
Индивидуальные типовые задания  

«Кратные интегралы. Теория поля. Ряды». 

 

Раздел 1. Двойные интегралы. Тройные интегралы. Криволинейные интегралы.  

 

1. Вычислить повторный интеграл: 
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2. Изменить порядок интегрирования в повторных интегралах (изобразить 

область интегрирования). 
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3. Вычислить двойной интеграл по области D , ограниченной указанными 

линиями. 
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4. Вычислить двойной интеграл по области D , ограниченной указанными 

линиями. 
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5. Вычислить двойной интеграл по области D , ограниченной указанными 

линиями. 
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5.26 2 sin
2

D

xy
y dxdy

 
 
 

 ,                   D:  0, ,x y y x   . 

5.27 cos(2 )
D

y xy dxdy ,                     D:  1 2, 2, 2, 3 2x x y y     . 

5.28 2 8xy

D

y e dxdy

 ,                           D:  0, 4, 2x y y x   . 

5.29 3 sin( )
D

y xy dxdy ,                      D:  1, 3, 2, 3x x y y     . 

5.30 2 cos
2

D

xy
y dxdy

 
 
 

 ,                 D:  0, 2 , 2x y y x   . 

 

6. Вычислить среднее значение функции ),( yxf , непрерывной в области D . 

6.1   )sin(),( xyyyxf                            D: 2,1,,2  xxyy  .    

6.2   xyeyyxf 24),(                             D: 1,21,4ln,3ln  xxyy  

6.3   ( , ) cos( )f x y y xy                          D: 2,1,,2  xxyy  . 

6.4    2cos2),( xyyyxf                     D: .0,2,2  xxyy   

6.5   )2cos(),( xyyyxf                         D: 1,21,,2  xxyy   

6.6   )2sin(),( xyyyxf                          D: .3,21,23,2  xxyy   

6.7   xyeyyxf 48),(                              D: 21,41,4ln,3ln  xxyy  

6.8   )2sin(12),( xyyyxf                     D: 3,2,2,4  xxyy  .    

6.9   yxyxf 227),(                             D: )0(1,42,0  yxxyy  

6.10   ( , ) 2 cos(2 )f x y y xy                  D: 2,1,2,4  xxyy  . 

6.11   
4

),(
xy

eyyxf                           D: 8,4,3ln,2ln  xxyy  

6.12   
42),(

xy
eyyxf


                    D: xyyx  ,2,0  

6.13    xyyyxf cos2),(                      D: .0,,  xxyy   

6.14   )cos(),( xyyyxf                         D: 1,21,3,  xxyy   

6.15   )sin(24),( xyyyxf                    D: xyyx  ,2,0   

6.16   )sin(),( xyyyxf                          D: .1,21,2,  xxyy   

6.17   
xy

eyyxf
6

12),(                          D: 31,61,4ln,3ln  xxyy  

6.18   )sin(3),( xyyyxf                        D: 3,1,3,2  xxyy  .    

6.19    xyyyxf 2cos2),(                     D: .0,2,2  xxyy   

6.20   294),( yxyxf                             D: )0(2,0,21  yxyyx  

6.21   ( , ) cos(2 )f x y y xy                       D: 2,21,23,2  xxyy  . 

6.22   
3

6),(
xy

eyyxf                          D: 6,3,3ln,2ln  xxyy  

6.23    xyyyxf 2cos2),(                     D: .0,2,2  xxyy   



6.24   
22),(

xy
eyyxf


                     D: xyyx  ,2,0  

6.25   )2sin(24),( xyyyxf                   D: xyyx 2,2,0    

6.26   
2

),(
xy

eyyxf                             D: 4,2,3ln,2ln  xxyy  

6.27    xyyyxf cos2),(                        D: .0,2,  xxyy   

6.28   )2sin(2),( xyyyxf                    D: 2,,0 xyyx    

6.29   
82),(

xy
eyyxf


                      D: 2,2,0 xyyx   

6.30   263),( yxyxf                              D: )0(1,2,0  yxxyy  

 

7. Найти площадь фигуры, ограниченной указанными линиями (с помощью 

двойного интеграла). 

7.1 2 236 , 6 36 , 0 ( 0)y x y x x x           7.2 yxyx 2,28   

7.3 9,
2

3
,

2
3

 x
x

yxy                                7.4 )0(,26,7222  yxyyx  

7.5 )0(0,cos,sin  xxxyxy                   7.6 5,2,5,2  yyxeyxy  

7.7 )0(0,26,272  yyyxyx             7.8 16,1,  xxyxy  

7.9 yxyx 6,227                                       7.10 2366,236 yxyx   

7.11 6,1,6,1  yyxeyxy                      7.12 yxyx 4,25                   

7.13 16,
2

1
,

2

1
 x

x
yxy                         7.14 )0(,26,1222  yxyyx  

7.15 )0(0,cos,sin  xxxyxy              7.16 4,3,4,3  yyxeyxy  

7.17 4,3,3  xxyxy                             7.18 522,24254  xyxy       

7.19 )0(0,232,224  xxxyxy      7.20 xyxy 8,220   

7.21 7,2,7,12  yyxeyxy                          7.22 xyxy 4,232                   

7.23 4,
2

3
,

2

3
 x

x
yxy                            7.24 )0(,26,1222  xyxyx  

7.25 21823,218 xyxy                 7.26 xyxy 10,211   

7.27 9,
3

,3  x
x

yxy                                 7.28 266,26 xyxy       

7.29 )0(,223,3622  yxyyx                   7.30 8,3,8,3  yyxeyxy  

 

8. Найти площадь фигуры, ограниченной указанными линиями (с помощью 

двойного интеграла в полярных координатах). 

