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UDK 519.63POTENTIAL DOMINATED SCALAR-TENSORCOSMOLOGIES IN THE GENERAL RELATIVITY LIMITL. J�arv, P. Kuusk, M. SaalAbstratWe onsider Friedmann� Lema�itre �Robertson �Walker �at osmologial models in theframework of general Jordan frame salar-tensor theories of gravity with arbitrary ouplingfuntion and potential. For the era when the osmologial energy density of the salar poten-tial dominates over the energy density of ordinary matter, we use a nonlinear approximationof the deoupled salar �eld equation for the regime lose to the so-alled limit of general rel-ativity where the loal weak �eld onstraints are satis�ed. We onsider the phase spae of thesalar �eld and provide a omplete lassi�ation of possible phase portraits. We give the solu-tions in osmologial time with a partiular attention to the lasses of models asymptotiallyapproahing general relativity. The latter an be subsumed under two types: (i) exponentialonvergene, and (ii) damped osillations around general relativity.Key words: salar-tensor osmologies, general relativity limit, dark energy.IntrodutionEquations of the Einstein general relativity (GR) present a mathematial desriptionof (marosopi) spae, time and matter. Their validity has been heked by experimentsin the Solar System on sales of 10−3 to 1011 m and the results are onsistent with theEinstein theory (within error margins) [1℄. Astrophysial observations of galaxies andlusters an probe GR on sales of kp to Mp and observations of large sale struturean extend the sale to over 1 Gp [2℄. However, it seems that in the orders of magnitudeonsiderably smaller (in quantum realm) and bigger (in the Universe as a whole) GRneeds to be somehow modi�ed, although the preise form of modi�ed theories is notknown. There are theories whih laim to be suitable for quantum gravity as well as forosmology, e.g. string and superstring theories [3℄, but in this paper we will onsidermodi�ations tailored for osmology only.Preise osmologial observations that ould on�rm or ontest the validity of theEinstein theory and orresponding osmologial models in the orders of magnitude ofthe whole Universe have been made possible only during the last deades and their er-ror margins are onsiderably larger than for Solar System experiments. Forty years agothe prevailing wisdom regarded the general relativisti losed Friedmann �Lema�itre �Robertson �Walker (FLRW) model as the orret global model for the Universe [4℄.It has an expanding homogeneous and isotropi three-spae with �nite volume withoutboundary. The present rate of expansion an be determined from observations (withinerror margins) and the Einstein equations predit that in this model the expansionis slowing down. The next task of observational osmology was to determine the orre-sponding deeleration parameter. However, in 1998 two groups published their results[5, 6℄ whih demonstrated that the expansion of the Universe is not deelerating, buthas been aelerating for last few billion years. This fat has now been ross-hekedby other independent observational data. The minimal modi�ation to inlude this



186 L. J�ARV ET AL.phenomenon into GR is to introdue an additional onstant of nature (osmologialonstant Λ) whih an be aommodated in the Einstein theory as vauum energy.The present day onordane model of our Universe is Λ-Cold-Dark-Matter (ΛCDM)whih inludes two types of ordinary matter (visible and dark) and the osmologialonstant. But the numerial value of the latter one turns out to be extremely small(ρΛ ≃ 10−47 GeV4 ). This raises a problem of �ne tuning and provokes to look also forother kinds of explanations. For instane, we an assume that there exists an unknownkind of matter with uniform density and uniform negative pressure, dubbed dark en-ergy; the osmologial onstant is the simplest realization of this sheme. Alternatively,we an propose a modi�ed theory of gravitation, whih, however, must have obser-vational onsequenes for the Solar System experiments oiniding with those of GR(in error margins), and in osmologial orders of magnitude it must allow desriptionsof newly observed phenomena. A reent review of these and other proposals is given byTsujikawa [7℄.In the present paper we onentrate on investigations of viability of osmologialmodels of general salar-tensor theories of gravity (STG) whih employ a salar �eld
Ψ(x) besides the usual metri tensor gµν(x) to desribe gravity [8, 9℄. In partiular,we larify the relations between GR and STG and indiate that the position of GRin a general STG is singular in many aspets. Nevertheless, the theories must nearlyoinide at explaining the Solar System experiments. We mostly review our earlierpubliations [10�13℄ and add some extra examples of osmologial evolution in the end.1. Full equations for osmologial modelsGeneral salar-tensor gravity in the Jordan frame is governed by the ation
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SCALAR-TENSOR COSMOLOGIES . . . 187and substituting H from Eq. (3) in Eq. (5), we get
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→ 0 , Ψ̇ 6= 0 the system faes a spaetime ur-vature singularity, sine H diverges, and likewise behaves Ψ̈ . At �rst, the limit(a) 1

