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UDK 510.532 ISOLATION:MOTIVATIONS AND APPLICATIONSG. Wu, M.M. YamaleevAbstratIn this paper, we brie�y review the origins of the isolation phenomenon and its appliations.We disuss a stronger notion of double bubbles. We also show reent ahievements in the studyof lattie embeddings with the help of the isolation property.Key words: Turing degrees, Ershov hierarhy, isolated degrees, lattie embeddings.IntrodutionAn n + 1 -.e. degree d is isolated by an n-.e. degree a if a < d is the greatest
n-.e. degree below d . The existene of suh isolated n+ 1 -.e. degrees, for n ≥ 1 , anbe obtained, in a nonuniform way, from Kaddah's thesis, where in�ma of n-.e. degreesin di�erent levels of the Ershov hierarhy are onsidered. The ase when n = 1 was �rstproposed expliitly by Cooper and Yi in their paper [1℄, and the general ase, i.e. when
n ≥ 1 , was studied by LaForte in [2℄. A reent onstrution of bubbles of Arslanov,Kalimullin and Lempp in [3℄ also gives rise to the existene of isolated degrees, and itis attempting to extend suh bubble onstrutions to show that di�erent (�nite) levelsin the Ershov hierarhy are not elementary equivalent.In this paper, we brie�y review the origins of the isolation phenomenon and howvariants of this phenomenon an be applied to study loal and global properties ofthe Ershov hierarhy. In Setion 1, we �rst show how to obtain isolated degrees fromKaddah's thesis, and then give a brief desription of early development in this area. InSetion 2, we onsider isolation from side, a property that was used by Yang and Yu toshow that the .e. degrees is not a Σ1 substruture of d..e. degrees. This phenomenonhas been extended to n-.e. degrees by Cai, Shore and Slaman [4℄. We are onernedwith those nonisolated degrees that an be isolated from side, whih are nontrivial ex-tensions of Cooper and Yi's isolated degrees. In Setion 3, we give a diret onstrutionof a bubble, a work of Arslanov, Kalimullin and Lempp. That is, we will provide a on-strution of a d..e. degree d and a .e. degree a < d suh that every d..e. degree ebelow d is omparable with a . Obviously, d is isolated by a . We believe that, like theisolation phenomenon, the bubble phenomenon is an important tool for studying thestrutural properties of the Ershov hierarhy. In Setion 4, we show reent developmentof appliations of isolation to lattie embeddings. This projet was initiated by Wu inhis thesis [5℄ and has ome to a highlight in a reent work of Fang, Liu and Wu, whoproved in [6℄ that any nonzero appable .e. degree an have a d..e. degree with almostuniversal upping property as its omplement.Our notation and terminology are standard and generally follow Soare [7℄. We sug-gest the readers to refer Cooper's paper [8℄ and Arslanov's paper [9℄ for the general ideaon loal degree theory.



ISOLATION: MOTIVATIONS AND APPLICATIONS 2051. Kaddah's work and isolationA Turing degree is properly d..e. if it ontains a d..e. set, but no .e. set. Cooperproved in [10℄ the existene of properly d..e. degrees, and Lahlan observed that anynonzero d..e. degree bounds a nonzero .e. degree. That is, given a d..e. set D withan e�etive approximation {Ds : s ∈ ω} , the assoiated set
L(D) = {〈x, s〉 : x ∈ Ds −D}is .e., and is Turing reduible to D , while D is .e. in L(D) . If D is .e. and

{Ds : s ∈ ω} is an e�etive enumeration of D , then L(D) is empty. On the otherhand, if D has proper d..e. degree, then L(D) is not omputable. L(D) is alled theLahlan set of D with referene to the enumeration {Ds : s ∈ ω} . Lahlan's observationshows that the d..e. degrees are downwards dense, whih is also true for the .e. de-grees. However, the d..e. degrees are not dense, and hene these two degree struturesare not elementarily equivalent.Theorem 1 (Nondensity Theorem for D2 [11℄). There exists a maximald..e. degree d < 0′ , and hene the d..e. degrees are not dense.The fat that these strutures are not elementarily equivalent was �rst proved byArslanov [12℄ and Downey [13℄, who proved that any nonzero d..e. degree is uppable,and that the diamond lattie an be embedded into the d..e. degrees preserving 0 and 1,respetively.In ontrast to this nondensity theorem, Ishmukhametov [14℄ and, independently,Cooper and Yi [1℄ proved that any nonempty interval [a,d] , with a .e., ontainsin�nitely many d..e. degrees, a weak density theorem of d..e. degrees.Theorem 2 [1, 14℄. If d is a d..e. degree and a < d is a .e. degree, then thereis a d..e. degree c between a and d .Here we annot require the degree c above be .e., as there are a .e. degree a anda d..e. degree d > a suh that no .e. degree is between a and d . This an be obtainedfrom the following theorem of Kaddah.Theorem 3 [15℄. Every low .e. degree is branhing in the d..e. degrees.Let a be a low, nonbranhing, .e. degree, and let d, e be two d..e. degrees above
a suh that a is the in�mum of d and e in the d..e. degrees. Then one of the intervals
(a,d) , (a, e) ontains no .e. degrees, as a is assumed to be nonbranhing.Cooper and Yi �rst notied this strutural phenomenon and proposed the notion ofisolation expliitly in their paper [1℄.De�nition 1 [1℄. A d..e. degree d is isolated by a .e. degree a if a < d is thegreatest .e. degree below d . A d..e. degree d is isolated if it is isolated by some .e.degree a . A d..e. degree is nonisolated if it is not isolated.After showing the existene of the isolated degrees, Cooper and Yi ontinued toshow the existene of the nonisolated degrees, where a d..e. degree d is nonisolatedif no .e. degree below d an isolate d . Cooper and Yi atually proved the existeneof a properly d..e. degree as a minimal upper bound of a uniformly .e. sequene ofdegrees, an even stronger result. These two kinds of degrees are proved to be densein the .e. degrees.Theorem 4 [16�18℄. Both the isolated d..e. degrees and the nonisolated d..e.degrees are dense in the .e. degrees.



