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1. Последовательность задана рекуррентным соотношением an+1 = an −
b

(an)2
. При каких значениях a1 и b

она ограничена?
Ответ: a1 6= 0, b = 0.
Решение. Если ограничена – тогда, в силу монотонности, сходится. Обозначим предел a∗. Переход к пределу

в рекуррентном соотношении даёт: a∗ = a∗ − b

(a∗)2
. При b 6= 0 такое невозможно.

2. Найти общие касательные параболы y = x2 и окружности x2 + (y + 5)2 = 1.
Ответ: y = ±2

√
2x− 2, y = ±4

√
3x− 12.

Решение. Касательная к параболе в точке (x0, y0) имеет уравнение

y − y0 = 2x0(x− x0) ⇒ 2x0x− y − x20 = 0.

Приравняв расстояние от центра окружности (0,−5) до касательной к параболе радиусу окружности, полу-
чим уравнение

|5− x20|√
4x20 + 1

= 1 ⇒ (5− x20)
2 = 4x20 + 1 ⇒ x40 − 14x20 + 24 = 0.

Это биквадратное уравнение имеет четыре корня: x0 = ±
√

2, x0 = ±
√

12. Каждому корню соответствует
своя касательная.

3. Найдите минимальное значение выражения
√
x2 + u2 + 1 +

√
y2 + v2 + 9 +

√
z2 + w2 + 100 при условиях

x + y + z = 2, u + v + w = 5.
Ответ:

√
22 + 52 + 142 = 15.

Решение. Расположим в R3 точки O(0; 0; 0), A(x;u; 1), B(x+ y; , u+ v; 4), C(x+ y + z = 2;u+ v +w = 5; 14).
Минимизируемое выражение – длина ломаной OABC. Наименьшее значение будет достигаться, когда эта
ломаная является отрезком OC.

4. В линейном пространстве вещественных квадратных матриц порядка 3 найти размерность подпростран-
ства матриц, у которых сумма элементов по всем горизонталям, вертикалям и диагоналям одинакова (3
балла). Выписать базис этого подпространства, каждый элемент которого является симметричной или ко-
сосимметричной матрицей с элементами 0,±1 (4 балла).
Ответ: Размерность подпространства – 3; искомый базис (с точностью до знака перед матрицами):

M1 =

 0 −1 1
1 0 −1
−1 1 0

 , M2 =

1 1 1
1 1 1
1 1 1

 , M3 =

 1 −1 0
−1 0 1
0 1 −1

 .

Решение. Назовём рассматриваемые матрицы магическими. Для любой такой матрицыX =

x1 x2 x3
x4 x5 x6
x7 x8 x9

,

с суммами равными 3s, имеем (x1+x5+x9)+(x2+x5+x8)+(x3+x5+x7)−(x1+x2+x3)−(x7+x8+x9) = 3s,

откуда x5 = s. Вычтя из каждого элемента матрицы X число s, получим матрицу Y =

y1 y2 y3
y4 0 y6
y7 y8 y9

,

являющуюся магической с нулевыми суммами. Пусть y1 = a, y3 = b. Тогда Y =

 a −a− b b
b− a 0 a− b
−b a + b −a

, а в

X все элементы больше на s. Отсюда размерность подпространства магических матриц равна 3.
Если магическая матрица кососимметрична, то, очевидно, s = 0, a = 0 и, значит, любая такая матрица
пропорциональна M1. Если же магическая матрица симметрична, то b = 0. Множество E элементов такой
матрицы — набор различных чисел из s, s− a, s + a. Поскольку E ⊆ {−1, 0, 1}, то либо a = 0, либо s = 0.
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Замечание: Классический магический квадрат 3 на 3, составленный из цифр {1, . . . , 9}, разлагается по этому
базису либо как ±M1 + 5M2 ± 3M3, либо как ±3M1 + 5M2 ±M3.
Согласно воспоминаниям А.В.Конторовича, автором данной задачи является Д.Х.Конвей, он предлагал за-
дачу ученикам в курсе изучения линейной алгебры.

