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UDK 519.63POTENTIAL DOMINATED SCALAR-TENSORCOSMOLOGIES IN THE GENERAL RELATIVITY LIMITL. J�arv, P. Kuusk, M. SaalAbstra
tWe 
onsider Friedmann� Lema�itre �Robertson �Walker �at 
osmologi
al models in theframework of general Jordan frame s
alar-tensor theories of gravity with arbitrary 
ouplingfun
tion and potential. For the era when the 
osmologi
al energy density of the s
alar poten-tial dominates over the energy density of ordinary matter, we use a nonlinear approximationof the de
oupled s
alar �eld equation for the regime 
lose to the so-
alled limit of general rel-ativity where the lo
al weak �eld 
onstraints are satis�ed. We 
onsider the phase spa
e of thes
alar �eld and provide a 
omplete 
lassi�
ation of possible phase portraits. We give the solu-tions in 
osmologi
al time with a parti
ular attention to the 
lasses of models asymptoti
allyapproa
hing general relativity. The latter 
an be subsumed under two types: (i) exponential
onvergen
e, and (ii) damped os
illations around general relativity.Key words: s
alar-tensor 
osmologies, general relativity limit, dark energy.Introdu
tionEquations of the Einstein general relativity (GR) present a mathemati
al des
riptionof (ma
ros
opi
) spa
e, time and matter. Their validity has been 
he
ked by experimentsin the Solar System on s
ales of 10−3 to 1011 m and the results are 
onsistent with theEinstein theory (within error margins) [1℄. Astrophysi
al observations of galaxies and
lusters 
an probe GR on s
ales of kp
 to Mp
 and observations of large s
ale stru
ture
an extend the s
ale to over 1 Gp
 [2℄. However, it seems that in the orders of magnitude
onsiderably smaller (in quantum realm) and bigger (in the Universe as a whole) GRneeds to be somehow modi�ed, although the pre
ise form of modi�ed theories is notknown. There are theories whi
h 
laim to be suitable for quantum gravity as well as for
osmology, e.g. string and superstring theories [3℄, but in this paper we will 
onsidermodi�
ations tailored for 
osmology only.Pre
ise 
osmologi
al observations that 
ould 
on�rm or 
ontest the validity of theEinstein theory and 
orresponding 
osmologi
al models in the orders of magnitude ofthe whole Universe have been made possible only during the last de
ades and their er-ror margins are 
onsiderably larger than for Solar System experiments. Forty years agothe prevailing wisdom regarded the general relativisti
 
losed Friedmann �Lema�itre �Robertson �Walker (FLRW) model as the 
orre
t global model for the Universe [4℄.It has an expanding homogeneous and isotropi
 three-spa
e with �nite volume withoutboundary. The present rate of expansion 
an be determined from observations (withinerror margins) and the Einstein equations predi
t that in this model the expansionis slowing down. The next task of observational 
osmology was to determine the 
orre-sponding de
eleration parameter. However, in 1998 two groups published their results[5, 6℄ whi
h demonstrated that the expansion of the Universe is not de
elerating, buthas been a

elerating for last few billion years. This fa
t has now been 
ross-
he
kedby other independent observational data. The minimal modi�
ation to in
lude this



186 L. J�ARV ET AL.phenomenon into GR is to introdu
e an additional 
onstant of nature (
osmologi
al
onstant Λ) whi
h 
an be a