206 G. WU, M.M. YAMALEEVTheorem 4 says that the isolated degrees ould be as lose to the isolating degreesas wanted. Ishmukhametov and Wu proved that in terms of the high/low hierarhy, theisolated d..e. degree and the isolating degree an be quite far from eah other.Theorem 5 [19, 20℄. There is a high d..e. degree d isolated by a low .e. degree c .Suh a .e. degree c an be found below any nonzero .e. degree a .Cooper [21℄ proved in 1974 that any high .e. degree bounds a minimal pair, andhene no high .e. an be nonbounding. However, there do exist high d..e. nonboundingdegrees, as �rst onstruted by Chong, Li and Yang in [22℄ by a fairly ompliated 0′′′argument. Theorem 5 an provide another proof of this result, as if we �rst take a asa nonbounding degree, and then apply Theorem 5 to obtain c and d . Obviously, c isalso nonbounding, whih implies that d is also nonbounding (and also high).In [18℄, Arslanov, Lempp and Shore showed the existene of the nonisolating degrees,and proved that these degrees are downwards dense in the .e. degrees, and an ourin every jump lass. In ontrast to this, Cooper, Salts and Wu proved in [23℄ that thenonisolating degrees are upwards dense in the .e. degrees. Furthermore, Salts provedin [24℄ that the nonisolating degrees are not dense in the .e. degrees.Theorem 6 [24℄. There is an interval of .e. degrees, [a, c] , eah of whih isolatesa d..e. degree.Reent work of Wu and Yamaleev1 shows that suh an interval an be large. Thatis, c above an be high and a an be low.Lahlan [25℄ proved in 1966 that the in�mum of two .e. degrees in the .e. degreesand the in�mum of two .e. degrees in the ∆0
2 degrees oinide. In ontrast to this,in [15℄, Kaddah proved that the in�ma of n-.e. degrees in the n-.e. degrees an bedi�erent from that of these two n-.e. degrees in the (n+ 1)-.e. degrees.Theorem 7 [15℄. For eah n ≥ 2 , there are n-.e. degrees d, e suh that theyhave f as in�mum in the n-.e. degrees, and there is an (n + 1)-.e. degree x with

f < x < d, e .This implies isolation at higher levels in the Ershov hierarhy, as x shows that dand e do not have f as their in�mum in the (n + 1)-.e. degrees. Following Cooperand Yi, we an say that x is isolated by f in the n-.e. degrees. Liu, Wang and Wu2proved that suh isolation pairs, x and f , are dense in the .e. degrees. This isolationresult was proved previously by LaForte in [2℄ by a di�erent approah.2. Variants of isolationArslanov's upping theorem shows that the strutures of the .e degrees and thed..e degrees di�er at Σ3 level, and Cooper et al.'s proof of the existene of inompletemaximal d..e. degrees, and Downey's diamond theorem show that these two struturesdi�er at Σ2 level. It beomes interesting to onsider whether two strutures di�er at
Σ1 level.Say that nonzero .e. degrees a,b, c form a Slaman triple if b 6≥ c , and for anynonzero .e. degree w ≤ a , w ∨ b ≥ c . It is easy to hek that a and b above forma minimal pair, and Shore and Slaman proved in 1993 that every high .e. degree boundsa Slaman triple.In 1983, Slaman proved the following strengthened version of Slaman triples.

1A large interval of isolating degrees, in preparation.
2An alternative approah of isolated (n + 1) -.e. degrees, in preparation.



ISOLATION: MOTIVATIONS AND APPLICATIONS 207Theorem 8 (Slaman 1983). There are .e. degrees a,b, c and a ∆0
2 degree dwith 0 < d < a suh that (1) a,b, c form a Slaman triple, (2) d ∨ b 6≥ c .Theorem 8 says that no nonzero .e. degree w below a has the property that

c 6≤ w ∨ b , while there is a nonzero ∆0
2 degree d below a that has this property. Thisis a Σ1 property, whih provides a Σ1 di�erene between the .e. degrees and the ∆0