5. Настольная игра состоит из поля с упорядоченным набором позиций 0, 1, 2, . . . , 25, фишки и игральной
кости с числами на гранях от 1 до 6. Изначально фишка находится в позиции 0. Игра состоит в последо-
вательном бросании игральной кости и передвижении фишки вперед на соответствующее число позиций до
тех пор, пока фишка не выйдет за пределы поля. До начала игры Петя отмечает одну позицию с номером
n > 1. Петя считается победителем в игре, если фишка окажется на отмеченной позиции после какого-нибудь
броска кости. Какой номер n следует выбрать Пете, чтобы максимизировать свои шансы на победу?

(Абзалилов Д.Ф.)
Ответ: n = 6.
Решение. Пусть pn – вероятность того, что в процессе игры фишка окажется на поле n. Заметим, что
для n > 6 по формуле полной вероятности pn равно среднему арифметическому значений предыдущих

шести позиций: pn =
1

6

6∑
k=1

pn−k. Эта формула также будет работать и для n 6 6, если положить p0 = 1,

p−1 = p−2 = . . . = p−5 = 0.
Согласно этой формулы, последовательность {pn} возрастает при n 6 6: p1 = 1

6 , p2 = 7
6p1, . . . , p6 = 7

6p5.
Для n > 6, по свойству среднего арифметического, значение pn окажется меньшим, чем наибольшее число
из предыдущих шести.

6. При всех n ∈ N сравнить значения S1(n) = 1 − 1
2! + 1

3! − . . . + (−1)n+1

n! и S2(n) = Fn
Fn+1

, где Fn – n-е число
Фибоначчи.

(Лернер Э.Ю.)
Ответ: S1(n) = S2(n) при n = 1, 2, 3; S1(n) > S2(n) при n > 3.
Решение. В справедливости ответа при n = 1, 2, 3, 4 можно убедиться прямым вычислением. Очевидно что
S1(n)

n→∞−−−→ 1 − 1
e > 1 − 1

2.71 > 0.63. Отношение значений соседних чисел Фибоначчи стремится к золотому
сечению, поэтому S2(n)

n→∞−−−→
√
5−1
2 < 0.62. Кроме того, имеем

S2(n)− S2(n− 1) =
F 2
n − Fn−1Fn+1

Fn+1Fn
=

(−1)n+1

FnFn+1
, т.е. S2(n) =

n∑
i=1

(−1)i+1

FiFi+1
.

Частичная сумма знакочередующегося ряда с монотонно стремящемся к нулю модулем общего члена отли-
чается от своего предела не более чем на следующий член ряда, при этом отклонение имеет тот же знак,
что и следующий член. Поэтому при n > 5 имеем

S1(n)− S2(n) > lim
n→∞

(S1(n)− S2(n))− 1

F6F7
> 0.01− 1

8 · 13
> 0.

7. а) Найти все такие a ∈ C, для которых существуют комплексные 5×5 матрицыX, Y такие, чтоXY = aY X
и XY 6= 0 (2 балла).
б) Решить эту же задачу при дополнительном требовании невырожденности матриц X и Y (5 баллов).

(Тапкин Д.Т.)
Решение. Решим задачу для квадратных матриц произвольного порядка n > 1.
а) Уравнение разрешимо при любых ненулевых a. Для матриц второго порядка в качестве решения можно

взять, например, X =

(
1 0
0 a−1

)
и Y =

(
0 1
0 0

)
. Для матриц большего размера остальные ячейки можно

заполнить нулями.
б) Так как совпадают определители det(XY ) = det(aY X) 6= 0, получаем an = 1. Покажем, что для любого

корня степени n из 1 такие матрицы существуют. Действительно, например,X =


1 0 0 . . . 0
0 a 0 . . . 0
0 0 a2 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . an−1


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и Y =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0

, т.е. X это диагональная матрица, со степенями a, а Y это матрица для

циклической перестановки строк (единицы под главной диагональю и на пересечении первой строки и по-
следнего столбца).

8. Доказать, что любое c ∈ Z можно представить в виде c = 2026a + b, где a, b ∈ Z и b1013 − b делится на
20262.