8.1 
2 2 2 24 0, 8 0, 0, 3x x y x x y y y x        . 

8.2 
2 2 2 22 0, 10 0, 0, 3y y x y y x x y x        . 



8.3 2 2 2 22 0, 4 0, 0,x x y x x y y y x        .                                

8.4 2 2 2 22 0, 4 0, 3, 3y y x y y x y x y x         . 

8.5 2 2 2 24 0, 8 0, 0,x x y x x y y y x        .                   

8.6 2 2 2 26 0, 8 0, 3, 3y y x y y x y x y x         . 

8.7 2 2 2 22 0, 10 0, 0, 3x x y x x y y y x         .             

8.8 2 2 2 28 0, 10 0, 3, 3y y x y y x y x y x         . 

8.9 2 2 2 22 0, 4 0, 3, 3x x y x x y y x y x         .                                      

8.10 2 2 2 24 0, 6 0, , 0y y x y y x y x x        . 

8.11 2 2 2 22 0, 6 0, 3, 3x x y x x y y x y x         .                      

8.12 
2 2 2 26 0, 10 0, , 0y y x y y x y x x        .                 

8.13 2 2 2 22 0, 8 0, 3, 3x x y x x y y x y x         .                         

8.14 2 2 2 22 0, 4 0, 3 , 0y y x y y x y x x         . 

8.15 2 2 2 26 0, 10 0, 3, 3x x y x x y y x y x         .              

8.16 2 2 2 24 0, 6 0, 3 , 0y y x y y x y x x         . 

8.17 2 2 2 22 0, 4 0, 0, 3x x y x x y y y x        .                             

8.18 2 2 2 22 0, 6 0, 3, 0y y x y y x y x x        .      

8.19 2 2 2 22 0, 6 0, 0, 3x x y x x y y y x        .      

8.20 2 2 2 22 0, 10 0, 3, 3y y x y y x y x y x         . 

8.21 2 2 2 22 0, 6 0, 0,x x y x x y y y x        .                          

8.22 
2 2 2 24 0, 10 0, 3, 3y y x y y x y x y x         .                 

8.23 2 2 2 22 0, 4 0, 0, 3x x y x x y y y x         .                            

8.24. 
2 2 2 22 0, 4 0, , 0y y x y y x y x x        . 

8.25 2 2 2 24 0, 8 0, 0, 3x x y x x y y y x         .                

8.26 2 2 2 26 0, 8 0, , 0y y x y y x y x x        . 

8.27 2 2 2 24 0, 8 0, 3, 3x x y x x y y x y x         .                                 

8.28 2 2 2 24 0, 8 0, 3 , 0y y x y y x y x x         .     

8.29 
2 2 2 24 0, 6 0, 3, 3x x y x x y y x y x         .                   

8.30 2 2 2 24 0, 8 0, 3 , 0y y x y y x y x x         . 

 

9. Найти объём тела, ограниченного указанными поверхностями (с помощью 

двойного интеграла). 

9.1. 
2 2 50, 5 , 0, 0, 6 11x y x y x z z y      . 

9.2.  15 , 15 , 0, 15 1x y x y z z y     . 



9.3. 16 2 , 2 , 0, 2x y x y z y z     . 

9.4. 8, 4 , 0, 3x y y x z z y     . 

9.5. 2 2 50, 5 , 0, 0, 3 11x y y x y z z x      . 

9.6.  15 , 15 , 0, 15 1y x y x z z x     . 

9.7. 6, 3 , 0, 4 5x y x y z z x     . 

9.8. 
2 2 18, 3 , 0, 0, 10 11x y x y x z z y      . 

9.9.  5 3, 5 9, 0, 5 3 9x y x y z z y     . 

9.10. 7 3 , 2 3 , 0, 3x y x y z y z     . 

9.11. 6, 3 , 0, 4x y y x z z y     . 

9.12. 2 2 18, 3 , 0, 0, 5 11x y y x y z z x      . 

9.13.  5 6, 5 18, 0, 5 3 18y x y x z z x     . 

9.14. 6 3 , 3 , 0, 3y x y x z x z     . 

9.15. 4, 2 , 0, 3 5x y x y z z x     . 

9.16.
2 2 8, 2 , 0, 0, 30 11x y x y x z z y      . 

9.17. 19 2 , 4 2 , 0, 2x y x y z y z     . 

9.18.  5 6, 5 18, 0, 5 3 18x y x y z z y     . 

9.19. 4, 2 , 0, 3x y y x z z y     . 

9.20. 2 2 8, 2 , 0, 0, 15 11x y y x y z z x      . 

9.21.  5 3, 5 9, 0, 5 3 9y x y x z z x     . 

9.22. 17 2 , 2 2 , 0, 1 2y x y x z x z     . 

9.23. 2, , 0, 12 5x y x y z z x     . 

9.24. 
2 2 2, , 0, 0, 30x y x y x z z y      . 

9.25.  5 2, 5 6, 0, 5 3 6x y x y z z y     . 

9.26. 20 2 , 5 2 , 0, 1 2x y x y z y z     . 

9.27. 2, , 0, 12x y y x z z y     . 

9.28. 
2 2 2, , 0, 0, 15x y y x y z z x      . 

9.29. 5 , 5 3, 0, 5 5 3y x y x z z x     . 