2degrees.In [26℄, Yang and Yu proved that the .e. degrees and the d..e. degrees also di�erat Σ1 level, by modifying this proof of Slaman, where another parameter is introduedto handle the degrees of Lahlan's sets of d , if d is d..e.Theorem 9 [26℄. There are .e. degrees a,b, c, e and a d..e. degree d < a suhthat d ∨ b 6≥ c , d 6≤ e , and for any .e. degree w < a , either w ∨ b ≥ c or w ≤ e .This proof was reently extended by Cai, Shore and Slaman to prove that for any
m < n , the m-.e. degrees is not a Σ1 -substruture of the n-.e. degrees.Theorem 10 [4℄. There are .e. degrees a,b, c, e and an (n+1)-.e. degree d < asuh that d ∨ b 6≥ c , d 6≤ e , and for any n-.e. degree v < a , either v ∨ b ≥ c or
v ≤ e .These two results give rise to another isolation. That is, all the n-.e. degrees below dare isolated, or bounded, by .e. degree e . Note that we have two ases: either there issuh an e below d (d is isolated by e in the n-.e. degrees) or e annot be below d(d is nonisolated). We onsider the ase when n = 1 , and in the latter ase, we saythat d..e. degree d is isolated from side nontrivially: d itself is nonisolated, and thereis a .e. degree e inomparable with d , bounding all the .e. degrees below d .We omment here that in the results mentioned above, it is hard to insert e below
d . That is, it is hard to make d isolated. For Cai, Shore and Slaman's result, for n ≥ 2 ,if we really want to move e below d , then e annot be .e. anymore, and we will makeit n-.e. (this is what we want).In the following, we show how to onstrut a d..e. degree isolated from side nontriv-ially. We will build d..e. sets B,D and a .e. set C satisfying the following requirements:

G : B ≤T C,

PD
e : D 6= ΦC

e ,

PB
e : B 6= ΦWe

e ∨ We 6= ΨB
e ,

Qe : ΦB
e = We ⇒ (∃ c.e. Ue ≤T B)(∀i)(Ue 6= ΨWe

i ),

Re : ΦB⊕D
e = We ⇒ ∃Γe(Γ

B
e = We),where {〈Φe,Ψe,We〉 : e ∈ ω} is a standard enumeration of all 〈Φ,Ψ,W 〉 for whih Φ ,

Ψ are partial omputable funtionals and W is a .e. set.Let b, c,d be the Turing degrees of B,C and B⊕D , respetively. By the Q-requi-rement, b ≤ c . All the PB -requirements ensure that b is a properly d..e. degree, andhene b < c . By the Q-strategies, b is nonisolated. The R-strategies ensure that allthe .e. degrees below d are also below b , hene below c . Aording to Wu [5℄, d ispseudo-isolated.For the G -requirement, we onstrut a p.. funtional Λ suh that B = ΛC , andfor a number x , if we put a number x into B , or extrat it from B , at a stage s , wealways put λ(x)[s] into C automatially. Obviously, Λ is totally de�ned.A PD
e -strategy is a standard Friedberg �Muhnik strategy, and a PB

e -strategy isa strategy used in the onstrution of proper d..e. degrees. An Re -strategy is similar



208 G. WU, M.M. YAMALEEVto an isolation strategy. That is, we hek at every expansionary stage whether ΓB
e and

We agree, and if not, suppose they di�er at x , then we extrat relevant numbers outof D to reover a omputation ΦB⊕D
e (x) to a previous one, whih has value 0. Thisreates a disagreement between ΦB⊕D
e and We , and the requirement is satis�ed.A Qe -strategy, ζ say, attempts to onstrut a .e. set Ue suh that if We = ΦB

e , then
Ue ≤T B and for all i ∈ ω , Ue 6= ΨWe

i . De�ne ζ -expansionary stages in a standardway, and ζ has two outomes: 0 and 1 , where 0 stands for the ase that there arein�nitely many ζ -expansionary stages, and 1 for the other ase.Suppose that ζ has outome 0. The onstrution of Ue will be arried out by Qe 'ssubstrategies, Se,i , i ∈ ω , whih are arranged in the one below ζ ⌢ 〈0〉 :
Se,i : Ue 6= ΨWe

i .Let β be an Se,i -strategy. Then β tries to �gure out a disagreement between Ueand ΨWe

i or between We and ΦB
e .(1) Choose x as a fresh number.(2) Wait for a stage s suh that

Ψ
We,s

i,s (x) ↓= 0 and We,s ↾ ψi,s(x) = ΦBs
e,s ↾ ψi,s(x).(If this never happens, then x is a witness to the suess of Se,i .)(3) Put x into Ue and B . Protet B ↾ s from other strategies.(4) Wait for a stage s′ suh that

Ψ
We,s′

i,s′ (x) ↓= 1 and We,s′ ↾ ψi,s(x) = Φ
Bs′

e,s′ ↾ ψi,s(x).(If this never happens, then again x is a witness to the suess of Se,i . If ithappens, then the hange in ΨWe

i (x) between stages s and s′ an only be broughtabout by a hange in We ↾ ψi,s(x) , whih is irreversible sine We is a .e. set.)(5) Remove x from B and protet B ↾ s from other strategies.(Now x is a permanent witness to the suess of Se,i beause
ΦB

e ↾ ψi,s(x) = ΦB
e,s ↾ ψi,s(x) = We,s ↾ ψi,s(x) 6= We ↾ ψi,s(x).That is, taking x from B leads to a global win on Qe , and Ue is no longerneeded, so we don't need to are about the loss of B -permission for x (whih isleft in Ue ).)In the onstrution, sine we are onstruting B d..e., the R-strategy is a littlemore ompliated than the standard isolation strategy. Suppose that ΓB

