
УЧЕНЫЕ ЗАПИСКИ КАЗАНСКОГО УНИВЕРСИТЕТА.
СЕРИЯ ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

2018, Т. 160, кн. 2 ISSN 2541-7746 (Print)
С. 327–338 ISSN 2500-2198 (Online)

UDK 519.23

MANIFOLD LEARNING BASED
ON KERNEL DENSITY ESTIMATION

A.P. Kuleshova , A.V. Bernsteina,b , Yu.A. Yanovicha,b,c

aSkolkovo Institute of Science and Technology, Moscow, 143026 Russia
bKharkevich Institute for Information Transmission Problems,

Russian Academy of Sciences, Moscow, 127051 Russia
cNational Research University Higher School of Economics, Moscow, 101000 Russia

Abstract

The problem of unknown high-dimensional density estimation has been considered. It has
been suggested that the support of its measure is a low-dimensional data manifold. This prob-
lem arises in many data mining tasks. The paper proposes a new geometrically motivated
solution to the problem in the framework of manifold learning, including estimation of an un-
known support of the density.

Firstly, the problem of tangent bundle manifold learning has been solved, which resulted
in the transformation of high-dimensional data into their low-dimensional features and esti-
mation of the Riemann tensor on the data manifold. Following that, an unknown density of
the constructed features has been estimated with the use of the appropriate kernel approach.
Finally, using the estimated Riemann tensor, the final estimator of the initial density has been
constructed.

Keywords: dimensionality reduction, manifold learning, manifold valued data, density
estimation on manifold

Introduction

The general goal of data mining is to extract previously unknown information from
the given dataset. Thus, it is supposed that the information is reflected in the structure
of the dataset, which must be discovered by data analysis algorithms. Data mining
faces a few main “super-problems”, each associated with particular tasks: exploratory
data analysis, clustering, classification, association pattern mining, outlier analysis, etc.
These problems are challenging for data mining, because they act as building blocks in
the context of a wide variety of data mining applications.

Smart mining algorithms are based on various data models, which reflect the dataset
structure from algebraic, geometric, and probabilistic viewpoints and play the key role
in data mining.

Geometrical models are motivated by the fact that many of the above tasks deal
with real-world high-dimensional data. Furthermore, the “curse of dimensionality” phe-
nomenon is often an obstacle to the use of many data analysis algorithms for solving
these tasks.

Although data for the given data mining problem may have many features, in reality
the intrinsic dimensionality of the data support (usually called data space, DS) of the full
feature space may be low. It means that high-dimensional data form only a minor part
in the high-dimensional “observation space”, the intrinsic dimension of which is small.
The most popular geometrical data model describing the low-dimensional structure of
the DS is the manifold model [1], by which high-dimensional real-world data lie on
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or near some unknown low-dimensional data manifold (DM) embedded in an ambient
high-dimensional “observation” space. Various data analysis problems studied under this
assumption about processed data, usually called manifold-valued data, are referred to
as the manifold learning problems. Their general goal is to discover the low-dimensional
structure of the high-dimensional DM from the given sample [2, 3].

Sampling models describe ways for extracting data from the DS. Typically, such
models are a probabilistic: data are selected from the DS independently of each other
according to an unknown probability measure on the DS, the support of which coin-
cides with the DS. Statistical problems for the unknown probabilistic model consist
in estimating an unknown probability measure or its various characteristics, including
density. Notably, many high-dimensional data mining and analysis algorithms require
accurate and efficient density estimators [4–11].

The paper considers a new geometrically motivated method for estimating an un-
known density on the unknown low-dimensional DM based on the manifold learning
framework and includes numerical experiments.

1. Density estimation on manifold: statement and related works

1.1. Assumptions about data manifold. Let M be an unknown “well-
behaved” q -dimensional DM embedded in an ambient p -dimensional space Rp , q ≤ p ;
an intrinsic dimension q is assumed to be known. let us assume that the DM M is
a compact manifold with the positive condition number [12]; thus, no self-intersections,
no “short-circuit” are observed. For simplicity, we assume that the DM is covered by
a single coordinate chart ϕ and, hence, has a form M = {X = ϕ(b) ∈ Rp : b ∈ B ⊂ Rq} ,
in which chart ϕ is one-to-one mapping from open bounded coordinate space B ⊂ Rq

to the manifold M = ϕ(B) with inverse map ψ = ϕ−1 : M → B . Inverse mapping
ψ determines low-dimensional parameterization on the DM M (q -dimensional coordi-
nates, or features, ψ(X) of manifold points X ), and chart ϕ recovers points X = ϕ(b)
from their features b = ψ(X) .