(Абызов А.Н., Лернер Э.Ю., Ямалеев М.М.)
Решение. Очевидно, что c можно представить как c = 2026x + y, где x, y ∈ Z. При этом r = y1013 − y в
силу четности и справедливости малой теоремы Ферма делится на 2026. Пусть r = 2026n. При нечетном y
из соотношения r = y(y506 − 1)(y506 + 1) следует делимость r на 4, поэтому в этом случае n — четно.
Положим b = y + 2026n. Имеем (как для чётных, так и нечётных y):

b1013 = (y + 2026n)1013 = y1013 + 1013 · 2026ny1012 + . . . ≡20262 y1013 = y + 2026n.

Поэтому b1013 − b будет делиться на 20262. В качестве a в этом случае выступает x− n.
Замечание: Основная идея решения этой задачи такая же, как в доказательстве частного случая m = 2
следующего утверждения: любой элемент кольца Zpm может быть представлен как сумма a+b, где p – простое
число, a является нильпотентным элементом кольца Zpm , а bp = b. Соответственно, случай m = 1 даёт малую
теорему Ферма. Другая более известная форма того же утверждения в других терминах: уравнение xp = x
имеет p решений в целых p-адических числах.

9. Гиперповерхность второго порядка Φ = {(x, y, z, w) ∈ R4|x2 + y2 + z2 − w2 = 1} в пространстве R4 рас-
сматривается как топологическое пространство с индуцированной топологией. Доказать, что пространство
Φ гомеоморфно некоторому открытому связному подмножеству в R3 .

(Шурыгин В.В.)
Решение. Отображение

Φ 3 (x, y, z, w) 7→ (x/
√

1 + w2, y/
√

1 + w2, z/
√

1 + w2, w)

отображает гиперповерхность Φ гомеоморфно на цилиндр {(x, y, z, w) ∈ R4|x2 + y2 + z2 = 1}, который в
свою очередь гомеоморфен цилиндру Ψ = {(x, y, z, w) ∈ R4|x2 + y2 + z2 = 1, 0 < w < 1}. Проекция из
точки (0, 0, 0, 2) на 3-плоскость в R4 с уравнением w = 0 отображает цилиндр Ψ гомеоморфно на множество
{(x, y, z) ∈ R3|1 < x2 + y2 + z2 < 4}.

10. Покупатель выбирал себе две дыни из пяти имеющихся, причём суммарный вес этих пяти дынь составлял
17 кг. Взвесив пять различных пар дынь (одна дыня может входить в несколько пар), покупатель получил
веса в 3, 5, 7, 9 и 11 кг. Какой вес мог быть у каждой из пяти дынь в отдельности? Найти все возможные
решения в положительных вещественных числах.