η (x) gets de�nedat stage s0 , and a PB (or an S )-strategy ξ with lower priority enumerates a number
z < ϕη(x) into B at a stage s1 > s0 . This enumeration fores (and allows) us tolift γη(x) to a larger number, γη(x)[s1] . Later, at stage s2 , to get a disagreement, ξ ,or its mother node, takes z out, and thus γη(x) returns to its de�nition at stage s0 .Suh a variation does no harm to the disagreement strategy of R-strategy, η say.Suppose that η observes at some stage between s1 and s2 that ΓB

η (x) is inorret andperforms the disagreement strategy; then ξ will be initialized, and so ξ has no haneto take z out. In this ase, s2 does not exist. In ase that s2 does exist, and η �nds



ISOLATION: MOTIVATIONS AND APPLICATIONS 209an inorretness of ΓB
η (x) at stage s3 > s2 , sine at stage s2 , γη(x) returns to that ofstage s0 , we have

Bs2
↾ ϕe,s0

= Bs0
↾ ϕe,s0

.Now by the fat that γη(x)[s3] = s0 , we have
Bs3

↾ ϕe,s0
= Bs0

↾ ϕe,s0
.This guarantees the suess of η 's disagreement strategy.

d above is alled a pseudo-isolated degree, as a d..e. degree b < d bounds all the.e. degrees below d . Note that d is nonisolated, as if a is a .e. degree below d , then
a is also below b . As b is nonisolated, there is a .e. degree e below b (hene below d)but not below a . Wu proved in [27℄ that the pseudo-isolated d..e. degrees are densein the .e. degrees. 3. Double bubbles: a stronger notionIn this setion, we onsider a phenomenon alled bubbles, whih was disovered byArslanov, Kalimullin and Lempp in their work [3℄. A basi fat about isolation is that
a isolates d if and only if a and d have the same lower ones in the .e. degrees.Extending this onept, we onsider the ase when all the d..e. degrees below d areomparable with a .Fix a d..e. degree d . Let L(d) be the olletion of all Lahlan sets L(D) , where
D is a d..e. set in d . It's easy to see that d is isolated by a if and only if eah
X ∈ L(d) has its degree deg(X) ≤ a . In [28℄, Ishmukhametov proved that there exista .e. degree a and a d..e. degree d suh that L(d) ⊆ a , and alled suh degrees dexat degrees. Obviously, all exat degrees are isolated by the degree of Lahlan sets.Ishmukhametov also proved in [28℄ that there exist isolated non-exat degrees.Say that two nonzero d..e. degrees d and a (together with 0) form a bubble if allthe d..e. degrees below d are omparable with a . Obviously, any d..e. degree in theinterval (a,d) and a also form a bubble. Arslanov, Kalimullin and Lempp in their reentwork [3℄ proved the existene of suh a bubble and that the degree a in any bubblemust be .e. The onstrution has speial di�ulties and it is still unknown whethersuh a strutural phenomenon an be ombined with other properties (in a similar waylike isolated degrees, see, e.g., reent work of Wu [29℄ and his joint works with Fang andLiu [6℄ and [30℄).Arslanov, Kalimullin and Lempp also proved in [3℄ the following important theorem.Theorem 11 [3℄. Let D and A be d..e. sets with D �T A , and X be a .e. setsuh that X ≤T D,A �T X , and both D and A are .e. in X . Then there existsa d..e. set U with X ≤T U ≤T D , and U and A are Turing inomparable.Theorem 11 implies that for any bubble pair a < d , the .e. degrees x suh that
d is relatively enumerable in and above x should be above or equal to a . However,by Saks splitting theorem (avoiding the upper one of a), we have that x annot bestritly above a . That is, x and a are the same, and d is an exat degree, and heneisolated. The proof of the existene of exat d..e. degrees is simpler than the one forbubbles.One property of bubbles is that the splittings of the top d..e. degree of a bubble
a < d are always above a . A related topi, nonsplittability avoiding upper ones, was�rst proposed by Cooper and Li in [31℄.De�nition 2. Given d..e degrees a < d ,(1) a splitting x0 , x1 of d is nontrivial if d � xi for i = 0, 1 ;



210 G. WU, M.M. YAMALEEV(2) d is splittable above a if there exist a nontrivial splitting of d = x0 ∪ x1 suhthat a ≤ xi for i = 0, 1 ;(3) d is splittable avoiding the upper one of a if there exists a nontrivial splitting of
d = x0 ∪ x1 suh that a � xi for i = 0, 1 .Note that if d is nonsplittable avoiding the upper one of a , then d is also non-splittable avoiding the upper one of any degree e below a . On the other hand, in [32℄,Yamaleev proved that if a and d are properly d..e. degrees and there is no .e. degreebetween them, then d an always be splittable avoiding the upper one of a .This result is interesting due to the following reason. Assume that both a < d ared..e. degrees and eah d..e. degree in the interval (a,d] is nonsplittable avoiding theupper one of a ; then we all this interval a nonsplitting interval. (It is easy to see thatif a < d form a bubble, then (a,d] is a nonsplitting interval.) Saks' splitting theorem(avoiding upper ones) implies that no .e. degree is in this interval. By Yamaleev'sresult mentioned above, a is .e., and hene d is isolated by a .Below we provide a sketh of the proof of a bubble, whih ontains all features ofonstrutions of d..e. degrees whih are nonsplittable avoiding upper ones and alsoonstrutions of nonsplitting intervals.Theorem 12 [3℄. There exist a .e. degree a and a d..e. degree d suh that