9.30. 16 2 , 2 , 0, 2y x y x z x z     . 

 

10. Вычислить тройной интеграл по области G , ограниченной указанными 

поверхностями: 



10.1. 22 , : 0, 1, , 0, 1xy

G

y e dxdydz G x y y x z z     . 

10.2. 2 2(3 4 ) , : 1, 0, , 0, 5( )
G

x y dxdydz G x y y x z z x y       . 

10.3. 2 2(3 ) , : 0, 0, 1, 0, 10
G

x y dxdydz G x y x y z z y       . 

10.4. 
2 2

2 2 2 2 25( )
, : 0, 0, 4, 64( ) ( 0, 0)

4
G

x y
dxdydz G y z x y z x y y z


        . 

10.5. , : 1, 0, 10 , 0,
G

xdxdydz G x y y x z z xy     . 

10.6. 2 , : 0, 2, 4 , 0, 1xy

G

y e dxdydz G x y y x z z       . 

10.7.  2 2 2 210 , : 0, 0, 1, 0, 2 ( 0, 0)
G

xdxdydz G x y x y z z x y x y         . 

10.8. 2 2(15 30 ) , : 1, 0, , 0, 3
G

x z dxdydz G x y y x z z x y       . 

10.9. , : 1, 0, 15 , 0,
G

ydxdydz G x y y x z z xy     . 

10.10. 2 2 , : 0, 2, 2 , 1, 0xy

G

y e dxdydz G x y y x z z      . 

10.11. 
2 2

2 2 2 2 25( )
, : 0, 0, 1, 36( ) ( 0, 0)

6
G

x y
dxdydz G x z x y z x y x z


        . 

10.12.  2 2cos 4 , : 0, 1, 2, , 0
G

y xy dxdydz G x y y x z z        . 

10.13. 
2 2( 3 ) , : 0, 0, 1, 0, 10

G

x y dxdydz G x y x y z z x       . 

10.14. 21 , : 2, 0, , 0,
G

xzdxdydz G x y y x z z xy     . 

10.15.  2 2 2 25 , : 0, 0, 4, 0, 8 ( 0, 0)
G

xdxdydz G x y x y z z x y x y         . 

10.16. 
2 2(60 90 ) , : 1, 0, , 0,

G

y z dxdydz G x y y x z z x y       . 

10.17.  2 2cos 2 , : 0, 1, , 0, 2
G

y xy dxdydz G x y y x z z       . 

10.18.  2 sin 2 , : 2, 0, , 0,
G

x xy dxdydz G x y y x z z      . 

10.19. 
2 2 2 2 2 2 22( ) , : 0, 0, 4, 25( ) ( 0, 0)

G

x y dxdydz G y z x y z x y y z         . 

10.20. 
23 , : 2, 0, 2 , 0,

G

y dxdydz G x y y x z z xy     . 



10.21.  2 2cos , : 0, 1, 2 , 0,
G

y xy dxdydz G x y y x z z      . 

10.22. 2 , : 0, 0, 1, 0, 10( 3 )
G

x dxdydz G x y x y z z x y       . 

10.23.  2 2 2 25 , : 0, 0, 4, 0, 4 ( 0, 0)
G

ydxdydz G x y x y z z x y x y         . 

10.24. 2 2( ) , : 1, 0, , 0, 30 60
G

x y dxdydz G x y y x z z x y       . 

10.25. , : 2, 0, , 0,
G

xyzdxdydz G x y y x z z xy     . 

10.26. 2 2 2 210 , : 0, 0, 1, 0, ( 0, 0)
G

ydxdydz G x y x y z z x y x y         . 

10.27. 
2 2

2 2 2 2 25( )
, : 0, 0, 4, 9( ) ( 0, 0)

3
G

x y
dxdydz G x z x y z x y x z


        . 

10.28.  2 sin , : 1, 0, 2 , 0, 4
G

x xy dxdydz G x y y x z z      . 

10.29. 2 , : 0, 0, 1, 0, 10(3 )
G

y dxdydz G x y x y z z x y       . 

10.30.  2 2 2 290 , : 0, 0, 1, 0, 6 ( 0, 0)
G

ydxdydz G x y x y z z x y x y         . 

 

11. Вычислить криволинейный интеграл 1-го рода по дуге AB . 

11.1. , : 2, (0, 2), (4,0)
2

AB

dl x
AB y A B

x y
  

 . 

11.2. 
2 2 , : 2cos , 2sin , 0 2

AB

x y dl AB x t y t t     . 

11.3. 
2

, : , (0,0), (2,2)
2

AB

x
xdl AB y A B . 

11.4. ( 2) , : 2 1, (0, 1), (3,5)
AB

xy dl AB y x A B    . 

11.5. , : cos , sin , , 0 2
AB

xzdl AB x t y t z t t      . 

11.6. 
2 , : ln , (1,0), (2,ln2)

AB

x dl AB y x A B . 

11.7. 
2 , : 2cos , 2sin , 0 2

AB

x ydl AB x t y t t      

11.8. 
2 , : 3 1, ( 2, 5), (1,4)

AB

x ydl AB y x A B    . 

11.9. , : 2cos , 2sin , 2 , 0 2
AB

xzdl AB x t y t z t t      . 



11.10. 
3 8

, : , 2, , (3,9)
2 3

AB

x
ydl AB y A B

 
  

 
 . 

11.11. 2 2 , : 3cos , 3sin , 0 2
AB

x y dl AB x t y t t     . 

