? + Hp)(du)?,

where H, satisfies Aszﬁo =0.

Example 5. The function f = In (tan g) cosx + 1 is a partial solution of (21).
We get the following Einstein metric:

1
g =2dvdu+ n ((dz)? + sin® z (dy)?) +
X ) 2 2
+ 2 (cosac —1In (cot 5) sin ac) dydu + (Av® + Hp) (du)?, (28)
where Hj is a function satisfying (22). We will find the example of such function below.
Consider the transformation

~ ~ ~ x cos & ~
v=v, IT=ux, y=y—Au(ln(tan§>— ), U= u.

sin?

With respect to the obtained coordinates, we get

1 4Au?
g =2dvdu+ (— + %) (dz)? +
A sin*x
4 in? ~
b dady + 22T a4y 4 (Av2+H0) (du)?, (29)
sin x
~ ~ 1 .
where H, satisfies ApHy = f§h”hij, where h is the Riemannian part of the
. . 1
above metric. An example of such Hy is Hy = A( — +1n? (cot ;)) Com-
sin” x

ing back to the initial coordinates, we get Hy = A - <ln (tan g) cosT + 1). The
Lie algebra of Killing vector fields of the metric (29) is spanned by the vector fields

Oy, 0y + A ( cos2x —In (tan%)) 0y. The metric g is of Petrov type D on the set

sin” x

{(O,x,y,u)| In (cot g) cosx — 1= 0} and it is of type IT on the complement to this
set. The metric is indecomposable.

Ricci-flat Walker metrics in dimension 4 are found in [11, 12]. They are of the form

g =2dvdu + (dz)* + (dy)? + 2A;dx du + (—(8,A1)v + Ho)(du)?, (30)
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where A; and Hj satisfy 9,41 = 0,Hy =0,

D2A 40,4, =0, (31)
O2Ho + 0 Hy = 20,0, A1 — 2A102A1 — (0.A1)% + (9, A1)°. (32)

If 0.A; # 0 and the metric g is indecomposable, then g is of Petrov type III at generic
points [9, 11-13]. If 9, A; = 0, then this is a pp-wave. If it is indecomposable, then it
has Petrov type N at the point where the curvature is non-zero [9, 11-13].

1
Example 6. It is clear that 4] = zy and Hy = E(m‘l —y*) are the solutions of
(31) and (32). We get the following Ricci-flat metric:

1
g = 2dvdu + (dz)? + (dy)? + 2xy do du + (—yv + E($4 - y4)) (du)?.
The Lie algebra of Killing vector fields of g is spanned by the vector field 9, .
Consider the transformation

v=v, xT=2xe" Y=y, u=u.

With respect to the obtained coordinates, we get
g=2dvdu+e " (dz)? — 2zue " dzdy + (1 + 2°u’e ") (dy)* +

1 1
+ (—yv — 2%y?e 2y — Ey4 + Ex4e4“y) (du)?. (33)

4. Holonomy algebras

Recall that any Riemannian manifold (N, k) can be locally decomposed into a prod-
uct of a flat space and some Riemannian manifolds that can not be further decomposed
[14]. In accordance to this, for the tangent space to (N,h) (that can be identified
with R", n = dim V) and the holonomy algebra h C so(n) of (IN,h), there exists
a decomposition

R*"=R"™@R" ¢---dR" (34)

and the corresponding decomposition into the direct sum of ideals
hb={0}eh e -obh (35)

such that each h; C so(n;) is an irreducible Riemannian holonomy algebra, in particular
it coincides with one of the following subalgebras of so(n;): so(n;), u (%) , 5U (%) ,

sp (%) @sp(l), sp (%) , G2 C s0(7), spin; C s0(8) or it is an irreducible symmetric

Berger algebra (i.e. it is the holonomy algebra of a symmetric Riemannian manifold
and it is different from so(n;), u (%) , 5P (%) @ sp(1)). It is well known that if the

manifold (N, k) is Ricci-flat, then each h; C so(n;) in the above decomposition is one of

so(n;), su (%) , 5p (%) , G2 C 50(7), spin; C s0(8). Conversely, if each bh; C so(n;)

is one of su (%) , Sp (%) , Ga C 50(7), spin, C s0(8), then (N, h) is Ricci-flat. Next,
if (N,h) is an Einstein manifold with A # 0, then each b; C so(n;) coincides with

one of so(n;), u (—l), sp (%) @ sp(l) or with a symmetric Berger algebra, and it

2
holds ng = 0. Conversely, if h C so(n) is irreducible and § = sp (%) @ sp(1l) or it is
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a symmetric Berger algebra, then (N,h) is an Einstein manifold. Thus, Riemannian
manifolds with some holonomy algebras are automatically Einstein or Ricci-flat.