If the mappings ψ(X) and ψ(b) are differentiable (the covariant differentiation is
used in ψ(X) , X ∈ M) and Jψ(X) and Jϕ(b) are their q × p and p × q Jacobian
matrices, respectively, then q -dimensional linear space

L(X) = Span(Jϕ(ψ(X))) (1)

in Rp is a tangent space to the DM M at point X ∈ M ; hereinafter, Span(H) is
a linear space spanned by the columns of arbitrary matrix H . These tangent spaces
are considered as elements of the Grassmann manifold Grass(p, q) consisting of all
q -dimensional linear subspaces in Rp .

As follows from identities ϕ(ψ(X)) ≡ X and ψ(ϕ(b)) ≡ b for all points X ∈M and
b ∈ B , Jacobian matrices Jψ(X) and Jϕ(b) satisfy the relations Jϕ(ψ(X))× Jψ(X) ≡
π(X) and Jψ(ϕ(b)) × Jϕ(b) ≡ Iq, where Iq is a q × q unit matrix and π(X) is p × p
a projection matrix onto the tangent space L(X) (1) to the DM M at point X ∈M .

Let us consider tangent space L(X) , in which point X corresponds to zero vector
0 ∈ L(X) . Then, any point Z ∈ L(X) can be expressed in polar coordinates as vector
t× θ , where t ∈ [0,∞) and θ ∈ Sq−1 ⊂ L(X) , where Sq−1 is the (q − 1) -dimensional
sphere in Rq .

Let us denote expX , an exponential mapping from the L(X) to the DM M defined
in the small vicinity of the point 0 ∈ L(X) . The inverse mapping exp−1

X determines
Riemann normal coordinates t× θ = exp−1

X (X ′) ∈ Rq of near point X ′ = expX(t× θ) .

1.2. Data manifold as Riemann manifoldLet Z = Jϕ(ψ(X)) × z and Z ′ =
Jϕ(ψ(X)) × z′ be the vectors from tangent space L(X) with coefficients z ∈ Rq and
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z′ ∈ Rq of expansion of these vectors in a basis consisting of columns of Jacobian matrix
Jϕ(ψ(X)) . An inner product (Z, Z ′) induced by the inner product on Rp equals to
zT × 4ϕ(X) × z , here q × q matrix 4ϕ(X) = (Jϕ(ψ(X)))T × Jϕ(ψ(X)) is metric
tensor on the DM M . Thus, M is Riemann manifold (M,4ϕ) with Riemann tensor
4ϕ(X) in each manifold point X ∈ M smoothly varying from point to point [13, 14].
This tensor induces an infinitesimal volume element on each tangent space, and, thus,
a Riemann measure on the manifold

m(dX) =
√
| det4ϕ(X)| × dL(X), (2)

where dLX is a Lebesgue measure on the DM M induced by exponential mapping
expX from the Lebesgue measure on the L(X) . We denote θX(X ′) , the volume density
function on M , as the square-root of the determinant of the metric 4 expressed in
the Riemann normal coordinates of the point exp−1

X (X ′) . Strict mathematical defini-
tions of these notations are in [15–17].

1.3. Probability measure on data manifold. Let σ(M) be the Borel σ -
algebra of M (the smallest σ -algebra containing all the open subsets of M) and µ
be a probability measure on the measurable space (M, σ(M)) , the support of which
coincides with the DM M . Let us assume that µ is absolutely continuous with respect
to the measure m (2), and

F (X) = µ(dX)/m(dX) (3)

is its density that separates from zero and infinity uniformly in the M . This measure
induces probabilistic measure ν (a distribution of random vector b = ψ(X)) on full-
dimensional space B = ψ(M) with the standard Borel σ -algebra with density f(b) =
dν/db = |detϕ(ϕ(b))|1/2 × F (ϕ(b)), with respect to the Lebesgue measure db in Rq .
Hence,

F (X) =
∣∣∣ det

ϕ
(X)

∣∣∣
−1/2

× f(ψ(X)). (4)

1.4. Density on manifold estimation problem. Let dataset Xn =
{X1, X2, . . . , Xn} consist of manifold points, which are randomly and independently
of each other sampled from the DM M according to an unknown probability mea-
sure µ . We suppose that the DM M is “well-sampled”; this means that the sample
size n is sufficiently large.

