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COSMOLOGIES IN THE GENERAL RELATIVITY LIMIT
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Abstract

We consider Friedmann - Lemaitre - Robertson - Walker flat cosmological models in the
framework of general Jordan frame scalar-tensor theories of gravity with arbitrary coupling
function and potential. For the era when the cosmological energy density of the scalar poten-
tial dominates over the energy density of ordinary matter, we use a nonlinear approximation
of the decoupled scalar field equation for the regime close to the so-called limit of general rel-
ativity where the local weak field constraints are satisfied. We consider the phase space of the
scalar field and provide a complete classification of possible phase portraits. We give the solu-
tions in cosmological time with a particular attention to the classes of models asymptotically
approaching general relativity. The latter can be subsumed under two types: (i) exponential
convergence, and (ii) damped oscillations around general relativity.
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Introduction

Equations of the Einstein general relativity (GR) present a mathematical description
of (macroscopic) space, time and matter. Their validity has been checked by experiments
in the Solar System on scales of 10 ™2 to 10! m and the results are consistent with the
Einstein theory (within error margins) [1]. Astrophysical observations of galaxies and
clusters can probe GR on scales of kpc to Mpc and observations of large scale structure
can extend the scale to over 1 Gpc [2]. However, it seems that in the orders of magnitude
considerably smaller (in quantum realm) and bigger (in the Universe as a whole) GR
needs to be somehow modified, although the precise form of modified theories is not
known. There are theories which claim to be suitable for quantum gravity as well as for
cosmology, e.g. string and superstring theories [3], but in this paper we will consider
modifications tailored for cosmology only.

Precise cosmological observations that could confirm or contest the validity of the
Einstein theory and corresponding cosmological models in the orders of magnitude of
the whole Universe have been made possible only during the last decades and their er-
ror margins are considerably larger than for Solar System experiments. Forty years ago
the prevailing wisdom regarded the general relativistic closed Friedmann - Lemaitre
Robertson — Walker (FLRW) model as the correct global model for the Universe [4].
It has an expanding homogeneous and isotropic three-space with finite volume without
boundary. The present rate of expansion can be determined from observations (within
error margins) and the Einstein equations predict that in this model the expansion
is slowing down. The next task of observational cosmology was to determine the corre-
sponding deceleration parameter. However, in 1998 two groups published their results
[5, 6] which demonstrated that the expansion of the Universe is not decelerating, but
has been accelerating for last few billion years. This fact has now been cross-checked
by other independent observational data. The minimal modification to include this
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phenomenon into GR is to introduce an additional constant of nature (cosmological
constant A) which can be accommodated in the Einstein theory as vacuum energy.
The present day concordance model of our Universe is A-Cold-Dark-Matter (ACDM)
which includes two types of ordinary matter (visible and dark) and the cosmological
constant. But the numerical value of the latter one turns out to be extremely small
(pa ~ 10747 GeV*). This raises a problem of fine tuning and provokes to look also for
other kinds of explanations. For instance, we can assume that there exists an unknown
kind of matter with uniform density and uniform negative pressure, dubbed dark en-
ergy; the cosmological constant is the simplest realization of this scheme. Alternatively,
we can propose a modified theory of gravitation, which, however, must have obser-
vational consequences for the Solar System experiments coinciding with those of GR
(in error margins), and in cosmological orders of magnitude it must allow descriptions
of newly observed phenomena. A recent review of these and other proposals is given by
Tsujikawa [7].

In the present paper we concentrate on investigations of viability of cosmological
models of general scalar-tensor theories of gravity (STG) which employ a scalar field
U(x) besides the usual metric tensor g,,(z) to describe gravity [8, 9]. In particular,
we clarify the relations between GR and STG and indicate that the position of GR
in a general STG is singular in many aspects. Nevertheless, the theories must nearly
coincide at explaining the Solar System experiments. We mostly review our earlier
publications [10-13] and add some extra examples of cosmological evolution in the end.

1. Full equations for cosmological models

General scalar-tensor gravity in the Jordan frame is governed by the action

1 w(T)
S=:55 /d4$\/—g [\I/R(g) - Tw\w,,qz — 262V ()| + Sy (1)
Here w(7) is a coupling function (we assume that 2w(¥)+3 > 0 to avoid ghosts in the
Einstein frame, see e.g. [14]) and V(¥) > 0 is a potential, V, denotes the covariant
derivative with respect to the metric g,,, S, is the matter action, and k2 is the
non-variable part of the effective gravitational constant %2 In order to keep the latter

positive we assume that 0 < ¥ < oco.
The field equations for the flat FLRW line element

ds® = —dt® + a(t)? (dr® + r*(d6® + sin® 0dy?)) (2)
and barotropic fluid (p = wp, w = const) read
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where H = a/a. Upon introducing the notation

A(Y) = % (Wl)ﬂi) . W(P) = 2x2 <2V(\1/) - d‘;gm\y) (6)
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and substituting H from Eq. (3) in Eq. (5), we get

i = (o 3A0C <w>+3>)¢2+m<1—3w)pi

i— 3(2 3)W2 4 12620(V (T Uy —— (7

i V/B(2000) + 8)¥ 4 12020V (0) 4 )+ e ()
1 .