(Калимуллин И.Ш.)
Ответ: Целочисленные решения: (1, 2, 3, 5, 6) и (1, 2, 3, 4, 7), дробные решения: (0.5, 2.5, 3, 4.5, 6.5) и (0.5,
1, 2.5, 4.5, 8.5)
Решение. Задачу можно решить аккуратным перебором всех возможных систем 6-и линейных уравнений
с 5-ю неизвестными, имеющих решения в положительных вещественных числах.
Перебор можно упростить, пользуясь элементарной теорией графов. Пусть вершины графа – дыни, их ко-
личество равно 5. Пусть ребра простого графа связывают пары дынь, которые взвешивались покупателем,
число таких ребер также равно 5. Весом ребра будем называть суммарный вес его концов, то есть ребра
графа имеют веса 3, 5, 7, 9 и 11, причем суммарный вес всех вершин равен 17.
В графе с 5-ю вершинами и 5-ю ребрами всегда имеется цикл. Выберем среди всех циклов этого графа цикл
наибольшей длины. Докажем, что длина этого цикла четна (то есть равна 4). Пусть наоборот, цикл имеет
нечётную длину (3 или 5). Тогда граф должен быть связным. Следовательно, если у какой-то вершины
дробная часть веса равна x, 0 < x < 1, то у остальных вершин дробная часть веса должна будет равна x или
1−x. Из-за имеющегося цикла нечётной длины это возможно лишь при x = 0.5. Но тогда суммарный вес всех
пяти вершин будет иметь дробную часть 0.5, что не возможно. Значит все вершины имеют целочисленный
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вес. Но тогда суммарный вес ребер в цикле нечётной длины будет с одной стороны нечётным числом (3, 5,
7, 9 и 11 нечётны), а с другой стороны будет равен удвоенной сумме весов входящих в цикл вершин, то есть
чётному числу.
Полученное противоречие убеждает нас в том, что в графе имеется цикл длины 4. В нем суммы весов любых
двух противоположных ребер равны сумме весов всех вершин, входящих в этот цикл. Исходя из имеющихся
пяти значений весов ребер, возникают только следующие случаи.
Случай 1. Ребра цикла имеют веса 3, 5, 9, 7 (в порядке обхода цикла). Тогда оставшееся ребро имеет вес 11,
а оставшаяся вершина имеет вес 17 − (3 + 9) = 17 − (5 + 7) = 5. В этом случае нетрудно проверить, что
вершина веса 5 не может быть изолированной. Поэтому этот случай порождает единственное решение (1, 2,
3, 5, 6).
Случай 2. Ребра цикла имеют веса 3, 5, 11, 9. Тогда оставшееся ребро имеет вес 7, а оставшаяся вершина
имеет вес 17 − (3 + 11) = 17 − (5 + 9) = 3. Этот случай порождает целочисленное решение (1, 2, 3, 4, 7) и
дробное решение (0.5, 2.5, 3, 4.5, 6.5). Последний вариант возникает при рассмотрении несвязного графа с
одной изолированной вершиной веса 3.
Случай 3. Ребра цикла имеют веса 5, 7, 11, 9. Тогда оставшееся ребро имеет вес 3, а оставшаяся вершина
имеет вес 17 − (5 + 11) = 17 − (7 + 9) = 1. Этот вариант порождает уже полученные ранее целочисленные
решения (1, 2, 3, 5, 6) и (1, 2, 3, 4, 7), а также новое дробное решение (0.5, 1, 2.5, 4.5, 8.5). Наличие повторных
целочисленных решений объясняется двумя возможными ребрами веса 7 = 2+5 = 1+6 и веса 5 = 2+3 = 1+4.

11. Пусть A′, B′ и C ′ – внутренние точки сторон BC, CA и AB треугольника ABC соответственно. Доказать,
что эллипс, касающийся сторон треугольника ABC в точках A′, B′ и C ′ существует тогда и только тогда,
когда прямые AA′, BB′ и CC ′ пересекаются в одной точке.

(Шурыгин В.В.)
Решение. 1) Пусть такой эллипс существует. Тогда выполним аффинное преобразование плоскости, при
котором этот эллипс перейдет в окружность.
Для простоты сохраним обозначения для вершин и точек, заданных на сторонах преобразованного треуголь-
ника ABC.
Из равенства касательных к окружности, проведённых из одной точки, имеем: AC ′ = AB′, BA′ = BC ′ и

CA′ = CB′, откуда следует, что
AB′

B′C
· CA′

A′B
· BC ′

C ′A
= 1 и, следовательно, по теореме Чевы прямые AA′, BB′

и CC ′ пересекаются о одной точке.
2) Пусть прямые AA′, BB′ и CC ′ пересекаются в одной точке O. Выполним проективное преобразование, при
котором точки A, B и C становятся вершинами правильного треугольника, O точкой пересечения медиан,
а точки A′, B′ и C ′ серединами сторон BC, CA и AB.
Окружность, вписанная в преобразованный треугольник, при обратном проективном преобразовании пере-
ходит в невырожденную кривую второго порядка, касающуюся сторон треугольника ABC в точках A′, B′ и
C ′. Эта кривая не может быть ни параболой, ни гиперболой. Действительно, парабола или ветвь гиперболы,
касающаяся сторон треугольника в точках B′ и C ′ целиком расположена в угле между лучами AB′ и AC ′,
поэтому сторона BC будет пересекать параболу или указанную ветвь гиперболы.
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