(2ω(Ψ) + 3)
→ 0 , (b) Ψ̇ → 0 seems only slightly less mathematially preari-ous for the equations are left just indeterminate (ontain terms 0/0). Yet the lattersituation is of partiular physial importane, as the experiments in the Solar System(where matter density dominates over the salar potential), i.e. the limits of observedvalues of the parametrized post-Newtonian (PPN) parameters and the time variationof the gravitational onstant [1℄,

8πG =
κ2

Ψ

2ω + 4

2ω + 3
, (8)

β − 1 ≡ κ2

G

dω

dΨ
(2ω + 3)2(2ω + 4)

. 10−4, (9)
γ − 1 ≡ − 1

ω + 2
. 10−5, (10)

Ġ
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. 10−13 yr−1, (11)suggest the present osmologial bakground value of the salar �eld to be very loseto the limit (a)�(b). Sine in this limit the STG PPN parameters oinide with thoseof general relativity, we may tentatively all (a)�(b) �the limit of general relativity� or�GR point�.Let us de�ne Ψ⋆ by 1

2ω(Ψ⋆) + 3
= 0 . In our previous papers [10�13℄ we studied thelimit (a)�(b) with the simplifying assumptions () A⋆ ≡ A(Ψ⋆) 6= 0 and (d) 1

2ω + 3is di�erentiable at Ψ⋆ , whih enabled to Taylor expand the funtions in Eq. (7) and�nd analyti solutions in the phase spae for the resulting approximate equation. Theoutome was that the solutions are well behaved in this limit, motivating the inlusion of
(Ψ = Ψ⋆, Ψ̇ = Ψ̇⋆ ≡ 0) as a boundary point to the open domain of de�nition of Eq. (7).Moreover, it was possible to identify a wide lass of STGs where the FLRW osmologialdynamis spontaneously draws the salar �eld to this limit, i.e. into agreement withurrent loal weak �eld observations in the Solar System.In what follows, we will onsider the era when the osmologial energy density ofthe salar potential dominates over the energy density of ordinary matter, i.e. we antake ρ = 0 whih is a onsiderable simpli�ation.2. Approximate equationsEquation (7) with ρ = 0 annot be integrated without speifying the two arbitraryfuntions ω(Ψ) and V (Ψ) . But being interested in the behaviour of solutions lose to



188 L. J�ARV ET AL.the GR point (Ψ⋆ , Ψ̇⋆ ) we an still proeed by onsidering an approximation whihmaintains the key properties of the full system near this point. We also assume thatadditional onditions (a)�(d) hold; although these assumptions somewhat onstrain thepossible forms of ω , we are still dealing with a wide and relevant lass of theories.Let us fous around the point in the phase spae, whih orresponds to the limit ofGR, Ψ = Ψ⋆+x , Ψ̇ = Ψ̇⋆+y = y , where x and y span the neighbourhood of �rst ordersmall distane from (Ψ⋆ , Ψ̇⋆ ). As phase spae variables x and y are independent fromeah other, their ratio y/x is indeterminate at (x = 0 , y = 0). The meaning of thisindeterminay is perhaps better illuminated in the polar oordinates (ρ, θ ), where theradius ρ is a �rst order small quantity, but y/x ≡ tan θ ∈ (−∞,∞) beomes in�nitelymultivalued at the origin.We an Taylor expand
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, C2 ≡ A⋆ W⋆, (13)where W⋆ ≡ W (Ψ⋆) and V (Ψ⋆) ≥ 0 . The three onstants A⋆ , W⋆ , C1 determine theleading terms in expansions of the two funtions ω(Ψ) , V (Ψ) whih speify a STG.Now the expansion of the solution for H of the Friedmann onstraint (3) reads
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+ · · · (14)This explains the introdution of the ± sign in the de�nition of C1 in Eq. (13), as nearthe GR point (x = 0, y = 0) a positive onstant, C1 > 0 , desribes an expandingde Sitter Universe, while a negative one, C1 < 0 , desribes a ontrating de SitterUniverse. An expansion of the e�etive barotropi index whih determines the behaviourof dark energy reads
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ẋ2