Given the dataset Xn , the problem is to estimate the density F (X) (3), as well
as to estimate its support M. Estimation of the DM M means construction of a q -
dimensional manifold M̂ embedded in an ambient Euclidean space Rp , which meets
manifold proximity property M̂ ≈ M meaning small Hausdorff distance dH(M̂,M)
between these manifolds. The desired estimator F̂ (X) defined on the constructed mani-
fold M̂ should provide proximity F̂ (X) ≈ F (X) for all points X ∈ M̂ .

1.5. Manifold learning: related works. The goal of manifold learning (ML)
is to find a description of the low-dimensional structure of an unknown q -dimensional
DM M from random sample Xn [18]. The term “to find a description” is not formalized
in general, and it has different meanings depending on the researcher’s understanding.

In computational geometry, this term means “to approximate (to reconstruct)
the manifold”: to construct an area M∗ in Rp that is “geometrically” close to the DM M
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in a suitable sense (using some proximity measure between subsets, such as the Haus-
dorff distance [18]), without finding a low-dimensional parameterization on the DM,
which is usually required in the machine learning tasks.

The ML problem in machine learning/data mining is usually formulated as the mani-
fold embedding problem: given dataset Xn , to construct a low-dimensional paramete-
rization of the DM M , which produces an embedding mapping

h : X ∈M ⊂ Rp → y = h(X) ∈ Yh = h(M) ⊂ Rq (5)

from the DM M to a feature space (FS) Yh preserving the specific geometrical and
topological properties of the DM, such as local data geometry, proximity relations,
geodesic distances, angles, etc. Various manifold embedding methods, such as linear
embedding, Laplacian eigenmaps, Hessian eigenmaps, ISOMAP, etc., are proposed; see,
for example, [2, 3] and other surveys.

Manifold embedding is usually the first step in various machine learning/data mining
tasks, in which reduced features y = h(X) are used in the reduced learning procedures
instead of initial p -dimensional vectors X . If the mapping h preserves only specific
properties of high-dimensional data, then substantial data losses are possible when using
a reduced vector y = h(X) instead of the initial vector X . To prevent these losses, map-
ping h must preserve as much available information contained in the high-dimensional
data as possible [18]; this means the possibility to recover high-dimensional points X
from their low-dimensional representations h(X) with small recovery error, which can
describe a measure of preserving the information contained in high-dimensional data.
Thus, it is necessary to find a recovery mapping

g : y ∈ Yh → X = g(y) ∈ Rp (6)

from the FS Yh to the ambient space RP which, together with the embedding map-
ping h (5), ensures proximity

rh,g(X) ≡ g(h(X)) ≈ X ∀X ∈M, (7)

in which rh,g(X) is the result of successive applying of embedding and recovery map-
pings to a vector X ∈M .

The reconstruction error δh,g(X) = |X − rh,g(X)| is a measure of quality of
the pair (h, g) at a point X ∈ M . This pair determines a q -dimensional recov-
ered data manifold (RDM) Mh,g = {X = g(y) ∈ Rp : y ∈ Yh ⊂ Rq} embedded
in Rp and parameterized by a single chart g defined on the FS Yh . An inequality
dH(Mh,g,M) ≤ sup

X∈M
|rh,g(X)−X| implies manifold proximity

M ≈Mh,g ≡ rh,g(M). (8)

There are some (though a limited number of) methods for recovery the DM M from
the FS Yh . For the specific linear manifold, the recovery can be easily found using
the principal component analysis (PCA) technique. For nonlinear manifolds, the sample-
based auto-encoder neural networks [19, 20] determine both the embedding and recovery
mappings. The general method, which constructs a recovery mapping in the same man-
ner as the locally linear embedding algorithm [21] constructs an embedding mapping,
has been introduced in [22]. Manifold recovery based on the estimated tangent spaces
to the DM M are used in local tangent space alignment [23] and Grassman&Stiefel
eigenmaps (GSE) [24] algorithms.

Due to further reasons, the manifold recovery problem can include the requirement to
estimate Jacobian matrix Jg of mapping g (6) by certain p×q matrix Gg(y) providing
proximity Gg(y) ≈ Jg(y) ∀ y ∈ Yh.
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This estimator Gg allows estimating the tangent spaces L(X) to the DM M by
q -dimensional linear spaces Lh,g(X) = Span(Gg(h(X))) in Rp , which approximates
the tangent space to the RDM Mh,g at the point rh,g ∈ Mh,g and provides tangent
proximity

L(X) ≈ Lh,g(X) ∀X ∈M (9)

between these tangent spaces in some selected metric on the Grassmann manifold
Grass(p, q) .