ommodated in the Einstein theory as va
uum energy.The present day 
on
ordan
e model of our Universe is Λ-Cold-Dark-Matter (ΛCDM)whi
h in
ludes two types of ordinary matter (visible and dark) and the 
osmologi
al
onstant. But the numeri
al value of the latter one turns out to be extremely small(ρΛ ≃ 10−47 GeV4 ). This raises a problem of �ne tuning and provokes to look also forother kinds of explanations. For instan
e, we 
an assume that there exists an unknownkind of matter with uniform density and uniform negative pressure, dubbed dark en-ergy; the 
osmologi
al 
onstant is the simplest realization of this s
heme. Alternatively,we 
an propose a modi�ed theory of gravitation, whi
h, however, must have obser-vational 
onsequen
es for the Solar System experiments 
oin
iding with those of GR(in error margins), and in 
osmologi
al orders of magnitude it must allow des
riptionsof newly observed phenomena. A re
ent review of these and other proposals is given byTsujikawa [7℄.In the present paper we 
on
entrate on investigations of viability of 
osmologi
almodels of general s
alar-tensor theories of gravity (STG) whi
h employ a s
alar �eld
Ψ(x) besides the usual metri
 tensor gµν(x) to des
ribe gravity [8, 9℄. In parti
ular,we 
larify the relations between GR and STG and indi
ate that the position of GRin a general STG is singular in many aspe
ts. Nevertheless, the theories must nearly
oin
ide at explaining the Solar System experiments. We mostly review our earlierpubli
ations [10�13℄ and add some extra examples of 
osmologi
al evolution in the end.1. Full equations for 
osmologi
al modelsGeneral s
alar-tensor gravity in the Jordan frame is governed by the a
tion

S =
1

2κ2

∫

d4x
√−g

[

ΨR(g) − ω(Ψ)

Ψ
∇ρΨ∇ρΨ − 2κ2V (Ψ)

]

+ Sm. (1)Here ω(Ψ) is a 
oupling fun
tion (we assume that 2ω(Ψ)+3 ≥ 0 to avoid ghosts in theEinstein frame, see e.g. [14℄) and V (Ψ) ≥ 0 is a potential, ∇µ denotes the 
ovariantderivative with respe
t to the metri
 gµν , Sm is the matter a
tion, and κ2 is thenon-variable part of the e�e
tive gravitational 
onstant κ2

Ψ
. In order to keep the latterpositive we assume that 0 < Ψ < ∞ .The �eld equations for the �at FLRW line element

ds2 = −dt2 + a(t)2
(

dr2 + r2(dθ2 + sin2 θdϕ2)
) (2)and barotropi
 �uid (p = wρ , w = const) read

H2 = −H
Ψ̇

Ψ
+

1

6

Ψ̇2

Ψ2
ω(Ψ) +

κ2

Ψ

ρ

3
+

κ2

Ψ

V (Ψ)

3
, (3)

2Ḣ + 3H2 = −2H
Ψ̇

Ψ
− 1

2

Ψ̇2

Ψ2
ω(Ψ) − Ψ̈

Ψ
− κ2

Ψ
wρ +

κ2

Ψ
V (Ψ), (4)

Ψ̈ = −3HΨ̇− 1

2ω(Ψ) + 3

dω(Ψ)

dΨ
Ψ̇2 +

κ2

2ω(Ψ) + 3
(1 − 3w)ρ +

+
2κ2

2ω(Ψ) + 3

[

2V (Ψ) − Ψ
dV (Ψ)

dΨ

]

, (5)where H ≡ ȧ/a . Upon introdu
ing the notation
A(Ψ) ≡ d

dΨ

(

1

2ω(Ψ) + 3

)

, W (Ψ) ≡ 2κ2

(

2V (Ψ) − dV (Ψ)

dΨ
Ψ

) (6)



SCALAR-TENSOR COSMOLOGIES . . . 187and substituting H from Eq. (3) in Eq. (5), we get
Ψ̈ =

(

3

2Ψ
+

1

2
A(Ψ)(2ω(Ψ) + 3)

)

Ψ̇2 +
κ2

2ω(Ψ) + 3
(1 − 3w)ρ ±

± 1

2Ψ

√

3(2ω(Ψ) + 3)Ψ̇2 + 12κ2Ψ(V (Ψ) + ρ)Ψ̇ +
W (Ψ)