0 < a < d and any d..e. degree u ≤ d is omparable with a .Sketh of proof. In the sketh, we will provide the basi idea of onstruting.e. set A and d..e. set D , inluding individual strategies and the interations betweenthese strategies. A and D are onstruted to meet the following requirements:
Pe : A 6= Ψe ,
Se : D 6= ΘA

e ,
Re : Ue = ΦA⊕D

e → (Ue = ΓA
e ∨A = ∆U

e ) ,where {〈Φe,Ψe,Θe〉}e∈ω is an e�etive enumeration of all p.. funtionals, and {Ue}e∈ωis an e�etive enumeration of all d..e. sets. Obviously, if A and D satisfy these re-quirements, then the degrees of A and A⊕D form a bubble, as wanted. Later we willoften omit indies.A P -requirement and an S -requirement an be satis�ed by the Friedberg �Muhnikstrategy (or a variant of it). For an R-strategy, we assume that there are in�nitelymany expansionary stages (approximating U = ΦA⊕D ), and we try �rst to build a p..funtional Γ at these stages. It an happen that some S -strategy below it enumeratesa number x into D , and this enumeration an hange omputation ΦA⊕D(y) , heneallowing U to hange at y . We ould not hange ΓA(y) sine it requires hanges of A onsmall numbers. In the onstrution of isolated degrees, we just need to extrat x from D ,making U(y) 6= ΦA⊕D(y) . In our onstrution, if U(y) hanges from 1 to 0, i.e. y leaves
U , then we at in the same way: extrat x from D , making U(y) = 0 6= 1 = ΦA⊕D(y) ,and hene satisfy this R-requirement. However, if U(y) hanges from 0 to 1, i.e. yenters U , we ould not just simply extrat x out of D , as U(y) an hange from 1 to 0later, and our e�ort on diagonalization fails. So if we see that U(y) hanges from 0 to 1,instead of making diagonalization immediately, we will turn to extend the de�nitionof ∆U on more arguments, z say, with y less than the δ -use. If later we want toenumerate z into A , we will need to fore y out of U to unde�ne ∆U (z) , and we makeit by extrating x from D to reover ΦA⊕D(y) = 0 , and now either y keeps in U (weget U(y) = 1 6= 0 = ΦA⊕D(y)) or y leaves U and we have ∆U (z) unde�ned, and wean now enumerate z into A .



ISOLATION: MOTIVATIONS AND APPLICATIONS 211An R-strategy has three outomes ∆,Γ, f in with order ∆ <L Γ <L fin . If there areonly �nitely many expansionary stages, then fin is the orret outome. Otherwise,there are in�nitely many expansionary stages, and if from some stage on, ΓA keepsorret in the remainder of the onstrution, then Γ is the orret outome. If eahversion of ΓA appears inorret, then ∆U will be de�ned in�nitely many times, and
∆ is the orret outome. Note that whenever ∆-outome appears to be orret, theurrent version of ΓA beomes invalid, and we will start a new version of ΓA .For onveniene, we use x as witnesses for S -strategies (an be enumerated into Dand perhaps removed out later), z as witnesses for P -strategies (an be enumeratedinto A) and y for elements of U (an be in or not in U ).As desribed before, if an S -strategy, α say, is working below the outome Γ ofan R-strategy, τ say, then α works in a standard Friedberg�Muhnik manner, tryingto �nd a witness x to satisfy the requirement. If the enumeration of x auses U(y)di�erent from ΓA(y) , without loss of generality, we assume that U(y) hanges from 0to 1, then τ will have outome ∆ , i.e. τ tries to extend ∆U on more arguments.A P -strategy, β say, below the outome ∆ of an R-strategy τ , tries to enumerateits witness z into A . β annot enumerate z into A immediately if ∆U (z) is de�ned,as 0, at the moment. Here is the point: when β hooses z as its witness, τ has outome
∆ , whih is aused by an enumeration of an S -strategy, say α (below outome Γ), ata stage s , whih makes U(y) to hange from 0 to 1. Obviously, when z is seleted, zis seleted muh bigger, and espeially z > s . Now if β wants to enumerate z into A ,then the ation is to extrat x out of D and also enumerate z into A simultaneously.Of ourse, we an enumerate z later, after we see that U(y) hanges bak to 0. Weprefer to enumerate z into A at the same time when we extrat x out of D , as z > s ,whih is bigger than the use in ΦA⊕D(y)[s] . If U(y) does not hange bak to 0, thenwe win as ΦA⊕D(x) = 0 6= 1 = U(y) , and the R-requirement is satis�ed. Otherwise,
∆U (z) (and also ∆U (s)) is unde�ned, whih makes β 's enumerations into A onsistent.As U is assumed to be d..e., after y leaves U , it an never ome bak. Due to this,one β enumerates z into A , z remains in A , as ∆U (z) will be rede�ned as 1 laterand forever. The situation is quite di�erent for the ase when U is 3-.e., as desribedin [3℄.We now onsider more ompliated interations among several strategies.
• P below ∆-outome of R2 below Γ-outome of R1 .A generi ase is that after we put a number x2 into D , ΓA