In the limit ————— 0, ¥ 0 th t f ti -

n the limi () 1 3) — 0, * e system a"ces a spacetime cur

vature singularity, since H diverges, and likewise behaves W. At first, the limit

(a) m — 0, (b) ¥ — 0 seems only slightly less mathematically precari-
w

ous for the equations are left just indeterminate (contain terms 0/0). Yet the latter
situation is of particular physical importance, as the experiments in the Solar System
(where matter density dominates over the scalar potential), i.e. the limits of observed
values of the parametrized post-Newtonian (PPN) parameters and the time variation
of the gravitational constant [1],

K2 2w+ 4
87TG = E—2w—|—37 (8)
,
_ k av —4
-1 = — < 10 9
b G (2w+3)22w+4) ™ ’ )
1
y—1 = =0 < 1070, (10)
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— = —-v ——== <1 11
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suggest the present cosmological background value of the scalar field to be very close
to the limit (a)—(b). Since in this limit the STG PPN parameters coincide with those
of general relativity, we may tentatively call (a)—(b) “the limit of general relativity” or
“GR point”.

Let us define ¥, by = 0. In our previous papers [10-13] we studied the

1
2w(P,) +3
1
limit (a)—(b) with the simplifying assumptions (c) A, = A(V¥,) # 0 and (d) %13
w

is differentiable at ¥, , which enabled to Taylor expand the functions in Eq. (7) and
find analytic solutions in the phase space for the resulting approximate equation. The
outcome was that the solutions are well behaved in this limit, motivating the inclusion of
(I = W,, ¥ =¥, =0) as a boundary point to the open domaln of definition of Eq. (7).
Moreover, it was possible to identify a wide class of STGs where the FLRW cosmological
dynamics spontaneously draws the scalar field to this limit, i.e. into agreement with
current local weak field observations in the Solar System.

In what follows, we will consider the era when the cosmological energy density of
the scalar potential dominates over the energy density of ordinary matter, i.e. we can
take p = 0 which is a considerable simplification.

2. Approximate equations

Equation (7) with p =0 cannot be integrated without specifying the two arbitrary
functions w(¥) and V(). But being interested in the behaviour of solutions close to
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the GR point (¥, , ¥,) we can still proceed by considering an approximation which
maintains the key properties of the full system near this point. We also assume that
additional conditions (a)—(d) hold; although these assumptions somewhat constrain the
possible forms of w, we are still dealing with a wide and relevant class of theories.

Let us focus around the point in the phase space, which corresponds to the limit of
GR, U = U, 4z, ¥ = U, +y =y, where 2 and y span the neighbourhood of first order
small distance from (¥, , \il*). As phase space variables x and y are independent from
each other, their ratio y/x is indeterminate at (x = 0, y = 0). The meaning of this
indeterminacy is perhaps better illuminated in the polar coordinates (p, ), where the
radius p is a first order small quantity, but y/z = tan € (—oo0, 00) becomes infinitely
multivalued at the origin.

We can Taylor expand

1 1
20(W) +3  2w(¥,)+3

+ Az 4+ = Az (12)

Let us denote the values of some functions at (¥, \il*) as

32V (0,)

ClEi \Il*

5 CQ = A* W*7 (13)

where W, = W (¥,) and V(¥,) > 0. The three constants A,, W, , C; determine the
leading terms in expansions of the two functions w(¥), V(¥) which specify a STG.
Now the expansion of the solution for H of the Friedmann constraint (3) reads

c, 1. 1 /c2 Cy 1 a2
H= _— -2 4. 14
+ 201\11* ( + 801\I/*A* X + ( )

3 2w,

3 2A, 0,

This explains the introduction of the £ sign in the definition of C; in Eq. (13), as near
the GR point (z = 0, y = 0) a positive constant, C7 > 0, describes an expanding
de Sitter Universe, while a negative one, C7; < 0, describes a contracting de Sitter
Universe. An expansion of the effective barotropic index which determines the behaviour
of dark energy reads