2ω(Ψ) + 3
. (7)In the limit 1

(2ω(Ψ) + 3)
→ 0 , Ψ̇ 6= 0 the system fa
es a spa
etime 
ur-vature singularity, sin
e H diverges, and likewise behaves Ψ̈ . At �rst, the limit(a) 1

(2ω(Ψ) + 3)
→ 0 , (b) Ψ̇ → 0 seems only slightly less mathemati
ally pre
ari-ous for the equations are left just indeterminate (
ontain terms 0/0). Yet the lattersituation is of parti
ular physi
al importan
e, as the experiments in the Solar System(where matter density dominates over the s
alar potential), i.e. the limits of observedvalues of the parametrized post-Newtonian (PPN) parameters and the time variationof the gravitational 
onstant [1℄,

8πG =
κ2

Ψ

2ω + 4

2ω + 3
, (8)

β − 1 ≡ κ2

G

dω

dΨ
(2ω + 3)2(2ω + 4)

. 10−4, (9)
γ − 1 ≡ − 1

ω + 2
. 10−5, (10)

Ġ

G
≡ −Ψ̇

2ω + 3

2ω + 4






G +

2
dω

dΨ
(2ω + 3)2






. 10−13 yr−1, (11)suggest the present 
osmologi
al ba
kground value of the s
alar �eld to be very 
loseto the limit (a)�(b). Sin
e in this limit the STG PPN parameters 
oin
ide with thoseof general relativity, we may tentatively 
all (a)�(b) �the limit of general relativity� or�GR point�.Let us de�ne Ψ⋆ by 1

2ω(Ψ⋆) + 3
= 0 . In our previous papers [10�13℄ we studied thelimit (a)�(b) with the simplifying assumptions (
) A⋆ ≡ A(Ψ⋆) 6= 0 and (d) 1

2ω + 3is di�erentiable at Ψ⋆ , whi
h enabled to Taylor expand the fun
tions in Eq. (7) and�nd analyti
 solutions in the phase spa
e for the resulting approximate equation. Theout
ome was that the solutions are well behaved in this limit, motivating the in
lusion of
(Ψ = Ψ⋆, Ψ̇ = Ψ̇⋆ ≡ 0) as a boundary point to the open domain of de�nition of Eq. (7).Moreover, it was possible to identify a wide 
lass of STGs where the FLRW 
osmologi
aldynami
s spontaneously draws the s
alar �eld to this limit, i.e. into agreement with
urrent lo
al weak �eld observations in the Solar System.In what follows, we will 
onsider the era when the 
osmologi
al energy density ofthe s
alar potential dominates over the energy density of ordinary matter, i.e. we 
antake ρ = 0 whi
h is a 
onsiderable simpli�
ation.2. Approximate equationsEquation (7) with ρ = 0 
annot be integrated without spe
ifying the two arbitraryfun
tions ω(Ψ) and V (Ψ) . But being interested in the behaviour of solutions 
lose to



188 L. J�ARV ET AL.the GR point (Ψ⋆ , Ψ̇⋆ ) we 
an still pro
eed by 
onsidering an approximation whi
hmaintains the key properties of the full system near this point. We also assume thatadditional 
onditions (a)�(d) hold; although these assumptions somewhat 
onstrain thepossible forms of ω , we are still dealing with a wide and relevant 
lass of theories.Let us fo
us around the point in the phase spa
e, whi
h 
orresponds to the limit ofGR, Ψ = Ψ⋆+x , Ψ̇ = Ψ̇⋆+y = y , where x and y span the neighbourhood of �rst ordersmall distan
e from (Ψ⋆ , Ψ̇⋆ ). As phase spa
e variables x and y are independent fromea
h other, their ratio y/x is indeterminate at (x = 0 , y = 0). The meaning of thisindetermina
y is perhaps better illuminated in the polar 
oordinates (ρ, θ ), where theradius ρ is a �rst order small quantity, but y/x ≡ tan θ ∈ (−∞,∞) be
omes in�nitelymultivalued at the origin.We 
an Taylor expand
1