x
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. (16)Here we an see a ondition on the onstants A⋆, Ψ⋆, C1, C2 whih haraterize thetheory: l± must be real numbers, i.e. D ≥ 0 . Note that on the plane (x, ẋ) the phantomdivide (16) onsists of two straight lines rossing at the origin x = 0 , ẋ = 0 .In approximate equations we must reognize the term y2/x as being the same orderas x and y . In other words, we onsider all �nite values of tan θ , and exlude only itsin�nite value on the y -axis whih is outside the domain of de�nition of the system assaid before. Thus, keeping the term y2/x in the approximation of Eq. (7) we obtaina seond-order nonlinear di�erential equation
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SCALAR-TENSOR COSMOLOGIES . . . 189and the orresponding �rst-order system reads
ẋ = y, ẏ =

y2

2x
− C1 y + C2 x. (18)3. Phase trajetoriesThe phase trajetories for the nonlinear approximate system (18) are determined bythe equation
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Here K is a onstant of integration whih identi�es the trajetory aording to initialdata (x0 , y0 ).In general, the right-hand side of Eq. (19) an be written as a quotient of twoseond order homogeneous polynomials; a qualitative lassi�ation of the solutions ofdi�erential equations of this type was given by Lyagina [15℄ long time ago. In a nutshell,the phase portraits for di�erent values of the onstants C1 and C2 lassify aording tothe number of setors whih form on the phase spae around the origin (x = 0, y = 0),and the topology of trajetories whih inhabit these setors. The setors are separatedby the boundary x = 0 and invariant diretions. The latter are lines y = kx where theonstant k is a real solution of an algebrai equation
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C)x satisfying (19). All possible options are listedin Table 1 and graphially depited in Fig. 1.In our reent paper [12℄ we have argued in detail, that the phase portraits of thenonlinear approximation display the same basi harateristi features we inferredabout the solutions of the full system. First, on the horizontal axis (y = 0) the tan-gents of the trajetories are vertially aligned if C2 6= 0 , and the diretion of the �owaross y = 0 is determined by the sign of d2x
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. If C2 = 0 the horizontal axis ispopulated by �xed points. Seond, next to the vertial axis (x = 0) the trajetoriesturn vertial and do not ross or interset with the x = 0 , y 6= 0 line, deemed tobe outside of the domain of de�nition of the system. Inspetion of the phase portraitsin Fig. 1 at the origin (x = 0, y = 0) where the setors meet shows that in all ases there



190 L. J�ARV ET AL. Table 1The topology of trajetories of the nonlinear approximation (19)No. Parameters Topology of trajetories
C > 0 1.a C1 > 0 C2 > 0 2 hyperb., 2 st. & 2 unst. parab. setors1.b C1 > 0 C2 = 0 1 stable & 1 unstable paraboli setor,2 stable setors of degenerate �xed points1. C1 > 0 −

C2

1

2
< C2 < 0 2 ellipti, 4 stable paraboli setors1.d C1 = 0 C2 > 0 2 hyperb., 2 st. & 2 unst. parab. setors1.e C1 < 0 C2 > 0 2 hyperb., 2 st. & 2 unst. parab. setors1.f C1 < 0 C2 = 0 1 stable & 1 unstable paraboli setor,2 unst. setors of degenerate �xed points1.g C1 < 0 −

C2
1

2
< C2 < 0 2 ellipti, 4 unstable paraboli setors
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C2

1

2
2 ellipti setors3.b C1 = 0 C2 < 0 2 ellipti setors3. C1 < 0 C2 < −
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2
2 ellipti setorsare multiple trajetories (identi�ed by di�erent values of K ) whih all reah the pointin question. The trajetories �boune bak� from the origin, so that y hanges its signalong a trajetory in all ases, for there is always a lass of trajetories whose tangentis vertially aligned at this point. Despite the fat that there seems to be a loss ofpreditability here (the initial ondition x0 = 0 , y0 = 0 does not �x the onstant

