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UDK 514.7ANISOTROPIC BIANCHI TYPE-I MASSIVE STRINGCOSMOLOGICAL MODELS IN GENERAL RELATIVITYA. PradhanAbstratThe paper deals with the new lass of spatially homogeneous and anisotropi Bianhi type-Iosmologial models representing massive strings. Some physial and geometri properties ofthe models are disussed.Key words: massive strings, Bianhi type-I models, aelerating universe.1. Introdution, �eld equations and solutionsIn reent years, there has been onsiderable interest in string osmology. Cosmistrings are topologially stable objets whih might be found during a phase transitionin the early universe [1℄. Cosmi strings play an important role in the study of theearly universe. These arise during the phase transition after the big bang explosionas the temperature goes down below some ritial temperature as predited by granduni�ed theories [1�5℄. It is believed that osmi strings give rise to density perturbationswhih lead to the formation of galaxies [6℄. These osmi strings have stress-energy andouple to the gravitational �eld. Therefore, it is interesting to study the gravitationale�ets that arise from strings. The pioneering work in the formulation of the energy-momentum tensor for lassial massive strings was done by Letelier [7℄, who onsideredthe massive strings to be formed by geometri strings with partile attahed along itsextension. Letelier [8℄ �rst used this idea in obtaining osmologial solutions in BianhiI and Kantowski � Sahs spae-times. Stahel [9℄ has studied massive strings.In this paper, we have investigated exat and general solutions for Bianhi type-Iosmologial models for a loud of strings whih are new and di�erent from the othersolutions.We onsider the spatially homogeneous and anisotropi Bianhi type-I metri in theform

ds2 = −dt2 + A2dx2 + B2dy2 + C2dz2, (1)where A, B and C are the metri funtions of osmi time t only.The energy momentum tensor for a loud of massive strings has the form
T j

i = ρuiu
j − λxix

j , (2)where ui and xi satisfy ondition
uiui = −xixi = −1, (3)and

uixi = 0, (4)where ρ is the rest energy density for a loud of strings with partiles attahed to them,
λ is the string tension density, xi is a unit spae-like vetor representing the diretion



ANISOTROPIC BIANCHI TYPE-I MASSIVE STRING COSMOLOGICAL MODELS 243of strings, so that x1 6= 0 and x2 = x3 = x4 and ui is the four-veloity vetor satisfyingthe onditions giju
iuj = −1 . In a o-moving o-ordinate system, we have

ui = (0, 0, 0, 1), xi =

(

1

A
, 0, 0, 0

)

. (5)If the partile density of the on�guration is denoted by ρp , then we have
ρ = ρp + λ. (6)The Einstein's �eld equations (in gravitational units G = c = 1) read

Rj
i −

1

2
Rgj

i = 8πT j
i , (7)where Rj

i is the Rii tensor; R = gijRij is the Rii salar.The �eld equations (7) together with (2) for the line-element (1) subsequently leadto the following system of equations:
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ȦĊ

AC
= 8πρ, (11)where the over-dot stands for the �rst and the double over-dot for the seond derivativewith respet to osmi time t .The �eld equations (8)�(11) are a system of four equations in �ve unknown pa-rameters A , B , C , ρ and λ . One additional onstraint relating these parameters arerequired to obtain expliit solutions of the system. We assume that the expansion (θ )in the model is proportional to the shear (σ ) as disussed by Collins et al. [10℄ forspatially homogeneous metri, the normal ongruene to the homogeneous expansionsatis�es that the ondition σ/θ is onstant. This ondition leads to

A = Bm, (12)where m is proportionality onstant. Equations (10) and (12) lead to
(m + 1)

B̈

Ḃ
+ m2 Ḃ

B
= 0, (13)whih on integration redues to

B =

(

k2t + α

k3

)k3

, (14)where α and k1 are integrating onstants and km+1
2 = k1 and k3 =

m + 1

m2 + m + 1
.Aordingly, we obtain

A =

(

k2t + α

k3

)mk3

. (15)



ANISOTROPIC BIANCHI TYPE-I MASSIVE STRING COSMOLOGICAL MODELS 244Now subtrating Eq. (10) from (9), and integrating the resulting expression twie andthen by using Eqs. (14) and (15), we obtain
C =

k4

1 − (m + 2)k3

(

k2t + α

k3

)1−(m+1)k3

+ k5

(

k2t + α

k3

)k3

. (16)where k4 and k5 are onstants of integrations.After using a suitable transformation of oordinates the model of universe (1) reduesto
ds2 = −

(

k3

k2

)2

dT 2 + T 2mk3dx2 + T 2k3dy2 +

+

[

k4

1 − (m + 1)k3
T 1−(m+1)k3 + k5T

k3

]2

dz2. (17)2. Some physial and geometri properties of the modelHere we disuss some physial and kinemati properties of string model (17). Theenergy density (ρ), the string tension (λ) and the partile density (ρp ) for the model(17) are given by
8πρ =

mk2
2

T 2
+ (m + 1)k2

[

MT−(m+1)k3 + k2k5T
k3−1

NT 2−(m+1)k3 + k5T k3+1

]

, (18)
8πλ =

(k3 − 1)k2
2

k3T 2
+

LT k3−1 − mk2MT−(m+1)k3

NT 2−(m+1)k3 + k5T k3+1
, (19)