2ω(Ψ) + 3
=

1

2ω(Ψ⋆) + 3
+ A⋆x + · · · ≈ A⋆x. (12)Let us denote the values of some fun
tions at (Ψ⋆ , Ψ̇⋆ ) as

C1 ≡ ±
√

3κ2V (Ψ⋆)

Ψ⋆

, C2 ≡ A⋆ W⋆, (13)where W⋆ ≡ W (Ψ⋆) and V (Ψ⋆) ≥ 0 . The three 
onstants A⋆ , W⋆ , C1 determine theleading terms in expansions of the two fun
tions ω(Ψ) , V (Ψ) whi
h spe
ify a STG.Now the expansion of the solution for H of the Friedmann 
onstraint (3) reads
H =

C1

3
− 1

2Ψ⋆

ẋ +
1

2C1Ψ⋆

(

C2
1

3
− C2

2A⋆Ψ⋆

)

x +
1

8C1Ψ⋆A⋆

ẋ2

x
+ · · · (14)This explains the introdu
tion of the ± sign in the de�nition of C1 in Eq. (13), as nearthe GR point (x = 0, y = 0) a positive 
onstant, C1 > 0 , des
ribes an expandingde Sitter Universe, while a negative one, C1 < 0 , des
ribes a 
ontra
ting de SitterUniverse. An expansion of the e�e
tive barotropi
 index whi
h determines the behaviourof dark energy reads

weff ≡ −1 − 2Ḣ

3H2
= −1 +

1

C2
1
Ψ⋆

[

3

2

(

1 +
1

Ψ⋆A⋆

)

ẋ2

x
− 4C1ẋ + 3C2x

]

+ · · · (15)A ne
essary 
ondition for 
rossing the so-
alled phantom divide, weff = −1 , is vanishingof the se
ond term in Eq. (15). This o

urs if ẋ equals to a solution of the 
orrespondingquadrati
 equation
ẋ =

A⋆Ψ⋆

3(1 + A⋆Ψ⋆)

[

C1 ±
√

D
]

x ≡ l±x, D ≡ C2

1 − 9C2

8

(

1 +
1

A⋆Ψ⋆

)

. (16)Here we 
an see a 
ondition on the 
onstants A⋆, Ψ⋆, C1, C2 whi
h 
hara
terize thetheory: l± must be real numbers, i.e. D ≥ 0 . Note that on the plane (x, ẋ) the phantomdivide (16) 
onsists of two straight lines 
rossing at the origin x = 0 , ẋ = 0 .In approximate equations we must re
ognize the term y2/x as being the same orderas x and y . In other words, we 
onsider all �nite values of tan θ , and ex
lude only itsin�nite value on the y -axis whi
h is outside the domain of de�nition of the system assaid before. Thus, keeping the term y2/x in the approximation of Eq. (7) we obtaina se
ond-order nonlinear di�erential equation
ẍ + C1 ẋ − C2 x =

ẋ2

2x
(17)
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orresponding �rst-order system reads
ẋ = y, ẏ =

y2

2x
− C1 y + C2 x. (18)3. Phase traje
toriesThe phase traje
tories for the nonlinear approximate system (18) are determined bythe equation

dy

dx
=

y

2x
− C1 +

x

y
C2. (19)Its solutions

|x|K =

∣

∣

∣

∣

1

2
y2 + C1yx − C2x

2

∣

∣

∣

∣

exp(−C1f(u)), u ≡ y

x
, (20)depend on the sign of the expression C2

1 + 2C2 ≡ C , as the fun
tion f(u) is given by
f(u) =











































1√
C

ln

∣

∣

∣

∣

∣

u + C1 −
√

C

u + C1 +
√

C

∣

∣

∣

∣

∣

if C > 0,

− 2

u + C1

if C = 0,

2
√

|C|

(

arctan
u + C1
√

|C|
+ nπ

)

if C < 0.