K uniquely), it would be natural to ontinue all suh trajetories through this pointkeeping the same K along them. Finally, those trajetories whih reah the origin under�nite tan θ must either begin or end their �ow at this point, like it happens at a regular�xed point.To summarize the results, it turns out that the GR point is an attrator for theasymptoti �ow of all trajetories only if C1 > 0 and C2 < 0 (ases 1, 2a, 3a).If C1 > 0 and C2 = 0 all trajetories �ow to the line Ψ 6= Ψ⋆ , Ψ̇ = 0 instead (ase 1b).If C1 = 0 and C2 < 0 all trajetories loop through the GR point osillating bak andforth (nonlinear ase 3b), or if C1 < 0 and C2 < −C1

2
they osillate further and further(nonlinear ase 3). For the rest of the values of C1 and C2 all trajetories eventually�ow away from the GR point.
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1.a (1.d) 1.b 1.
1.e (1.d) 1.f 1.g

2.a 2.b 2.
3.a 3.b 3.Fig. 1. Phase portraits of the nonlinear approximation (19) near the GR point (Axes: x =

= Ψ − Ψ⋆ horizontal and y = Ψ̇ vertial)4. SolutionsThe general solution of Eq. (17) reads
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192 L. J�ARV ET AL.where M1 and M2 are arbitrary onstants of integration. The solutions are lassi�edaording to the sheme given in the previous setion, here let us fous only on thoseases whih approah the GR limit asymptotially in time (future).4.1. Exponential solutions. In the ase C > 0 solutions read
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. (24)If C1 > 0 and C2 < 0 the solutions exponentially onverge to the GR limit, behavingas
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. (28)Now we an determine whether a model in the theory haraterized by distint param-eters (C1, C ≡ C2
1 +2C2, A⋆ ) approahes the de Sitter spaetime from the quintesseneside (weff > −1) or from the phantom side (weff < −1). Approximate expressions ofthe PPN parameters (9), (10) indiate that they approah the GR values β = 1 , γ = 1exponentially.Solutions (24) may have interesting features at ertain �nite moments of time.Firstly, if the theory allows phantom divide, i.e. if l± in Eq. (16) are real numbers,then solutions (24) may ross the phantom divide no more than at two moments t± .Seondly, at �nite moments tb some solutions an ahieve x(tb) = 0 , ẋ(tb) = 0 depend-ing on values of integration onstants M1 , M2 . Phase trajetories have a vertial slopethere and an be desribed as �turning bak� if we onsider solutions (24) with only onesign (+ or −).4.2. Linear exponential solutions. In the ase C = 0 the solutions read
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) . If C1 > 0 the solutions exponentially onverge to the GRlimit, behaving as
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1 = −2C2 .4.3. Osillating solutions. In the ase C < 0 the solutions read
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, (31)where N1 , N2 are integration onstants. In terms of the phase spae (x, ẋ) , solutionsdo not have a de�nite slope at approahing asymptotially (t → ∞) to x = 0 , ẋ = 0 .As they spiral to it at t → ∞ their phase trajetories ross this point in�nitely manytimes. The spiral, however, must lie in one half-plane of domain of de�nition, either
x > 0 or x < 0 . Approximate expressions of the PPN parameters (9), (10) now revealdamped osillatory behaviour around the GR values.If the theory allows rossing the phantom divide, i.e. if l± in Eq. (16) are real,then the possible moments t±n of rossing our on eah winding of the spiral. If l± isimaginary, then the e�etive barotropi index weff stays below or above −1 .5. Some physial onsiderationsIn order to suessfully meet the various observational onstraints, the STG salar�eld must reside lose to the GR point. This ours naturally when the GR pointfuntions as an attrator for solutions. Therefore, we have a seletion priniple: onlysuh STG theories are viable and worth further onsideration, whih possess at leastone attrative GR point. Our results [10�13℄ allow one to immediately deide whetherany STG with partiular ω(Ψ) and V (Ψ) is viable or not.For the evolution of the universe in salar-tensor osmology we may envisage a re-alisti senario where during the matter domination era the salar �eld has alreadydynamially relaxed su�iently lose to the GR limit [11℄. Later when the osmologi-al energy density of the potential beomes more signi�ant, the solutions given herean be taken to provide a rough desription. The �nal asymptoti state will be de Sit-ter, but before that we may witness dark energy with variable weff . Depending on themodel, exponential solutions may ross the phantom divide line at most twie beforeapproahing weff = −1 from either above or below. In the osillating type of solutionsthe dark energy e�etive barotropi index osillates either in the quintessene regime(weff > −1), phantom regime (weff < −1), or rossing the phantom divide line one ortwie during eah period.As an illustration, Fig. 2 depits the dynamis of weff = −1 for three example solu-tions in di�erent STG models:
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ω(Ψ) =
5Ψ