2H 1 I3 1 i?
fti=—1——=-14—F—|=(1+—— | — —4C1i 1
Weff 352 + 012‘11* |:2 ( + \I/*A*) - C1£L'+3Cgl‘:| + ( 5)
A necessary condition for crossing the so-called phantom divide, weg = —1, is vanishing

of the second term in Eq. (15). This occurs if @ equals to a solution of the corresponding
quadratic equation

A, B .90 1
= ST AT {C&:I:\/E}:c:li:c, D=0 -— <1+A*\1/*>' (16)

Here we can see a condition on the constants A,, ¥,, C7, Cs which characterize the
theory: I+ must be real numbers, i.e. D > 0. Note that on the plane (x,) the phantom
divide (16) consists of two straight lines crossing at the origin x =0, & = 0.

In approximate equations we must recognize the term y?/x as being the same order
as x and y. In other words, we consider all finite values of tanf, and exclude only its
infinite value on the y-axis which is outside the domain of definition of the system as
said before. Thus, keeping the term y?/x in the approximation of Eq. (7) we obtain
a second-order nonlinear differential equation

. . a2
r+Cizx 0230_293 (17)
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and the corresponding first-order system reads

2
&=y, yzg—m—clerCQ:c. (18)

3. Phase trajectories

The phase trajectories for the nonlinear approximate system (18) are determined by
the equation
dy _y

x

Its solutions

1
z|K = —y2 + Cryx — Coa?
2

exp(—Cy f(u)), u= % , (20)

depend on the sign of the expression C? + 20y = C, as the function f(u) is given by

Lln M if C>0,
Ve u+Cy +C
2 .
fu) = TG if ¢ =0, (21)
L (arctzmqu G +n7r> if ¢ <0.
VICl VICl

Here K is a constant of integration which identifies the trajectory according to initial
data (xo, yo).

In general, the right-hand side of Eq. (19) can be written as a quotient of two
second order homogeneous polynomials; a qualitative classification of the solutions of
differential equations of this type was given by Lyagina [15] long time ago. In a nutshell,
the phase portraits for different values of the constants C; and Cy classify according to
the number of sectors which form on the phase space around the origin (z =0, y = 0),
and the topology of trajectories which inhabit these sectors. The sectors are separated
by the boundary x = 0 and invariant directions. The latter are lines y = kx where the
constant k is a real solution of an algebraic equation

k Co
-2 _ il 22
k > Ch + E (22)

i.e straight trajectories y = (—C} ++/C)x satisfying (19). All possible options are listed
in Table 1 and graphically depicted in Fig. 1.

In our recent paper [12] we have argued in detail, that the phase portraits of the
nonlinear approximation display the same basic characteristic features we inferred
about the solutions of the full system. First, on the horizontal axis (y = 0) the tan-
gents of the trajectories are vertically aligned2if Cs # 0, and the direction of the flow
across y = 0 is determined by the sign of (cil—y:g . If C3 = 0 the horizontal axis is
populated by fixed points. Second, next to the \yzertical axis (z = 0) the trajectories
turn vertical and do not cross or intersect with the =z = 0, y # 0 line, deemed to
be outside of the domain of definition of the system. Inspection of the phase portraits
in Fig. 1 at the origin (z = 0, y = 0) where the sectors meet shows that in all cases there
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Table 1
The topology of trajectories of the nonlinear approximation (19)
No. Parameters Topology of trajectories
C>0 la Ci>0 Cy >0 2 hyperb., 2 st. & 2 unst. parab. sectors
1b Ci >0 Cy=0 1 stable & 1 unstable parabolic sector,

2 stable sectors of degenerate fixed points

CQ

le Ci1>0 771 < Cy <0 2 elliptic, 4 stable parabolic sectors
1d Ci=0 Cy >0 2 hyperb., 2 st. & 2 unst. parab. sectors
le Ci1<0 Cy >0 2 hyperb., 2 st. & 2 unst. parab. sectors
1.f Ci <0 Cy=0 1 stable & 1 unstable parabolic sector,
2 unst. sectors of degenerate fixed points
ct

lg Ci1 <0 —5 < (C2 <0 2 elliptic, 4 unstable parabolic sectors

2
C=0 2a Ci>0 Cy = —% 2 elliptic, 2 stable parabolic sectors
2b Ci1 =0 Cy=0 2 stable & 2 unstable parabolic sectors
Ct -~ :
2¢ (C1 <0 Cy = - 2 elliptic, 2 unstable parabolic sectors
Ct L
C<0 3a Ci>0 Cy < - 2 elliptic sectors
3b Ci1=0 Cy <0 2 elliptic sectors
Ct L
3c (C1 <0 Ch < —3 2 elliptic sectors

are multiple trajectories (identified by different values of K') which all reach the point
in question. The trajectories “bounce back” from the origin, so that y changes its sign
along a trajectory in all cases, for there is always a class of trajectories whose tangent
is vertically aligned at this point. Despite the fact that there seems to be a loss of
predictability here (the initial condition zy = 0, yo = 0 does not fix the constant
K uniquely), it would be natural to continue all such trajectories through this point
keeping the same K along them. Finally, those trajectories which reach the origin under
finite tan # must either begin or end their flow at this point, like it happens at a regular
fixed point.