(21)
Here K is a 
onstant of integration whi
h identi�es the traje
tory a

ording to initialdata (x0 , y0 ).In general, the right-hand side of Eq. (19) 
an be written as a quotient of twose
ond order homogeneous polynomials; a qualitative 
lassi�
ation of the solutions ofdi�erential equations of this type was given by Lyagina [15℄ long time ago. In a nutshell,the phase portraits for di�erent values of the 
onstants C1 and C2 
lassify a

ording tothe number of se
tors whi
h form on the phase spa
e around the origin (x = 0, y = 0),and the topology of traje
tories whi
h inhabit these se
tors. The se
tors are separatedby the boundary x = 0 and invariant dire
tions. The latter are lines y = kx where the
onstant k is a real solution of an algebrai
 equation

k =
k

2
− C1 +

C2

k
, (22)i.e straight traje
tories y = (−C1±

√
C)x satisfying (19). All possible options are listedin Table 1 and graphi
ally depi
ted in Fig. 1.In our re
ent paper [12℄ we have argued in detail, that the phase portraits of thenonlinear approximation display the same basi
 
hara
teristi
 features we inferredabout the solutions of the full system. First, on the horizontal axis (y = 0) the tan-gents of the traje
tories are verti
ally aligned if C2 6= 0 , and the dire
tion of the �owa
ross y = 0 is determined by the sign of d2x

dy2

∣

∣

∣

y=0

. If C2 = 0 the horizontal axis ispopulated by �xed points. Se
ond, next to the verti
al axis (x = 0) the traje
toriesturn verti
al and do not 
ross or interse
t with the x = 0 , y 6= 0 line, deemed tobe outside of the domain of de�nition of the system. Inspe
tion of the phase portraitsin Fig. 1 at the origin (x = 0, y = 0) where the se
tors meet shows that in all 
ases there



190 L. J�ARV ET AL. Table 1The topology of traje
tories of the nonlinear approximation (19)No. Parameters Topology of traje
tories
C > 0 1.a C1 > 0 C2 > 0 2 hyperb., 2 st. & 2 unst. parab. se
tors1.b C1 > 0 C2 = 0 1 stable & 1 unstable paraboli
 se
tor,2 stable se
tors of degenerate �xed points1.
 C1 > 0 −

C2

1

2
< C2 < 0 2 ellipti
, 4 stable paraboli
 se
tors1.d C1 = 0 C2 > 0 2 hyperb., 2 st. & 2 unst. parab. se
tors1.e C1 < 0 C2 > 0 2 hyperb., 2 st. & 2 unst. parab. se
tors1.f C1 < 0 C2 = 0 1 stable & 1 unstable paraboli
 se
tor,2 unst. se
tors of degenerate �xed points1.g C1 < 0 −

C2
1

2
< C2 < 0 2 ellipti
, 4 unstable paraboli
 se
tors

C = 0 2.a C1 > 0 C2 = −

C2

1

2
2 ellipti
, 2 stable paraboli
 se
tors2.b C1 = 0 C2 = 0 2 stable & 2 unstable paraboli
 se
tors2.
 C1 < 0 C2 = −

C2

1

2
2 ellipti
, 2 unstable paraboli
 se
tors

C < 0 3.a C1 > 0 C2 < −

C2

1

2
2 ellipti
 se
tors3.b C1 = 0 C2 < 0 2 ellipti
 se
tors3.
 C1 < 0 C2 < −

C2

1

2
2 ellipti
 se
torsare multiple traje
tories (identi�ed by di�erent values of K ) whi
h all rea
h the pointin question. The traje
tories �boun
e ba
k� from the origin, so that y 
hanges its signalong a traje
tory in all 
ases, for there is always a 
lass of traje
tories whose tangentis verti
ally aligned at this point. Despite the fa
t that there seems to be a loss ofpredi
tability here (the initial 
ondition x0 = 0 , y0 = 0 does not �x the 
onstant