7(1 − Ψ)
, κ2V (Ψ) = 3 exp [3(1 − Ψ)[ , (33)

ω(Ψ) =
Ψ

2(1 − Ψ)
, κ2V (Ψ) = 3 exp [3(1 − Ψ)] . (34)The �rst model belongs to lass 1 and the sample solution shows a monotoniquintessene type onvergene towards de Sitter. The seond model belongs to lass 3aand is haraterized by damped osillations in the quintessene regime. The third modelalso belongs to lass 3.a but exhibits osillations through the phantom divide line. Theinitial onditions of these solutions have been hosen suh that the orresponding PPNparameters are within observationally allowed limits. The evolution is measured in theunits of the analogue of Hubble time, T = H⋆ t =

C1

3
t . We may notie that it is pos-sible to have the period of osillations to be about the same order of magnitude as theage of the Universe.Researh is supported by the Estonian Siene Foundation Grant No. 7185 andby Estonian Ministry for Eduation and Siene Support Grant No. SF0180013s07.M.S. also aknowledges the Estonian Siene Foundation Postdotoral researh GrantNo. JD131. �åçþìåË. ßðâ, Ï. Êóóñê, Ì. Ñààë. Ñêàëÿðíî-òåíçîðíûå êîñìîëîãèè ñ ïîòåíöèàëîì â ïðåäåëåîáùåé òåîðèè îòíîñèòåëüíîñòè.�àññìàòðèâàþòñÿ êîñìîëîãè÷åñêèå ìîäåëè �ðèäìàíîâñêîãî (k = 0) òèïà â ðàìêàõñêàëÿðíî-òåíçîðíûõ òåîðèé ãðàâèòàöèè â ïðåäñòàâëåíèè Éîðäàíà ñ äâóìÿ ïðîèçâîëü-íûìè �óíêöèîíàëüíûìè ñòåïåíÿìè ñâîáîäû. Ïðåäëàãàåòñÿ íåëèíåéíîå ïðèáëèæåííîåóðàâíåíèå ñêàëÿðíîãî ïîëÿ äëÿ îïèñàíèÿ ýïîõè, êîãäà ïëîòíîñòü ýíåðãèè ñêàëÿðíîãîïîòåíöèàëà çíà÷èòåëüíî ïðåâûøàåò ýíåðãèþ îáû÷íîé ìàòåðèè, è ìîäåëü ìàëî îòëè÷àåò-ñÿ îò ñîîòâåòñòâóþùåé ìîäåëè îáùåé òåîðèè îòíîñèòåëüíîñòè. �àññìàòðèâàåòñÿ �àçîâîåïðîñòðàíñòâî ñêàëÿðíîãî ïîëÿ, è ïðèâîäèòñÿ ïîëíàÿ êëàññè�èêàöèÿ âîçìîæíûõ �àçî-âûõ ïîðòðåòîâ, à òàêæå ðåøåíèÿ óðàâíåíèÿ ñêàëÿðíîãî ïîëÿ â êîñìîëîãè÷åñêîì âðåìåíèâ îñîáåííîñòè äëÿ ìîäåëåé, àñèìïòîòè÷åñêè áëèçêèõ ñîîòâåòñòâóþùèì ìîäåëÿì îáùåéòåîðèè îòíîñèòåëüíîñòè. Ïîêàçàíî, ÷òî ðåøåíèÿ ìîãóò õàðàêòåðèçîâàòüñÿ êàê ýêñïîíåí-öèàëüíûì ñòðåìëåíèåì ê ñîîòâåòñòâóþùèì ðåøåíèÿì â îáùåé òåîðèè îòíîñèòåëüíîñòè,òàê è çàòóõàþùèìè êîëåáàíèÿìè âîêðóã íèõ.Êëþ÷åâûå ñëîâà: ñêàëÿðíî-òåíçîðíûå êîñìîëîãèè, ïðåäåë îáùåé òåîðèè îòíîñè-òåëüíîñòè, òåìíàÿ ýíåðãèÿ.
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