In manifold theory [13, 14], the set composed of manifold points equipped by tangent
spaces at these points is called the tangent bundle of the manifold. Thus, the manifold
recovery problem, which includes recovery of its tangent spaces as well, is referred to as
the tangent bundle manifold learning problem: to construct the triple (h, g,Gg) , which,
additionally to manifold proximity (7), (8), provides tangent proximity (9) [25].

Matrix Gg determines q × q matrix 4h,g(X) = GT
g (h(X)) × Gg(h(X)) consisting

of inner products between the columns of the matrix G_g(h(X)) and considered as the
metric tensor on the RDM Mh,g .

In real manifold learning/data mining tasks, intrinsic manifold dimension q is usually
unknown too, but this integer parameter can be estimated with high accuracy from
the given sample [26–30]: an error of dimension’s estimator proposed in [30] has rate
O(exp(−c × n)) , in which constant c > 0 does not depend on sample size n . For this
reason, the manifold dimension is usually assumed to be known (or already estimated).

1.6. Density estimation: related works. Let X1, X2, . . . , Xn be independent
identically distributed random variables taking values in Rd and having density function
p(x) . Kernel density estimation is the most widely-used practical method for accurate
nonparametric density estimation. Starting with the works of Rosenblatt [31] and Parzen
[32], kernel density estimators have the form

p̂(x) =
1

nad

n∑

i=1

Kd

(
x−Xi

a

)
, (10)

Here, kernel function K(t1, t2, . . . , td) is a non-negative boundedness function that sa-

tisfies certain properties, the main of which is
∫

Rd

Kd (t1, t2, · · · , td) dt1dt2 · · · dtd = 1,

and “bandwidth” a = an is chosen to approach to zero at a suitable rate as the number
n of data points increases. Optimal bandwidth is an = O(n−1/(d+4)) that yields the
optimal rate of convergence of the mean squared error (MSE) of the estimator p̂ :

MSE(p̂) =
∫

Rd

|p̂ (x)− p (x)|2 p(x) dx = O(n−4/(d+4)).

Therefore, it is not acceptable to use the kernel estimators (10) with MSE of the order
O(n−4/(p+4)) is not acceptable for high dimensional data.

Various generalizations of the estimator (10) were proposed. For example, adap-
tive kernel estimators were introduced in work [33], in which bandwidth a = an(x)
in (10) depends on x and is the distance between x and the k-nearest neighbor of x
among X1, X2, . . . , Xn , and k = kn is a sequence of non–random integers, such that
lim

n→∞
kn = ∞ .

Kernel estimators generally known as q -dimensional Riemann manifold embedded in
the p -dimensional ambient Euclidean space were for the first time proposed by Pelletier
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[16]. Let us denote d4(X,X ′) as the Riemann distance (the length of the smallest
geodesic curve) between near points X and X ′ defined by the known Riemann metric
tensor 4 . The proposed estimator

p̂(x) =
1

naq

n∑

i=1

1
θXi

(X)
K1

(
d(X, Xi)

a

)
, (11)

under the bandwidth an = O(n−1/(q+4)) , has the MSE of the order O(n−4/(q+4))
[16, 34], which is acceptable for high-dimensional manifold valued data.

The paper [17] generalizes the estimators (11) to the estimators with adaptive kernel
bandwidth an(x) (similarly to the work [35] for the Euclidean space), depending on x .

The estimator (11) assumes that the DM M is known in advance and that we
have access to certain geometric quantities related to this manifold such as intrinsic
distances d4(X, X ′) between its points and the volume density function θX(X ′) . Thus,
the estimator (11) cannot be used directly in cases where data live on an unknown
Riemann manifold of Rp .

The paper [36] proposes a more straightforward method that directly estimates the
density of data as being measured in the tangent space, without assuming any knowledge
of the quantities about the intrinsic geometry of the manifold, such as its metric tensor,
geodesic distances between its points, its volume form, etc. The proposed estimator

p̂(x) =
1

naq

n∑

i=1

K1

(
dE(X, Xi)

a

)
, (12)

in which the Euclidean distance (in Rp ) dE(X, X ′) between the near manifolds points
X and X ′ is used. Under an = O(n−1/(q+4)) , this estimator has also optimal MSE
order O(n−4/(q+4)) .

2. Density on manifold estimation: solution

2.1. Proposed approach. The proposed approach is introduced in [37] and it
consists of three stages:

1) solving the tangent bundle manifold learning problem which results in the solu-
tion (h, g, Gg ≈ Jg) ;

2) estimating the density f(y) of random feature y = h(X) defined on the FS
Yh = h(M) from feature sample Yn = {yi = h(Xi), i = 1, 2, . . . , n} ;

3) calculating the desired estimator F̂ (X) using f(y) and (h, g, Gg ≈ Jg) .