K uniquely), it would be natural to 
ontinue all su
h traje
tories through this pointkeeping the same K along them. Finally, those traje
tories whi
h rea
h the origin under�nite tan θ must either begin or end their �ow at this point, like it happens at a regular�xed point.To summarize the results, it turns out that the GR point is an attra
tor for theasymptoti
 �ow of all traje
tories only if C1 > 0 and C2 < 0 (
ases 1
, 2a, 3a).If C1 > 0 and C2 = 0 all traje
tories �ow to the line Ψ 6= Ψ⋆ , Ψ̇ = 0 instead (
ase 1b).If C1 = 0 and C2 < 0 all traje
tories loop through the GR point os
illating ba
k andforth (nonlinear 
ase 3b), or if C1 < 0 and C2 < −C1

2
they os
illate further and further(nonlinear 
ase 3
). For the rest of the values of C1 and C2 all traje
tories eventually�ow away from the GR point.
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1.a (1.d) 1.b 1.

1.e (1.d) 1.f 1.g

2.a 2.b 2.

3.a 3.b 3.
Fig. 1. Phase portraits of the nonlinear approximation (19) near the GR point (Axes: x =

= Ψ − Ψ⋆ horizontal and y = Ψ̇ verti
al)4. SolutionsThe general solution of Eq. (17) reads
±x(t) = exp(−C1t)

[

M1 exp

(

1

2
t
√

C2
1

+ 2C2

)

− M2 exp

(

−1

2
t
√

C2
1

+ 2C2

)]2

, (23)



192 L. J�ARV ET AL.where M1 and M2 are arbitrary 
onstants of integration. The solutions are 
lassi�eda

ording to the s
heme given in the previous se
tion, here let us fo
us only on those
ases whi
h approa
h the GR limit asymptoti
ally in time (future).4.1. Exponential solutions. In the 
ase C > 0 solutions read
±x = exp(−C1t)

[

M1 exp

(

1

2
t
√

C

)

− M2 exp

(

−1

2
t
√

C

)]2

. (24)If C1 > 0 and C2 < 0 the solutions exponentially 
onverge to the GR limit, behavingas
±x|t→∞ = exp

(

−(C1 −
√

C)(t − t1)
)

. (25)Here we have denoted the 
onstant of integration as M1 ≡ exp

(

−1

2
t1(

√
C − C1)

) forsome arbitrary moment t1 . All solutions satisfy an asymptoti
 
ondition
ẋ

x

∣

∣

∣

t→∞

=

√
C − C1√

C
. (26)The Hubble parameter reads

H |t→∞ =
C1

3
±

exp
(

−(C1 −
√

C)(t − t1)
)

2Ψ⋆

[

C1 −
√

C

2A⋆Ψ⋆

+
4

3
C1 −

√
C

] (27)and e�e
tive barotropi
 index (15) 
an be 
al
ulated
weff |t→∞ = −1 ±

exp
(

−(C1 −
√

C)(t − t1)
)

C2
1
Ψ⋆

×

×
[

3(C1 −
√

C)2

2A⋆Ψ⋆

+ 4C2

1 + 3C − 7C1

√
C)

]

. (28)Now we 
an determine whether a model in the theory 
hara
terized by distin
t param-eters (C1, C ≡ C2
1 +2C2, A⋆ ) approa
hes the de Sitter spa
etime from the quintessen
eside (weff > −1) or from the phantom side (weff < −1). Approximate expressions ofthe PPN parameters (9), (10) indi
ate that they approa
h the GR values β = 1 , γ = 1exponentially.Solutions (24) may have interesting features at 
ertain �nite moments of time.Firstly, if the theory allows phantom divide, i.e. if l± in Eq. (16) are real numbers,then solutions (24) may 
ross the phantom divide no more than at two moments t± .Se
ondly, at �nite moments tb some solutions 
an a
hieve x(tb) = 0 , ẋ(tb) = 0 depend-ing on values of integration 
onstants M1 , M2 . Phase traje
tories have a verti
al slopethere and 
an be des
ribed as �turning ba
k� if we 
onsider solutions (24) with only onesign (+ or −).4.2. Linear exponential solutions. In the 
ase C = 0 the solutions read