In [15] the similar problem is studied for the case of Lorentzian manifolds. Let (M, g)
be a Lorentzian manifold with a parallel distribution [ of isotropic lines. Without loss
of generality we may assume that (M, g) is locally indecomposable; i.e. locally it is not
a product of a Lorentzian and of a Riemannian manifold. The tangent space to (M, g)
can be identified with the Minkowski space R»™*1. Let p,eq,...,en, ¢ be a Witt basis
of RM*1 such that Rp corresponds to the distribution I. The holonomy algebra g of
(M, g) is contained in the maximal subalgebra of so(1,n + 1) preserving Rp,

a X' 0
g C sim(n) = 0 A -X aceR, X eR", Aecso(n) p =R@so(n)) x R".
0 0 -—a

The projection b of the holonomy algebra of (M, g) onto so(n) has to be a Riemannian
holonomy algebra [16]. In [15] the following two theorems are proved:

Theorem 3. If (M, g) is Ricci-flat, then one of the following holds:
1. The holonomy algebra of (M,g) coincides with (R @ h) x R™, and in the decom-
position (35) of h C so(n) at least one subalgebra b; C so(n;) coincides with one of the

Lie algebras so(n;), u (?1

2. The holonomy algebra of (M, g) coincides with h x R™ | and in the decomposition
(35) of h C so(n) each subalgebra b; C so(n;) coincides with one of the Lie algebras
so(n;), su (%), 5p (%), G2 C s50(7), spin(7) C s0(8).

Theorem 4. If (M,g) is FEinstein and not Ricci-flat, then the holonomy algebra
of (M,g) coincides with (R @& h) x R™, and in the decomposition (35) of h C so(n)

) , &P (%) @ sp(1) or with a symmetric Berger algebra.

each subalgebras h; C so(n;) coincides with one of the Lie algebras so(n;), u ,

2
5P (%) @sp(1) or with a symmetric Berger algebra. Moreover, in the decomposition (34)
it holds ng11 =0.

In [15] an example of a local Einstein (Ricci-flat) metric with each possible holonomy
algebra from the above theorems is constructed.

The above two theorems show that if n = 2, i.e. dim M =4 and (M, g) is Ricci-flat,
then either g = (R @ s0(2)) x R? or g = R? (the last case corresponds to pp-waves).
If (M, g) is Einstein with A # 0, then g = (R ®s0(2)) x R%. These statements are also
proved in [9, 13, 17].

Unlike the case of Riemannian manifolds, it can not be stated that a Lorentzian
manifold with some holonomy algebra is automatically an Einstein manifold, but there
is a weaker statement. Recall that (M, g) is called totally Ricci-isotropic if the image
of its Ricci operator is isotropic. If (M, g) is a spin Lorentzian manifold and it admits
a parallel spinor, then it is totally Ricci-isotropic (but not necessary Ricci-flat, unlike
in the Riemannian case) [3, 4]. In [15] the following theorem is proved:

Theorem 5. If (M,g) is totally Ricci-isotropic, then its holonomy algebra is the
same as in Theorem 3. Conversely, if the holonomy algebra of (M, g) is h x R™ and in
the decomposition (35) of h C so(n) each subalgebra b; C so(n;) coincides with one of

the Lie algebras su (%), sp (%), Ga C s0(7), spin(7) C s0(8), then (M, g) is totally
Ricci-isotropic.
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Pesome

A.C. Tanaes. YpaBuenus DiHmTENHA HA JIOPEHIEBBIX MHOr000pa3ugax C MapasiiebHbIM

pacnpepesieHrIeM U30TPOITHBIX IIPAMBIX.

TIpusenen 0630p HemABHUX PE3YAbTATOB MCCIEIOBAHUS JIOPEHIEBLIX MHOroo0Opasuit DitH-

mTelHa, JOMYCKAOMNX MapaJjelbHble PACIpeae/eHus W30TPOMHBIX NpAMbIX. HaiimeHsr as-
rebpbl TOJIOHOMHUM TaKUX MHOroo6paszmii. Onmucans! CriennaIbHble KOOPANHATHI, TTO3BOJISIONINE
YOPOCTUTH ypaBHeHue DifHinTeiina. PaccmoTpens! npumeps! B pasmepHocta 4.

KiroueBble cjioBa: JIopeHieBo MHOroobpa3ue, ypaBHenune DiHniTeiina, Merpuka Yokepa,

asre6pa roJIOHOMUH, PEKYPPEHTHOE CBETOIIOA00H0Ee BEKTOPHOE 1oJ1e, kiaaccudukarus [Terposa.
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