11.12.  , : 2, 1,3 , (0,2)
AB

dl
AB y x A B

x y
   

 . 

11.13. , : , (0,0), (4,2)
AB

xdl AB y x A B . 

11.14.  2 2 , : 2cos , 2sin , 2 , 0 2
AB

z x y dl AB x t y t z t t         

11.15. , : , (0,0), (4,2)
AB

xdl AB y x A B . 

11.16. 
2

3
, : , (0,0), (1,1)

AB

y
dl AB y x x A B

x
 . 

11.17. , : 3cos , 3sin , 3 , 0 2
AB

xzdl AB x t y t z t t      . 

11.18.  2 , : , 0,1 , (1, )x

AB

y dl AB y e A B e . 

11.19.  
2

2
, : ln , 1,0 , (2,ln2)

1
AB

x
dl AB y x A B

x


 . 

11.20. 2 , : 3cos , 3sin , 0 2
AB

x ydl AB x t y t t      

11.21.  2 2 , : 3cos , 3sin , , 0 2
AB

z x y dl AB x t y t z t t         

11.22. 2( ) , : 2 1, ( 1,1), (1,3)
AB

y x dl AB y x A B    . 

11.23. 
2 , : 2 , (1,2), (4,4)

AB

y xdl AB y x A B . 

11.24. cos , : sin , (0,0), ,1
2

AB

y xdl AB y x A B
 

  
 

 . 

11.25. , : cos , sin , , 0 2
AB

zdl AB x t t y t t z t t      . 

11.26.  sin , : cos , (0,1), , 1
AB

y xdl AB y x A B   . 

11.27. 
2 , : cos , sin , 0 2

AB

x ydl AB x t y t t      

11.28.  2 2 , : cos , sin , , 0 2
AB

z x y dl AB x t y t z t t        . 

11.29. 
2 2 , : cos , sin , , 0t t t

AB

z x y dl AB x e t y e t z e t       . 



11.30. 2 2 , : cos , sin , 0 2
AB

x y dl AB x t y t t     . 

 

12. Вычислить криволинейный интеграл 2-го рода по дуге AB . 

12.1. 2 24 7 , : , (1,1), (2,4)
AB

xydx x ydy AB y x A B  . 

12.2. 2 2( 2 ) ( 2 ) , : 2, ( 4,0), (0,2)
2

AB

x
x y dx y x dy AB y A B      . 

12.3. , : , (4,2), (9,3)
AB

xdy ydx AB y x A B  . 

12.4. ( ) 2 , : 2cos , 2sin , 0
AB

x y dx xdy AB x t y t t       . 

12.5. 2( ) , : 2 3, ( 2, 1), (0,3)
AB

x y dx xdy AB y x A B     . 

12.6. 
2

2 2( 2 ) ( 2 ) , : 2 , ( 4,0), (0,2)
8

AB

x
x y dx y x dy AB y A B      . 

12.7. ( ) ( ) , : 4 1, ( 2,9), (0,1)
AB

x y dx x y dy AB y x A B       . 

12.8. 3 3 , : 2cos , 2sin , 0 2
AB

x dx y dy AB x t y t t      . 

12.9. 3

2
, : , (1,1), (8,2)

AB

x y
dx dy AB x y A B

y x

   
   
  

 . 

12.10. 2( ) ( ) , : , ( 1,1), (1,1)
AB

x y dx x y dy AB y x A B     . 

12.11. ( ) ( ) , : cos , 3sin , 0 2
AB

x y dx x y dy AB x t y t t        . 

12.12. 
2 , : sin , (0,0), ,1

2
AB

xydx y dy AB y x A B
 

   
 

 . 

12.13. 
2( ) , : 2 , (0,0), (1,2)

AB

xy y dx xdy AB y x A B   . 

12.14. 
2

2( ) , : 2 , (0,0), (1,2)
2

AB

x
xy x dx dy AB y x A B   . 

12.15. 2 , : cos , sin , 0 2
AB

xydx ydy AB x t y t t      . 

12.16. 
3, : , (0,0), (2,8)

AB

xdy ydx AB y x A B  . 

12.17. 
2 24 sin cos (2 ) , : 2 , (0,0), (3,6)

AB

x ydx y x dy AB y x A B  . 

12.18. 
2 2 , : 2cos , 2sin , 0 2

AB

x ydx xy dy AB x t y t t      . 



12.19. 2 2 2( 2 ) ( 2 ) , : , ( 1,1), (1,1)
AB

x xy dx y xy dy AB y x A B     . 

12.20.    2 2 2 2 , : cos , sin , 0
AB

x y x y dx y x x y dy AB x t y t t          . 

12.21. 2 , : cos , sin , sin , 0 2
AB

xzdx xdy z dz AB x t y t z t t        . 

12.22. 
2

2
, : , (1,2), (2,1)

AB

ydx xdy
AB y A B

x x


 . 

12.23. 2 2 2( ) , : 2 , (0,2), (2,0)
AB

x y dx y dy AB y x A B    . 

12.24. 2 , : cos , sin , sin , 0 2
AB

xydx xdy y dz AB x t y t z t t        . 

12.25. 2 2( ) , : 2 , (0,0), (1,2)
AB

xy y dx xdy AB y x A B   . 

12.26. 
2

( ) , : 2 , (0,0), (1,2)
2

AB

x
xy x dx dy AB y x A B   . 

12.27. ( ) , : cos , 3sin , 0 2
AB

x dx ydy AB x t y t t       . 