±x = exp (−C1t)

[

exp

(

1

2
C1t1t

)

− M2

]2 (29)with M1 ≡ exp

(

1

2
C1t1

) . If C1 > 0 the solutions exponentially 
onverge to the GRlimit, behaving as
±x|t→∞ = t2 exp (−C1(t − t1)) . (30)
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ase is rather �netuned by the 
ondition C2
1 = −2C2 .4.3. Os
illating solutions. In the 
ase C < 0 the solutions read

±x = exp (−C1t)

[

N1 sin

(

1

2
t
√

|C|
)

− N2 cos

(

1

2
t
√

|C|
)]2

, (31)where N1 , N2 are integration 
onstants. In terms of the phase spa
e (x, ẋ) , solutionsdo not have a de�nite slope at approa
hing asymptoti
ally (t → ∞) to x = 0 , ẋ = 0 .As they spiral to it at t → ∞ their phase traje
tories 
ross this point in�nitely manytimes. The spiral, however, must lie in one half-plane of domain of de�nition, either
x > 0 or x < 0 . Approximate expressions of the PPN parameters (9), (10) now revealdamped os
illatory behaviour around the GR values.If the theory allows 
rossing the phantom divide, i.e. if l± in Eq. (16) are real,then the possible moments t±n of 
rossing o

ur on ea
h winding of the spiral. If l± isimaginary, then the e�e
tive barotropi
 index weff stays below or above −1 .5. Some physi
al 
onsiderationsIn order to su

essfully meet the various observational 
onstraints, the STG s
alar�eld must reside 
lose to the GR point. This o

urs naturally when the GR pointfun
tions as an attra
tor for solutions. Therefore, we have a sele
tion prin
iple: onlysu
h STG theories are viable and worth further 
onsideration, whi
h possess at leastone attra
tive GR point. Our results [10�13℄ allow one to immediately de
ide whetherany STG with parti
ular ω(Ψ) and V (Ψ) is viable or not.For the evolution of the universe in s
alar-tensor 
osmology we may envisage a re-alisti
 s
enario where during the matter domination era the s
alar �eld has alreadydynami
ally relaxed su�
iently 
lose to the GR limit [11℄. Later when the 
osmologi-
al energy density of the potential be
omes more signi�
ant, the solutions given here
an be taken to provide a rough des
ription. The �nal asymptoti
 state will be de Sit-ter, but before that we may witness dark energy with variable weff . Depending on themodel, exponential solutions may 
ross the phantom divide line at most twi
e beforeapproa
hing weff = −1 from either above or below. In the os
illating type of solutionsthe dark energy e�e
tive barotropi
 index os
illates either in the quintessen
e regime(weff > −1), phantom regime (weff < −1), or 
rossing the phantom divide line on
e ortwi
e during ea
h period.As an illustration, Fig. 2 depi
ts the dynami
s of weff = −1 for three example solu-tions in di�erent STG models:

ω(Ψ) =
3Ψ

2(1 − Ψ)
, κ2V (Ψ) =

2

3

[

1 + (1 − Ψ)2
]

, (32)
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ω(Ψ) =
5Ψ

7(1 − Ψ)
, κ2V (Ψ) = 3 exp [3(1 − Ψ)[ , (33)