To summarize the results, it turns out that the GR point is an attractor for the
asymptotic flow of all trajectories only if C; > 0 and Cy < 0 (cases lc, 2a, 3a).
If C; >0 and Cy = 0 all trajectories flow to the line W # W, , ¥ = 0 instead (case 1b).
If ;1 =0 and C5 < 0 all trajectories loop through the GR point oscillating back and

forth (nonlinear case 3b), or if C; < 0 and Cy < 771 they oscillate further and further

(nonlinear case 3c). For the rest of the values of C; and Cy all trajectories eventually
flow away from the GR point.
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where M; and Ms are arbitrary constants of integration. The solutions are classified
according to the scheme given in the previous section, here let us focus only on those
cases which approach the GR limit asymptotically in time (future).

4.1. Exponential solutions. In the case C' > 0 solutions read

+z = exp(—Cit) {Ml exp <%t\/5> — My exp <%t\/5)]2 .

(24)

If C; >0 and C5 < 0 the solutions exponentially converge to the GR limit, behaving
as
£2]; 00 = exp (—(01 —VO)(t - tl)) . (25)
1
Here we have denoted the constant of integration as M; = exp <§t1(\/5 — Cl)) for

some arbitrary moment ¢;. All solutions satisfy an asymptotic condition

f‘ - @ (26)
2 lt—oo VO
The Hubble parameter reads
c, exXp (*(Cl —VO)(t *tl)) C,—VC 4
Hlimoo = - & 20, 2A T, 30 Ve (27)
and effective barotropic index (15) can be calculated
exp (—(C’l —VO)(t - tl))
Weﬁ|t—>oo =-1+ 012\11* X
_ 2
% +402 430 —TCVO)| . (28)

Now we can determine whether a model in the theory characterized by distinct param-
eters (C1,C = C? + 205, A,) approaches the de Sitter spacetime from the quintessence
side (wWer > —1) or from the phantom side (weg < —1). Approximate expressions of
the PPN parameters (9), (10) indicate that they approach the GR values f =1, v =1
exponentially.

Solutions (24) may have interesting features at certain finite moments of time.
Firstly, if the theory allows phantom divide, i.e. if I+ in Eq. (16) are real numbers,
then solutions (24) may cross the phantom divide no more than at two moments ¢ .
Secondly, at finite moments t; some solutions can achieve x(t,) = 0, &(t,) = 0 depend-
ing on values of integration constants M7, My . Phase trajectories have a vertical slope
there and can be described as “turning back” if we consider solutions (24) with only one
sign (+ or —).

4.2. Linear exponential solutions. In the case C' = 0 the solutions read
1 2
+u = exp (—Cht) [exp (501t1t> — M2:| (29)

1
with M7 = exp <§C’1t1) . If C1 > 0 the solutions exponentially converge to the GR,

limit, behaving as
+2|t 0o = tPexp (—Ci(t — 11)). (30)
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Fig. 2. Examples of the time evolution of weg for different STG models: (32) left, (33) middle,
(34) right

This case is rather finetuned by the condition C7 = —2C5.

4.3. Oscillating solutions. In the case C' < 0 the solutions read

2
+x = exp (—Cht) [Nl sin (%t |C|) — N cos (%t |C|)} ) (31)

where Ny, Ny are integration constants. In terms of the phase space (z,#), solutions
do not have a definite slope at approaching asymptotically (¢ — c0) to « =0, £ =0.
As they spiral to it at ¢ — oo their phase trajectories cross this point infinitely many
times. The spiral, however, must lie in one half-plane of domain of definition, either
x>0 or x < 0. Approximate expressions of the PPN parameters (9), (10) now reveal
damped oscillatory behaviour around the GR values.

If the theory allows crossing the phantom divide, i.e. if [+ in Eq. (16) are real,
then the possible moments ¢4, of crossing occur on each winding of the spiral. If [1 is
imaginary, then the effective barotropic index weg stays below or above —1.