12.28. 3( ) , : , (0,0), (2,8)
AB

y dx xdy AB y x A B   . 

12.29. 2, : , (1,1), (2,4)
AB

ydx xdy
AB y x A B

x y




 . 

12.30. ( ) , : 2cos , 2sin , 0
AB

x y dx dy AB x t y t t       . 

 

Раздел 2. Теория поля. Ряды. 

1. Найти градиент ugrad  скалярного поля ),,( zyxfu   в точке ),,( 0000 zyxM  и его 

модуль 0| ( ) |gradu M .  

1.1 )22ln( yzxu  ,   0(2,1,1)M               1.2. arctgzxyu  )21ln( ,   0(0,1,1)M  

1.3. zxyxu 2)23ln(  ,    0(1,3,2)M          1.4. 
z

x
xyu  ,   0( 4,3, 1)M    

1.5. )(22 yxarctgzu  ,   0(1,2, 1)M        1.6. 
29 zxyu  ,   0(1,1,0)M  

1.7. )ln( 22 zyxu  ,   0(1, 3,4)M             1.8. )1ln(22  zzyxu ,   0(1,1,2)M  

1.9. xyzyxu  )22ln( ,   0(1, 1,2)M          1.10. 
23

)222( zyxu  ,   0(1,1,1)M  

1.11 xyzxu 8)23ln(4  ,   0(1,1,1)M            1.12. zyyxu  ,   
0
(2,4,4)M  

1.13. xyzxu 4)52ln(2  ,   
0
(1,1,1)M          1.14. 252

4

2
zx

yx
u  ,   

0

1
( 2, ,1)

2
M   

1.15. 22 zxyyxu  ,   
0
(1,5, 2)M              1.16. )(ln arctgzyxu  ,   

0
( 2,1, 1)M    



1.17. yxxzu 32  ,   
0
(2,2,4)M                    1.18. 223 zyxu  ,   

0
(1, 3,4)M   

1.19. )(2 zyarctgxu  ,   
0
(2,1,1)M             1.20. 2yzyxu  ,   

0
(2,1, 1)M   

1.21   xzxyarctgu  ,   
0
(2,2, 1)M                1.22. zxyxu  )21ln( ,   

0
(1, 2,4)M   

1.23. zyxu  22 ,   
0
(3,4,1)M                    1.24. 

yx

zy

y
x

u



 ,   

0
(4,1, 2)M   

1.25. yarctgzyxu 2 ,   
0
(3, 2,1)M           1.26. 24 zxyu  ,   

0
(1,1,0)M  

1.27. xyzyxu )(  ,   
0
(1,1, 2)M              1.28. 




















22 yx

z
arctgu ,   

0
(1,1,1)M  

1.29. 222 32 zyxu  , 
0
( 1,2,0)M     1.30. 22221ln zxyxu  







 , 
0
(3,0, 4)M   

 

2. Найти производную 
l

u




 по направлению вектора l


 скалярного поля 

),,( zyxfu   в точке ),,( 0000 zyxM .  

 

2.1   xzxyarctgu  ,                    kjil


 ,                  
0
(2,2, 1)M   

2.2. zxyxu  )21ln( ,               kjil


 2 ,                
0
(1, 2,4)M   

2.3. zyxu  22 ,                       kjil


2 ,              
0
(3,4,1)M  

2.4. 
yx

zy

y
x

u



 ,                       kil


 2 ,                       

0
(4,1, 2)M   

2.5. yarctgzyxu 2 ,               kil


34  ,                    
0
(3, 2,1)M   

2.6. 24 zxyu  ,                     jil


 ,                       
0
(1,1,0)M  

2.7. xyzyxu )(  ,                  kjil


 ,                 
0
(1,1, 2)M   

2.8. 



















22 yx

z
arctgu ,                  kjil


22  ,           

0
(1,1,1)M  

2.9. 222 32 zyxu  ,                    kjil


 22 ,           
0
( 1,2,0)M   

2.10. 22221ln zxyxu  






 ,   kjil


22  ,           
0
(3,0, 4)M   

2.11 )22ln( yzxu  ,                    kjil


 2 ,          0(2,1,1)M  

2.12. arctgzxyu  )21ln( ,           kjil


232  ,         0(0,1,1)M  

2.13. zxyxu 2)23ln(  ,                kjil


22  ,        0(1,3,2)M  

2.14. 
z

x
xyu  ,                                    kjil


 5 ,             0( 4,3, 1)M    

2.15. )(22 yxarctgzu  ,            kjil


22  ,            0(1,2, 1)M   



2.16. 29 zxyu  ,                    kjil


 22 ,          
0(1,1,0)M  

2.17. )ln( 22 zyxu  ,               kjil


 2 ,            
0(1, 3,4)M   

2.18. )1ln(22  zzyxu ,              kjil


5265  ,      
0(1,1,2)M  

2.19. xyzyxu  )22ln( ,              kjil


5 ,               
0(1, 1,2)M   

2.20. 
23

)222( zyxu  ,           kjil


 ,                 0(1,1,1)M  

2.21 xyzxu 8)23ln(4  ,              kjil


22  ,               
0(1,1,1)M  

2.22. zyyxu  ,                         kjil


22  ,             
0
(2,4,4)M  

2.23. xyzxu 4)52ln(2  ,          kjil


22  ,             
0
(1,1,1)M  

2.24. 252
4

2
zx

yx
u  ,             kjil


 22 ,             

0

1
( 2, ,1)

2
M   

2.25. 22 zxyyxu  ,                kjl


22  ,                    
0
(1,5, 2)M   

2.26. )(ln arctgzyxu  ,                 kjil


22  ,              
0
( 2,1, 1)M    

2.27. yxxzu 32  ,                       kjil


322  ,           
0
(2,2,4)M  

2.28. 223 zyxu  ,                  kjl


 ,                        
0
(1, 3,4)M   

2.29. )(2 zyarctgxu  ,               kjl


43  ,                    
0
(2,1,1)M  

2.30. 2yzyxu  ,                           kjil


2 ,                
0
(2,1, 1)M   

 

3. Найти дивергенцию div a  и ротор rot a  векторного поля ( )a M  в точке 

),,( 0000 zyxM .  