ω(Ψ) =
Ψ

2(1 − Ψ)
, κ2V (Ψ) = 3 exp [3(1 − Ψ)] . (34)The �rst model belongs to 
lass 1
 and the sample solution shows a monotoni
quintessen
e type 
onvergen
e towards de Sitter. The se
ond model belongs to 
lass 3aand is 
hara
terized by damped os
illations in the quintessen
e regime. The third modelalso belongs to 
lass 3.a but exhibits os
illations through the phantom divide line. Theinitial 
onditions of these solutions have been 
hosen su
h that the 
orresponding PPNparameters are within observationally allowed limits. The evolution is measured in theunits of the analogue of Hubble time, T = H⋆ t =

C1

3
t . We may noti
e that it is pos-sible to have the period of os
illations to be about the same order of magnitude as theage of the Universe.Resear
h is supported by the Estonian S
ien
e Foundation Grant No. 7185 andby Estonian Ministry for Edu
ation and S
ien
e Support Grant No. SF0180013s07.M.S. also a
knowledges the Estonian S
ien
e Foundation Postdo
toral resear
h GrantNo. JD131. �åçþìåË. ßðâ, Ï. Êóóñê, Ì. Ñààë. Ñêàëÿðíî-òåíçîðíûå êîñìîëîãèè ñ ïîòåíöèàëîì â ïðåäåëåîáùåé òåîðèè îòíîñèòåëüíîñòè.�àññìàòðèâàþòñÿ êîñìîëîãè÷åñêèå ìîäåëè �ðèäìàíîâñêîãî (k = 0) òèïà â ðàìêàõñêàëÿðíî-òåíçîðíûõ òåîðèé ãðàâèòàöèè â ïðåäñòàâëåíèè Éîðäàíà ñ äâóìÿ ïðîèçâîëü-íûìè �óíêöèîíàëüíûìè ñòåïåíÿìè ñâîáîäû. Ïðåäëàãàåòñÿ íåëèíåéíîå ïðèáëèæåííîåóðàâíåíèå ñêàëÿðíîãî ïîëÿ äëÿ îïèñàíèÿ ýïîõè, êîãäà ïëîòíîñòü ýíåðãèè ñêàëÿðíîãîïîòåíöèàëà çíà÷èòåëüíî ïðåâûøàåò ýíåðãèþ îáû÷íîé ìàòåðèè, è ìîäåëü ìàëî îòëè÷àåò-ñÿ îò ñîîòâåòñòâóþùåé ìîäåëè îáùåé òåîðèè îòíîñèòåëüíîñòè. �àññìàòðèâàåòñÿ �àçîâîåïðîñòðàíñòâî ñêàëÿðíîãî ïîëÿ, è ïðèâîäèòñÿ ïîëíàÿ êëàññè�èêàöèÿ âîçìîæíûõ �àçî-âûõ ïîðòðåòîâ, à òàêæå ðåøåíèÿ óðàâíåíèÿ ñêàëÿðíîãî ïîëÿ â êîñìîëîãè÷åñêîì âðåìåíèâ îñîáåííîñòè äëÿ ìîäåëåé, àñèìïòîòè÷åñêè áëèçêèõ ñîîòâåòñòâóþùèì ìîäåëÿì îáùåéòåîðèè îòíîñèòåëüíîñòè. Ïîêàçàíî, ÷òî ðåøåíèÿ ìîãóò õàðàêòåðèçîâàòüñÿ êàê ýêñïîíåí-öèàëüíûì ñòðåìëåíèåì ê ñîîòâåòñòâóþùèì ðåøåíèÿì â îáùåé òåîðèè îòíîñèòåëüíîñòè,òàê è çàòóõàþùèìè êîëåáàíèÿìè âîêðóã íèõ.Êëþ÷åâûå ñëîâà: ñêàëÿðíî-òåíçîðíûå êîñìîëîãèè, ïðåäåë îáùåé òåîðèè îòíîñè-òåëüíîñòè, òåìíàÿ ýíåðãèÿ.
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