2.2. GSE solution to the tangent bundle manifold Learning. The solution
for tangent bundle manifold learning is given by the GSE algorithm [38–40] and consists
of several steps:

1) applying local principal component analysis (PCA) to approximate the tangent
spaces. M at points X ∈M ;

2) kernel on manifold definition construction;
3) tangent manifold learning;
4) embedding mapping construction;
5) kernel on feature space construction;
6) constructing the recovery mapping and its Jacobian.

2.3. Density on the manifold estimation. Based on the representation (4) and
estimated embedding mapping h(X) and Riemannian tensor 4h,g(X) , the estimator
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Fig. 1. (a) Manifold example; (b) MSE for p̂ (KDE, baseline method) and F̂ (GSE, proposed
method)

F̂ (X) can be computed by the formula

F̂ (X) = |det4h,g(X)|1/2 × f̂(h(X)). (13)

The approximation 4h,g(X) ≈ vT (X)× v(X) , which yields equality

∣∣∣ det
h,g

(X)
∣∣∣
1/2

≈ |det(v(X))| ,

allows us to simplify the estimator (13) to the following formula

F̂ (X) = |det(v(X))| × f̂(h(X)).

3. Numerical experiments

The function x2 = sin(30(x1 − 0.9)4) cos(2(x1 − 0.9)) + (x1 − 0.9)/2, x1 ∈ [0, 1] ,
which was used in [41] to demonstrate a drawback of the kernel nonparametric regression
(kriging) estimator with a stationary kernel (Fig. 1 (a)), was selected to compare the
proposed kernel density estimator F̂ (X) (13) and stationary kernel density estimator
p̂(X) (12) in Rp . Here, p = 2 , q = 1 and X = (x1, x2)T . The kernel band-widths were
optimized for both methods.

The same training data sets consisting of n ∈ {10, 20, 40, 80, 160, 320, 640, 1280, 2560,
5120} points were used for constructing the estimators; the sample x1 components were
chosen randomly and uniformly distributed on the interval [0, 1] . The true probability
was calculated theoretically. The errors were calculated for both estimators at the uni-
form grid on the interval with 100 001 points, then the mean squared errors (MSE) were
calculated. The experiments were repeated M = 10 times, and the mean value of MSE
and the mean plus/minus standard deviation are shown in Fig. 1, b. The numerical
results show that the proposed approach is more suitable than the baseline algorithm.

Conclusions

The estimation problem for unknown density defined on the unknown manifold is
solved within the manifold learning framework. A new geometrically motivated solution
is proposed. The algorithm is a nonstationary kernel density estimator with a single
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parameter for the kernel width. The numerical experiment with artificial data shows
better results of the proposed approach against the ordinary kernel density estimator
and could be considered as a proof of the concept example.

Acknowledgements. The study by A.V. Bernstein and Yu.A. Yanovich was sup-
ported by the Russian Science Foundation (project no. 14-50-00150).
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Оценка плотности основанная на моделировании многообразий

А.П. Кулешов1 , А.В. Бернштейн1,2 , Ю.А. Янович1,2,3

1Сколковский институт науки и технологий, г. Москва, 143026, Россия
2Институт проблем передачи информации Харкевича РАН, г. Москва, 127051, Россия

3Национальный исследовательский университет «Высшая школа экономики»,
г. Москва, 101000, Россия

Аннотация
Рассматривается задача оценивания неизвестной многомерной плотности. Предпола-

гается, что носителем меры является низкоразмерное многообразие (многообразие дан-
ных). Подобная задача возникает во многих разделах анализа данных. В работе предло-
жен новое геометрически мотивированное решение в рамках парадигмы моделирования
многообразий, включающее оценивание неизвестного носителя плотности.

Решение разбивается на два шага. Сначала оценивается многообразие и его касатель-
ное расслоение, в результате чего многомерные данные получают низкоразмерные описа-
ния, и оценивается Риманов тензор на многообразии данных. После этого производится
непараметрическое ядерное оценивание неизвестной плотности в искусственном низко-
размерном пространстве. В завершении из полученной на предыдущем шаге оценки при
помощи Риманова тензора строится итоговая оценка исходной неизвестной плотности.

Ключевые слова: снижение размерности, моделирование многообразий, оценка
плотности на многообразии
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