3.1 2 3( ) ( )a x x z i y j z x k     ,   0(1,1,1)M .               

3.2. 
2 2 2( ) ( ) ( )a y z i xy y j xz z k      ,   0(1,1,1)M . 

3.3. 
2 2 3( ) ( )a xi y y z j z zy k     ,    0(1,1,1)M .          

3.4. ( ) ( )a x z i y j z x k     ,   0(1,1,1)M . 

3.5. 
2 3( ) ( )a x x y i y x j zk     ,   0(1,1,1)M .       

3.6. ( ) ( )a x yz i y j z xy k     ,   0(1,1,1)M . 

3.7. 
2( ) ( )a xi y xyz j z xy k     ,   0(1,1,1)M .            

3.8. 
2 2( ) ( )a x xy i x y y j zk     ,   0(1,1,1)M . 

3.9. 
2( ) ( )a x yz i y j z xyz k     ,   0(1,1,1)M .         

3.10. ( ) ( )a x yz i y xz j zk     ,   0(1,1,1)M . 

3.11 2 2( ) ( )a x xy z i y x yz j zk     ,   0(1,1,1)M .            

3.12. 
42a xi y j z k   ,   0(1,1,1)M . 

3.13. 
2a xi y j x yzk   ,   

0
(1,1,1)M .          



3.14. ( ) ( )a x yz i y xz j xk     ,   
0(1,1,1)M . 

3.15. 2( 3 ) (3 )a x y i x y j z k     ,   
0(1,1,1)M .             

3.16. ( ) ( )a xi y z j z y k     ,   
0(1,1,1)M . 

3.17. 
3

2 2 2 2( ) ( )
3

z
a xy yz i x y z j x k

 
      

 
,   

0(1,1,1)M .                    

3.18. 2 2( ) ( ) ( )a x yz i x y j xy z k      ,   
0(1,1,1)M . 

3.19. (3 2 ) ( 2 ) (1 2 )a x z i z y j z k      ,   
0(1,1,1)M .             

3.20. 2(8 ) ( 1) ( 2 )a yz x i x j xy z k      ,   
0(1,1,1)M . 

3.21 2 2( ) ( 3 )a y z i x y j xyk     ,   
0(1,1,1)M .               

3.22. 2(2 ) ( 2 ) ( )a yz x i xz y j x z k      ,   
0(1,1,1)M . 

3.23. 2 2 2 2 2 2( ) ( ) ( )a x y i y x j y z k      ,   
0(1,1,1)M .                    

3.24. 2 2 2a xy i yz j x zk   ,   0(1,1,1)M . 

3.25. 2( ) ( ) ( )a zx y i xy z j x yz k      ,   0(1,1,1)M .          

3.26. 2 23 2 (2 1)a x i x y j x zk    ,   0(1,1,1)M . 

3.27. 22 2a yi yz j z k   ,   0(1,1,1)M .             

3.28. 2 2 2( ) ( ) ( )a y z i xy y j xz z k      ,   
0
(1,1,1)M . 

3.29. 2( ) ( ) ( )a y xz i yx z j x yz k      , 0(1,1,1)M .    

3.30. ( ) ( 2 )a y z i x y z j xk      , 0(1,1,1)M . 

 

4. Найти поток ( )a  векторного поля ( )a M  через часть плоскости P , 

расположенную в первом октанте (единичная нормаль образует острый угол с 

осью Oz ). 

4.1 2a xi y j zk    ,    : 2 3 1 0P x y z    .               

4.2 a xi y j  ,                : 1 0P x y z    .               

4.3 2a xi zk  ,               : 1 0P x y z    .               

4.4 a y j zk  ,                : 2 1 0P x y z    .               

4.5 a xi y j  ,                : 2 1 0P x y z    .               

4.6 a y j zk  ,                : 2 2 1 0P x y z    .               

4.7 a xi y j  ,                : 2 2 1 0P x y z    .               

4.8 2a xi y j  ,              : 1 0P x y z    .               

4.9 a y j zk  ,                 : 2 2 1 0P x y z    .               

4.10 2a xi y j zk   ,    : 1 0
2 3

x z
P y    .               

4.11 2a xi y j zk   ,     : 1 0
3 2

x y
P z    .               

4.12 3 2a xi y j zk   ,   : 1 0P x y z    .               



4.13 3a xi y j zk   ,        : 1 0
3 2

x z
P y    .               

4.14 6a xi y j zk   ,        : 1 0
2 3

x y
P z    .               

4.15 a xi y j zk   ,          : 1 0
2

x
P y z    .               

4.16 6a xi y j zk   ,        : 2 1 0
2

z
P x y    .               

4.17 2 3 4a xi y j zk   ,    : 2 3 1 0P x y z    .               