1 is de�ned at somepoint y1 , and extrating x2 from D may now hange U1(y
1) , and the ation desribedabove to reover a omputation does not apply here, as we are making D d..e. Theidea here is that whenever we extrat a number x2 from D , besides enumerating z into

A , we also enumerate into A a number s , the stage at whih x2 is enumerated into D .Enumerating z into A is for the sake of the P -strategy, and enumerating s into A is tounde�ne ΓA
1 (y) , whih are de�ned after stage s . This idea is exatly the same as that inthe onstrution of isolated degrees, to maintain the onsisteny between R-strategies.We use s(x) to denote the stage at whih x is enumerated into D . It is a routine toshow that for a partiular n , ΓA

1 (n) an be unde�ned in this way by at most �nitelymany times, whih ensures that if ΦA⊕D
1 (n) onverges, then ΓA

1 (n) is de�ned.
• P below ∆-outomes of R2 and R1 .For simpliity, we use ∆1 and ∆2 to denote the ∆-outomes of R-strategies τ1and τ2 , respetively, where τ2 is below outome ∆1 . Let β be a P -strategy below τ2 'soutome ∆2 . We now desribe how β works below these two ∆-outomes.



212 G. WU, M.M. YAMALEEVReall that for any R-strategy, when it turns to have outome ∆ , it is aused byan enumeration of some S -strategy below outome Γ . Here is the idea: when an S -strategy α2 below τ2 's outome Γ2 sees that ΦA
i2

(x2) onverges to 0, at stage s1 say,instead of enumerating x2 into D immediately, it waits for the next time when α2 isvisited again, whih will atually show that an S -strategy, α1 say, below τ1 's outome
Γ1 , already enumerates a witness x1 , being seleted after stage s1 . Note that at thisstage, s(x1) is bigger than the uses of all omputations seeing at stage s1 . Now assumethat α2 is visited again at stage s2 , then at this stage, α2 enumerates x2 into D ,so s(x2) = s2 . Without loss of generality, suppose that this enumeration leads τ2 tohave outome ∆2 , and β selets a number z as its witness. We then assoiate z with
x1 and x2 , whih means that enumerating z into A and extrating x1 and x2 outof D should happen at the same time. Thus, we have x2 < x1 < s(x1) < s(x2) < z .Assume later that β wants to enumerate z into A ; it will do so and at the same timeextrat both x2, x1 from D and enumerate s(x1), s(x2) into A . As disussed before, ifwe have a new τ1 -expansionary stage, then U1 should have a hange on the assoiatednumber, y1 say, whih unde�nes ∆U1

1 (s(x1)) , ∆U1

1 (s(x2)) and ∆U1

1 (z) . Also, if we havea new τ2 -expansionary stage later, then U2 has a hange on y2 say, whih unde�nes
∆U2

2 (s(x2)) , ∆U2

2 (s(x1)) and ∆U2

2 (z) . This nested proedure is the ore part of theonstrution of bubbles, and the idea an be generalized to a ase when β is workingbelow ∆-outome of several R-strategies. �In [3℄, Arslanov, Kalimullin and Lempp atually proved the existene of 3-bubbles,a generalization of double bubbles.De�nition 3. Let d, e, f be 3-.e. degrees with 0 < d < e < f . Say that thesedegrees form a 3-bubble in D3 if any 3-.e. degree u < f is omparable with e and d .Say that these degrees form a weak 3-bubble in D3 if any 3-.e. degree u < f is eitheromparable with both e and d or inomparable with both of them.Theorem 11 implies that weak 3-bubbles do not exist in D2 .In [3℄, Arslanov, Kalimullin and Lempp atually proved that degrees f , e,d in theweak 3-bubbles an be 3-.e., d..e. and .e., respetively. In the following, we show thatsuh weak 3-bubbles are atually 3-bubbles, so the onstrution given in [3℄ produesa 3-bubble.First, we show that all d..e. degrees below f are omparable with e and d . Supposenot, and let g be a d..e. degree below f , but not omparable with e and d . Then g∪dwould be d..e. and g∪d > d , whih would imply that g∪d > e , as g is not below e .By assumption that f , e,d form a weak 3-bubble in D3 , we know that g ∪ d, e,d alsoform a weak 3-bubble in D3 , whih is also a weak 3-bubble in D2 , a ontradition.We now assume that h is a 3-.e. degree below f but inomparable with e and d .Then h is a properly 3-.e. degree, and degrees of Lahlan sets of those 3-.e. sets in hare d..e., and hene are omparable with e and d .Let u be a degree of the Lahlan set of a 3-.e. set in h . Then u is not above d , asotherwise, h would be also above d , whih is impossible. As a onsequene, u is below
d . Now onsider h∪d , whih is 3-.e and relative enumerable in and above d . As here,we assume that d given as a .e. degree, by a well-known result of Arslanov, LaForteand Slaman in [33℄ that the lass of the d..e. degrees oinides with the intersetion ofthe lass of the ω -.e. degrees and the lass of the 2-REA degrees, we know that h ∪dis d..e. Note that h ∪ d > d , and hene h ∪ d is omparable with e . As h itself isinomparable with e , h∪d is above e . Thus, h∪d, e,d form a weak 3-bubble in D3 ,whih is also a weak 3-bubble in D2 . A ontradition again. This ompletes the proof.