8πρp =
(mk3 − k3 + 1)k2

2

k3T 2
+

(2m + 1)k2MT−(m+1)k3 + PT k3−1

NT 2−(m+1)k3 + k5T k3+1
, (20)where

L =
k2
2k5(k3 + 1)

k3
, M =

k2k4((m + 1)k3 − 1)

k3((m + 2)k3 − 1)
,

N =
k4

1 − (m + 2)k3
, P =

k2
2k5(mk3 − 1)

k3
.From Eq. (18), it is found that the energy density ρ is a dereasing funtion of timeand ρ > 0 always. From Fig. 1, it is observed that in the initial time near the big bang,

ρ > 0 for m > 0 . But after that the energy density is always positive both for m > 0or m < 0 .From Eq. (19), it is observed that the partile density is negative. From Fig. 2, itis observed that in the initial time λ < 0 for m > 0 but after that for all m (eitherpositive or negative), λ > 0 and it is dereasing funtion of time and approahes toa very small positive value at present epoh.From Eq. (20), it is observed that the partile density ρp is also a dereasing funtionof time and ρp > 0 always. From Fig. 3, it is observed that in the initial time near thebig bang, ρp > 0 for m > 0 . But after the initial time the partile density is alwayspositive both for m > 0 or m < 0 .The model (17) starts with a big bang at T = 0 and it goes on expanding until itomes to rest at T = ∞ . We also note that T = 0 and T = ∞ orrespond respetivelyto the proper time t = 0 and t = ∞ . The initial singularity of the model is of the PointType. Both ρp and λ tend to zero asymptotially.
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Fig. 1. Energy density ρ versus T and m

Fig. 2. Tension density λ versus T and mThe expressions for the salar of expansion θ , the magnitude of shear σ2 , the averageanisotropy parameter Am , the deeleration parameter q and the proper volume V forthe model (17) are given by
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Fig. 3. Partile density ρp versus T and m
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, (24)
V 3 =

k4T

1 − (m + 2)k3
+ k5T

(m+2)k3. (25)The rate of expansion Hi in the diretion of x , y and z are given by
H1 =

mk2

T
, H2 =

k2

T
, H3 =

M + k2k5T
(m+2)k3−1

NT + k5T (m+2)k3
. (26)From Eq. (24), it is observed that for k2 = 0 , the deeleration parameter q = −1as in the ase of de Sitter universe. From Fig. 4, it is observed that for m < 5 , q > 0whereas for m ≥ 5 , q < 0 . Thus in this ase we have two phases of the model, i.e. fromdeelerating to aelerating. Reent observations reveal that the present universe is inaelerating phase.It an be seen that the spatial volume is zero at T = 0 and it inreases withthe inrease of T . This shows that the universe starts evolving with zero volume at

T = 0 and expands with osmi time T . From Eq. (26), we observe that all the threediretional Hubble parameters are zero at T → ∞ and ∞ when T → 0 . In derivedmodel, the energy density tend to in�nity at T = 0 . The model has the point-typesingularity at T = 0 . The shear salar diverges at T = 0 . As T → ∞ , the sale fators
A(t) , B(t) and C(t) tend to in�nity. The expansion salar and shear salar all tend tozero as T → ∞ . Sine lim

T→∞

σ2

θ2
= const , the model does not approah isotropy at late
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Fig. 4. Deeleration parameter q versus T and mtime. The osmologial evolution of the Bianhi type-I spae-time is expansionary, withall the three sale fators monotonially inreasing funtion of time when m > 0 . Thedynamis of the mean anisotropy parameter depends on the value of m .We have also onsidered two partiular ases when k4 = 0 and k5 = 0 , respetively.In these ases the geometry of the universe (1) takes the forms
ds2 = −

(

k3

k2

)2

dT 2 + T 2mk3dx2 + T 2k3(dy2 + k2
5dz2), (27)and

ds2 = −

(
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dT 2 + T 2mk3dx2 + T 2k3dy2 +
k2
4T

2[1−(m+1)k3]

[1 − (m + 2)k3]2
dz2, (28)respetively. In these ases the partile density and the tension density of the stringare omparable at the two ends and they fall o� asymptotially at similar rate. It isobserved that the universe is dominated by massive strings throughout the whole proessof evolution. Also, in some ases the string always dominates over the partile. Otherphysial aspets of these models are not reported here.I would like to thank the University Grants Commission, New Delhi, India for full�nanial support to attend the international onferene on �Petrov 2010 AnniversarySymposium on General Relativity and Gravitation� held in Kazan, Russia during Nov.1�6, 2010, where this paper was presented.�åçþìåÀ. Ïðàäõàí. Àíèçîòðîïíûå êîñìîëîãè÷åñêèå ìîäåëè òèïà Áèàíêè-I, îïèñûâàþùèåìàññèâíûå ñòðóíû, â îáùåé òåîðèè îòíîñèòåëüíîñòè.Íàñòîÿùàÿ ðàáîòà ïîñâÿùåíà èññëåäîâàíèþ íîâîãî êëàññà ïðîñòðàíñòâåííî îäíîðîä-íûõ è àíèçîòðîïíûõ êîñìîëîãè÷åñêèõ ìîäåëåé òèïà Áèàíêè-I, îïèñûâàþùèõ ìàññèâíûåñòðóíû. �àññìàòðèâàþòñÿ íåêîòîðûå �èçè÷åñêèå è ãåîìåòðè÷åñêèå ñâîéñòâà äàííûõ ìî-äåëåé.Êëþ÷åâûå ñëîâà: ìàññèâíûå ñòðóíû, ìîäåëè òèïà Áèàíêè-I, óñêîðÿþùàÿñÿ Âñåëåí-íàÿ.
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