4.18 4 5a xi y j zk   ,      : 2 1 0
2

z
P x y    .               

4.19 2 3a xi y j zk   ,      : 2 3 1 0P x y z    .               

4.20 2 5a xi y j zk   ,      : 2 1 0
2

z
P x y    .               

4.21 a xi y j zk   ,          : 2 3 1 0P x y z    .               

4.22 2a xi y j zk   ,        : 2 1 0
2

y
P x z    .               

4.23 3 2a xi zk  ,               : 1 0
2 3

y z
P x     .               

4.24 2a xi y j zk   ,        : 1 0
2

x
P y z    .               

4.25 2a xi y j zk   ,        : 1 0
2 3

y z
P x     .               

4.26 2 3a xi y j zk   ,       : 1 0
3 2

x z
P y    .               

4.27 2 5 5a xi y j zk   ,     : 1 0
2 3

x y
P z    .               

4.28 2 2a xi y j zk   ,      : 2 1 0
2

y
P x z    .               

4.29 2a xi y j zk   ,         : 2 3 1 0P x y z    .               

4.30 2 4a xi y j zk    ,    : 1 0
3 2

x z
P y    .               

 

5. Найти работу ( )A F  силы F  при перемещении материальной точки вдоль 

плоской линии L  от точки 1 1 1( , )M x y  к точке 2 2 2( , )M x y . 

5.1. 
2 2F x yi xy j  ,                   L : 

2 2 4 ( 0, 0)x y x y    , 1 2(2,0), (0,2)M M .               

5.2. 2 2( 2 ) ( 2 )F x y i y x j    ,   L : 
2

2
8

x
y   , 1 2( 4,0), (0,2)M M .               

5.3. 2 2( 2 ) ( 2 )F x y i y x j    ,   L : отрезок прямой 1 2M M , 1 2( 4,0), (0,2)M M .               



5.4. ( )F x y i j   ,                      L : 2 2 4 ( 0)x y y   , 
1 2(2,0), ( 2,0)M M  .               

5.5. 2 2( ) ( )F x y i x y j    ,        L : 2y x , 
1 2( 1,1), (1,1)M M .               

5.6. 2 2( 2 ) ( 2 )F x y i y x j    ,    L : отрезок прямой 
1 2M M , 

1 2( 4,0), (0,2)M M .               

5.7. ( ) 2F x y i x j   ,                   L : 2 2 4 ( 0)x y y   , 
1 2(2,0), ( 2,0)M M  .               

5.8. ( ) ( )F x y i x y j    ,            L : 2y x , 
1 2( 1,1), (1,1)M M .               

5.9. 2F x yi y j  ,                          L : отрезок прямой 
1 2M M , 

1 2( 1,0), (0,1)M M .               

5.10. 3F x i ,                                     L : 2 2 4 ( , 0)x y x y    , 
1 2(2,0), (0,2)M M .               

5.11. 22F xyi x j  ,                      L : 32y x , 
1 2(1,2), (2,16)M M .               

5.12. 2 2 2( ) ( )F x y i x y j    ,    L : отрезок прямой 
1 2M M , 

1 2(1,0), (0,1)M M .               

5.13. 2F x yi ,                                L : 2 2 4 ( , 0)x y x y    , 
1 2(2,0), (0,2)M M .               

5.14. ( ) ( )F x y i x y j    ,          L : 
2

2 1( , 0)
9

y
x x y    , 1 2(1,0), (0,3)M M .               

5.15. 2( )F y x i x j   ,                 L : 22y x , 
1 2(0,0), (1,2)M M .               

5.16. 2(2 ) ( )F xy y i x x j    ,    L : 2 2 9 ( 0)x y y   , 1 2(3,0), ( 3,0)M M  .               

5.17. 2 2 2( )F x y i y j   ,              L : отрезок прямой 
1 2M M , 1 2(2,0), (0,2)M M .               

5.18. 2( ) (2 )F y y i xy x j    ,      L : 2 2 9 ( 0)x y y   , 1 2(3,0), ( 3,0)M M  .               

5.19. ( )F x i yj   ,                        L : 
2

2 1( , 0)
9

y
x x y    , 1 2(1,0), (0,3)M M .               

5.20. F yi x j  ,                            L : 
3y x , 1 2(0,0), (2,8)M M .               

5.21. 2F xyi y j  ,                        L : 
2 2 1( 0, 0)x y x y    , 1 2(1,0), (0,1)M M .               

5.22. 
2

( )
2

x
F xy x i j   ,               L : 2y x , 1 2(0,0), (1,2)M M .               

5.23. F xi y j  ,                           L : отрезок прямой 1 2M M , 1 2(1,0), (0,3)M M .               

5.24. 
2 2F y i x j  ,                        L : 

2 2 9 ( , 0)x y x y    , 1 2(3,0), (0,3)M M .               

5.25. 2( )F xy y i x j   ,               L : 
22y x , 1 2(0,0), (1,2)M M .               

5.26. ( )F x y i j   ,                     L : 
2 2 4 ( 0)x y y   , 1 2(2,0), ( 2,0)M M  .               

5.27. 
2 2 2 2( ) ( )F x y i x y j    ,   L : 

2 2

1( 0)
9 4

x y
y   , 1 2(3,0), ( 3,0)M M  .               

5.28. 
3 3F x i y j  ,                        L : 

2 2 4 ( 0, 0)x y x y    , 1 2(2,0), (0,2)M M .               