5. Some physical considerations

In order to successfully meet the various observational constraints, the STG scalar
field must reside close to the GR point. This occurs naturally when the GR point
functions as an attractor for solutions. Therefore, we have a selection principle: only
such STG theories are viable and worth further consideration, which possess at least
one attractive GR point. Our results [10-13] allow one to immediately decide whether
any STG with particular w(¥) and V() is viable or not.

For the evolution of the universe in scalar-tensor cosmology we may envisage a re-
alistic scenario where during the matter domination era the scalar field has already
dynamically relaxed sufficiently close to the GR limit [11]. Later when the cosmologi-
cal energy density of the potential becomes more significant, the solutions given here
can be taken to provide a rough description. The final asymptotic state will be de Sit-
ter, but before that we may witness dark energy with variable weg. Depending on the
model, exponential solutions may cross the phantom divide line at most twice before
approaching weg = —1 from either above or below. In the oscillating type of solutions
the dark energy effective barotropic index oscillates either in the quintessence regime
(Wer > —1), phantom regime (weg < —1), or crossing the phantom divide line once or
twice during each period.

As an illustration, Fig. 2 depicts the dynamics of weg = —1 for three example solu-
tions in different STG models:
3w 2
wl)=———, V() =I[1+(1-¥)7], (32)

2(1— )’ 3
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5W
7(1—9)’

U
2(1 —w)’
The first model belongs to class 1c and the sample solution shows a monotonic
quintessence type convergence towards de Sitter. The second model belongs to class 3a
and is characterized by damped oscillations in the quintessence regime. The third model
also belongs to class 3.a but exhibits oscillations through the phantom divide line. The

initial conditions of these solutions have been chosen such that the corresponding PPN
parameters are within observationally allowed limits. The evolution is measured in the

w(W) = K2V () = 3exp [3(1 — U)], (33)

w(l) = K2V (¥) = 3exp[3(1 — )] . (34)

C
units of the analogue of Hubble time, T'= H,t = =Lt We may notice that it is pos-

sible to have the period of oscillations to be about the same order of magnitude as the
age of the Universe.
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Pesrome

JI. Aps, II. Kyyck, M. Caas. CransipHO-TeH30pHBIE KOCMOJIOTHH C IIOTEHITNAJIOM B IIPEIesTe
001meit TeoOpUM OTHOCUTETHHOCTH.

PaccmaTpuBaoTcss KocMmosioruaeckue momen dbpmuamanosckoro (kK = 0) Tuma B pamkax
CKAJISIPHO-TE€H30PHBIX TEOPUH I'PABUTAIME B IIPEJCTABICHUA VIOpJAHA C JBYMsl IIPOM3BOJIb-
HBIMU (DYHKIIMOHATHHBIMA CTemeHsaMu cBoOOabl. Ilpennaraercs menmHeliHoe MPUOIUZKEHHOE
YPaBHEHME CKAJISIPHOTO TIOJISl ISt OMFCAHWS SIOXM, KOTJA IJIOTHOCTH SHEPTHM CKAJISTPHOTO
[IOTEHIUAJIA 3HAYUTEIHLHO TPEBBIMAET SHEPTUI0 OOBIYHON MATEPUM, U MOJE/b MAJIO0 OTINIAET-
Cs OT COOTBETCTBYIOIIEH MOze n obmeil Teopuu OTHOCUTEIbHOCTH. PaccmaTpuBaercs ¢azoBoe
MPOCTPAHCTBO CKAJISIPHOTO IOJISI, ¥ TTPUBOJUTCS TOJIHAS KJIACCU(DUKAINS BO3MOXKHBIX (Dazo-
BBIX IOPTPETOB, & TAK¥KE PElIeHUs yPaBHEHUs CKAJIAPHOTO MO/ B KOCMOJIOIUYECKOM BPEMEHH!
B 0COGEHHOCTH I MOJIesIeil, aCUMITOTUYECKU OJIU3KUX COOTBETCTBYIONIMM MOJEIsIM 00mieit
TEOPUH OTHOCUTEILHOCTH. [l0Ka3amHo0, ITO pemenns MOTyT XapaKTepPHU30BATHCS KAaK SKCITOHEH-
HUAIBHBIM CTPEMJIEHHEM K COOTBETCTBYIONUM PEIleHUudM B 00IIedl Teopur OTHOCUTETbHOCTH,
TaK M 3aTyXAOIMNMN KOJIe0aHUSIMI BOKPYT HUX.

KuroueBbie ciioBa: CKaasgpPHO-TEH30DHBIE KOCMOJIOTHH, TIPEesl ODmell Teopuu OTHOCH-
TEJIHLHOCTH, TEMHAS SHEPTHS.
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