ISOLATION: MOTIVATIONS AND APPLICATIONS 2134. Isolation, upping and diamond embeddingsIn this setion, we show how to use isolation phenomenon to provide alternativeproofs of several known results of upping properties and diamond embeddings.In [11℄, Cooper, Harrington, Lahlan, Lempp and Soare proved the existene ofan inomplete, maximal d..e. degree d . This result is strong, as it implies that dups every .e. degree not below it to 0′ . In ontrast, Li, Song and Wu proved in [34℄the existene of an inomplete ω -r.e. degree upping every nonzero r.e. degree to 0′ .These degrees are said to have the universal upping property. In terms of the Ershovhierarhy, Li, Song and Wu's result is optimal.In [30℄, Liu and Wu proposed a upping property for the d..e. degrees, where a d..e.degree d has the almost universal upping property if it ups every .e. degree notbelow it to 0′ . The maximal d.r.e. degree onstruted by Cooper et al. does have thisproperty. However, ompared to the onstrution of inomplete maximal d.r.e. degrees,the onstrution of d..e. degrees with almost universal upping property is muh easier.In [30℄, Liu and Wu onstruted a d..e. degree d with the almost upping propertysuh that d is also isolated by a .e. degree b < d .Theorem 13. There is an almost universal upping d..e. degree d and a .e.degree b < d suh that b is the greatest .e. degree below d .To prove Theorem 13, we will onstrut a d..e. set D , a nonreursive .e. set Bsuh that (i) D 6≤T B , (ii) for any .e. set We , either We ≤T B or B⊕D⊕We ≡T ∅′ .That is, the onstruted sets need to satisfy the isolation requirements and also thefollowing upping requirements:
Re : K = ΓB,D,We

e ∨ We = ∆B
e , where Γe and ∆e are p.. funtionals onstrutedby us.Here K is a �xed reative set. Note that the R-requirements ensure that B ⊕D hasthe almost universal upping property.Let β be an Re -strategy. For onveniene, we write Γβ for Γe(β) and Wβ for We(β) .

β will onstrut a partial omputable (p..) funtional Γβ suh that K = Γ
B,D,Wβ

β ,and if β fails, due to the ations of the isolation strategies, then an isolation strategywill show that Wβ ≤T B .
Γβ is onstruted as follows:A. At a stage s , de�ne Γ

B,D,Wβ

β (z)[s] = Ks(z) for those z < s with Γ
B,D,Wβ

β (z)[s]not de�ned, and the use γβ(z)[s] is seleted as a fresh number.B. If Γ
B,D,Wβ

β (z)[s] ↓ 6= Ks(z) , then we put γβ(z)[s] into D to unde�ne the urrent
Γ

B,D,Wβ

β (z) for the least z < s .In the onstrution, to orret Γ , β may enumerate uses γβ(z) into D for in�nitelymany z . These enumerations an ause diret on�its between β and those isolationstrategies, η say, below β , whih want to preserve omputations. This type of interationis an important omponent of the whole onstrution.Let η be an isolation strategy. The basi idea of η is to onstrut a p.. funtional
Θη at expansionary stages to ensure that if ΦB,D

η is total, then Θη is well-de�nedand omputes Wη orretly. If later, at an η -expansionary stage, we see that ΘB
η (y)and Wη(y) di�er at an argument y say, we will then fore a disagreement between

ΦB,D
η (y) 6= Wη(y) .
η has three outomes f , d and ∞ , with priority ∞ <L f <L d . Here f denotesthat there are only �nitely many η -expansionary stages and η does not reate any



214 G. WU, M.M. YAMALEEVdisagreement, and ∞ denotes that there are in�nitely many η -expansionary stages.
d denotes the outome that η sueeds in reating a disagreement between ΦB⊕D

ηand Wη .A ruial ation of η is that when a number, z say, is removed from D , thenanother number, for example, the stage when z is put into D , is enumerated into Bsimultaneously. This ation an ensure that all the isolation strategies work onsistently.We now onsider the interation between one isolation strategy and one R-strategy.Let β and η be an R-strategy and an isolation strategy respetively, with β ⊂ η . Asmentioned in a single R-strategy, a disagreement reated by η ould be destroyed by
β 's enumerations into D . Also, when η has ∞ as its outome, β may enumerate γ(n)into D as n enters K . Now η may see an opportunity to diagonalize by extrating
γ(n) from D , and η annot do this as β would be injured by this extration.To avoid this, when η sees a omputation ΦB⊕D

η (y) and wants to preserve it, η needsto make this omputation lear of the γβ -uses, by applying the �apriious method�,an argument �rst introdued by Lahlan in his nonsplitting theorem. That is, when ηis �rst visited, it piks a number kη as its threshold, and whenever a number k ≤ kηenters K , we enumerate the urrent γβ(k)-use into D to unde�ne Γ
B,D,Wη

β (k) , and alsoreset η by anelling all the parameters assoiated to η , exept for the parameter kη .
η aims to de�ne a p.. funtional ∆B