5.29. F xyi ,                                  L : siny x , 1 2( ,0), (0,0)M M .               

5.30. 2F xyi y j  ,                       L : 
2 2 1( 0, 0)x y x y    , 1 2(1,0), (0,1)M M .               

 

6. Вычислить сумму числового ряда. 

6.1 




9 48142
2

n nn
        6.2 





9 40132
18

n nn
         6.3 





8 35122
4

n nn
       



6.4 




8 28112
36

n nn
        6.5 





7 24102
6

n nn
         6.6 





6 1582
8

n nn
         

6.7 




7 1892
54

n nn
          6.8 





6 1072
72

n nn
            6.9 





5 862
10

n nn
          

6.10 




5 452
90

n nn
          6.11 





4 342
12

n nn
            6.12 





4 22
18

n nn
          

6.13 




0 342
16

n nn
          6.14 





0 1072
36

n nn
          6.15 





10 48142
30

n nn
   

6.16 




9 28112
54

n nn
       6.17 





9 35122
36

n nn
        6.18 





8 1892
72

n nn
       

6.19 




8 24102
12

n nn
       6.20 





7 1072
18

n nn
          6.21 





7 1582
60

n nn
       

6.22 




6 452
36

n nn
           6.23 





6 862
48

n nn
             6.24 





3 22
54

n nn
            

6.25 




5 342
6

n nn
           6.26 





3 22
18

n nn
               6.27 





1 342
24

n nn
            

6.28 




2 22
36

n nn
            6.29 





0 862
72

n nn
              6.30 





0 452
54

n nn
           

 

7. Исследовать числовой ряд на сходимость по предельному признаку 

сравнения (с обобщённым гармоническим рядом 
1

1

n n





 ).  

7.1  


1 9
14

n n
n

                 7.2  




1 133

12

n n

n
                     7.3  





1 1

1

n nn
          

7.4  




1 29

527

n nn

nn
               7.5  





1 1

1

n nn
                    7.6  



1

1

n n
n

                    

7.7  




1 134

52

n n

n
                 7.8  





1
83

122

n
nn

n
                  7.9  





1 13
12

n n

n
                 

7.10  




1 2
2

n nn

n
            7.11  





1 2)1(

2)1(

3

2

n n

n
                7.12 





1 )2)(1(

7523

n nnn

nn
    

7.13  




1 )2(

1

n nn

n
              7.14  





1 322

23

n n

n
                 7.15  



1 4 3

3

n n

n
                    

7.16 




1 121053

10722

n nn

nn
     7.17  





1 32
2

n nn

n
               7.18  





1 1133

72

n n

n
              

7.19  




2 53
12

n n

n
                7.20  





1 223

7

n n

nn
                  7.21  





1 125
72

n n

n
              



7.22  




2 23

)1(

n n

nn
            7.23  




1 14
34

n n
n

                    7.24  





1
722

73

n
nn

n
     

7.25  




1 43
13

n n

n
                  7.26 





1 )13)(12(

75

n nn

n
        7.27 





1 3 5

32

n n

n
                  

7.28  




1 12100

2

n n

n
             7.29  



1 5
32

n n
n

                7.30  




1 3)1(

3

n n

n
                   

 

8. Исследовать числовой ряд на сходимость по признаку Даламбера (вычислить 

1lim n

n
n

u
L

u




  и сделать вывод).  

8.1. 




2 )!1(2

)1(

n nn
n

               8.2    


 1 )!3(

5

n n

n
                    8.3 



 



1 )!1(

32

n n

nn
                     

8.4  


1 2

3)1(

n n
n

                        8.5  


 



1 )53(2

)!2(

n nn
n

                 8.6 


1 100

!

n
n

n
                         

8.7 


 



1 !2

)23(741

n nn
n

       8.8 






1 4

23

n
n

n
                          8.9 







1 )!2(

2!

n n

nn
                             

8.10 






1
!

2)1(6

n
n

nn
                8.11 



 



1 )!2(

24

n n

nn
                    8.12 







1
!

)!12(

n
n

n
                    

8.13






1 5

32

n
n

n
                         8.14 







1 5

3)2(

n
n

nn
                8.15 







1 5

)!5(

n
n

n
                       

8.16


 



1 )!1(3

)12(531

n nn
n

       8.17 


 



1 )!1(

!2

n n
nn

                    8.18 

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3

n nn

n
                       

8.19 

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!

n n

n


         8.20 







1 2

2

n
n

n
                       8.21 







1 3

22

n
n
nn

                        

8.22 






1 )!2(

!210

n n
nn

                  8.23 


 



1 )3(2

)!2(

n nn
n
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

 



1 )13(852

)12(753

n n

n




      

8.25 


1 )!2(3

2)!(

n nn
n
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





1 )!3(
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n n

nn
                 8.27 



 



1 32)2(

2)1(4

n
nn

nn
              

8.28 


 



1 )52(1197
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n n

n



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
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n
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9. Исследовать числовой ряд на сходимость по радикальному признаку Коши 

(вычислить lim nn
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10. Найти: 1) интервал и радиус сходимости степенного ряда; 2) область 

сходимости степенного ряда. 
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11. Найти первые три отличные от нуля члена разложения функции )(xfy   в 

ряд Тейлора в окрестности точки 0xx . 
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12. Найти разложение функции )(xfy   в ряд Тейлора по степеням x , 

используя известные табличные разложения. Указать интервал сходимости 

полученного разложения. 
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13. Вычислить определённый интеграл с точностью 0.001. 
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