ηβ with the purpose that if η annot satisfy theassoiated isolation requirement, then ∆B
ηβ should be total and omputes Wβ orretly.This will satisfy the Rβ -requirement.Suppose that after stage s , η is not reset and suppose that at a stage t > s , η seesa potential witness y for its disagreement argument, then η puts γβ(kη)[t] into D �rst,to start an attak on β , by de�ning

∆B
ηβ ↾ γβ(kη)[t] = Wβ,t ↾ γβ(kη)[t]with use t .If Wβ hanges below γβ(kη)[t] after stage t , at an η -expansionary stage t′ > t say,then η performs the disagreement argument by removing numbers out of D , inluding

γβ(kη)[t] , to reover omputation ΦB⊕D
η (y) to ΦB⊕D

η (y)[s′] , where s′ is the stage atwhih ΘB
η (y) is de�ned, as indiated above. This Wβ -hange lifts the value of γβ(z)for those z ≥ kη , and hene, after stage t′ , the enumeration of the γβ -uses will nota�et the omputation ΦB⊕D

η (x) . That is, the attak is ompleted at stage t′ , and ηpasses the threshold kη for β .On the other hand, if Wβ has no hanges below γβ(kη)[t] after stage t , then theattak assoiated with γβ(kη)[t] keeps ative until a new attak is ativated. If in�nitelymany suh attaks are started, then ∆B
ηβ is de�ned as a total funtion and omputes

Wβ orretly, and hene We is omputable in B .In this situation, η has four possible outomes:
f : There are only �nitely many η -expansionary stages.
d : η passes its threshold kη for β , and a disagreement is reated.
∞ : There are in�nitely many η -expansionary stages, and only �nitely many attaksare started. In this ase, ΘB

η is total and omputes Wη orretly.
gβ : In�nitely many attaks are started in the onstrution, and η never passes itsthreshold kη for β . ∆B

ηβ is total and omputes Wβ orretly. The Rβ -requirementis satis�ed. In this ase, Γ
B,D,Wβ

β (pη) diverges.



ISOLATION: MOTIVATIONS AND APPLICATIONS 215Let ξ be any strategy below the outome gβ , then ξ knows that γβ(pη)-uses goesto in�nity, and we say that a omputation ΦB⊕D
ξ (y) at a stage s is ξ -believable if

γβ(pη)[s] is bigger than the use ϕξ(y)[s] . If ξ is a bak-up strategy for η , then by usingonly ξ -believable omputations, ξ an satisfy the orresponding requirement in thestandard way, as after ξ sees at ξ -believable omputations, β 's further enumerationsinto D will not a�et these omputations.This basi idea an be generalized to the situation when one isolation strategy isworking below several R-strategies, where an attak of η needs to pass several thresh-olds. Please refer to [30℄ for further development. In [30℄, Liu and Wu also proved that
b an be appable. This implies that any d..e. degree below b and any d..e. degreeabove d , together with 0 and 0′ , form a diamond.This isolation feature allows Fang, Liu and Wu to improve a result of Downey,Li and Wu in [35℄. Fang, Liu and Wu proved reently that for any nonzero appable.e. degree c , there is a d..e. degree d with almost universal upping property anda .e. degree b < d suh that b isolates d and that c and b form a minimal pair.By applying this result twie, �rst to c and then to b , we have d and b �rst, and then
e and a suh that e has almost universal upping property and a < e isolates e , and aand b form a minimal pair. Now for any nonzero .e. degree w , w ups either e or d ,or both, to 0′ . Obviously, this result has Li �,Yi upping theorem as a diret orollary.Both authors are supported by NTU grant RG37/09, M52110101. The seond authoris supported by RFBR (Projets 09-01-97010, 10-01-00399), ADTP �Development of theSienti� Potential of Higher Shool� of the Russian Federal Ageny of Eduation (Grant2.1.1/5367), Federal Target Grant �Sienti� and Eduational Personnel of Innovationof Russia� (Government ontrat No. Ï 269).�åçþìå�. Âó, Ì.Ì. ßìàëååâ. Èçîëèðîâàííîñòü: îáîñíîâàíèÿ è ïðèëîæåíèÿ.Â ñòàòüå ðàññìàòðèâàþòñÿ �åíîìåí èçîëèðîâàííîé ñòåïåíè è åãî ïðèëîæåíèÿ ê èñ-ñëåäîâàíèþ ñâîéñòâ ñòåïåíåé èõ èåðàðõèè Åðøîâà. Àíàëèçèðóþòñÿ ñòåïåíè, îáðàçóþùèå¾âîñüìåðêó¿ (áîëåå ñèëüíûé âàðèàíò èçîëèðîâàííîé ñòåïåíè), à òàêæå äåìîíñòðèðóþòñÿïîñëåäíèå äîñòèæåíèÿ â èçó÷åíèè âëîæèìîñòè ðåøåòîê ïðè ïîìîùè ñâîéñòâà èçîëèðî-âàííîñòè.Êëþ÷åâûå ñëîâà: òüþðèíãîâûå ñòåïåíè, èåðàðõèÿ Åðøîâà, èçîëèðîâàííûå ñòåïåíè,âëîæåíèÿ ðåøåòîê.
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