УЧЕНЫЕ ЗАПИСКИ КАЗАНСКОГО УНИВЕРСИТЕТА. СЕРИЯ ЕСТЕСТВЕННЫЕ НАУКИ

2019, Т. 161, кн. 2 С. 222–230

ISSN 2542-064X (Print) ISSN 2500-218X (Online)

УДК 544.6+547-304.2

doi: 10.26907/2542-064X.2019.2.222-230

ЭЛЕКТРОХИМИЧЕСКОЕ АМИНИРОВАНИЕ *п*-ХЛОРАНИЛИНА

Ю.А. Лисииын

Казанский (Приволжский) федеральный университет, г. Казань, 420008, Россия

Аннотация

В водных растворах $9-17~M~H_2SO_4$ изучен процесс катион-радикального аминирования n-хлоранилина с помощью гидроксиламина и медиаторной системы Ti(IV)/Ti(III). Продуктами замещения в данных средах являются 4-хлор-1,3- и 4-хлор-1,2-фенилендиамины, а также n-фенилендиамин. Повышение концентрации кислоты сопровождается возрастанием общей эффективности электрохимического процесса при снижении выходов по току двух последних диаминосоединений. В $17~M~H_2SO_4$ выход и массовая доля 4-хлор-1,3-фенилендиамина достигают соответственно 75.2~u~99.7%.

Ключевые слова: катод, медиаторная система Ti(IV)/Ti(III), гидроксиламин, *пара*-хлоранилин, катион-радикальное ароматическое замещение, 4-хлор-1,3-фенилендиамин

Введение

Химический вариант катион-радикального аминирования ароматических субстратов с помощью систем, содержащих гидроксиламин и соединения переходных металлов, дает в качестве основных продуктов замещения соответствующие моноаминосоединения [1–6]. Их выходы по источнику аминорадикалов, как правило, невысоки вследствие одновременного протекания процессов как его восстановления, так и окисления компонентами редокс-систем. При использовании же пары Ti(IV)/Ti(III), окисленная форма которой не окисляет NH_2OH в сернокислых средах [7], на первый план выступает проблема разбавления эмульсии или раствора субстрата водой, вносимой с коммерческим кислым водным раствором Ti(III) в ходе эксперимента. Разбавление приводит к возрастанию доли аминильных радикалов, исчезающих в конкурентной аминированию реакции образования аммиака (аммония):

$$\stackrel{\bullet}{\text{NH}_2} + \text{Ti(III)} \xrightarrow{\text{H}^+} \text{NH}_3 + \text{Ti(IV)}.$$
(1)

Упомянутая проблема отсутствует в электрохимической версии аминирования — катодное генерирование Ti(III) из Ti(IV) позволяет использовать незначительные фиксированные количества медиатора и не изменять состав реакционной среды. В электрохимических процессах повышение содержания воды в католите является исключительно следствием восстановления гидроксиламина титаном(III). Этот факт дает возможность проводить исследования во всем диапазоне концентраций серной кислоты и получать ароматические не только моно-, но и диаминосоединения, являющиеся конечными продуктами замещения [7].

К настоящему времени вопрос электросинтеза фенилендиаминов затронут только в работах [8–11]. Региоселективность введения второй аминогруппы в ароматические кольца анилинов интерпретируется в них с позиций существования в сернокислых средах молекулярных ассоциатов $ArNH_2 \cdot HSO_4$, а также связанных и не связанных в ионные пары с гидросульфат-ионами катионов $ArNH_3^+$.

Ароматические кольца ассоциатов $ArNH_2 \cdot HSO_4^-$, возникающих в результате взаимодействия катионов $ArNH_3^+$ с сульфат-ионами, активированы по отношению к электрофильным реагентам, и региоселективность катион-радикальной функционализации определяется аминогруппами [12]. В парах $ArNH_3^+$, HSO_4^- кольца дезактивированы в меньшей степени, чем в ионах анилиниев, поскольку из-за влияния анионов HSO_4^- воздействие NH_3^+ -групп проявляется преимущественно лишь через эффект поля [13]. В частицах $ArNH_3^+$, HSO_4^- аммониевые группы дезактивируют соседние с ними положения колец, а за региоселективность замещения в другие положения отвечают главным образом вторые заместители.

С учетом зависимости результатов функционализации анилина [8] и *п*-анизидина [9, 11] от концентрации серной кислоты с целью оценки влияния дезактивирующего заместителя в кольце анилина на региоселективность замещения в средах с различной протогенной активностью в настоящей работе изучен процесс электрохимического аминирования *п*-хлоранилина в водных растворах 9–17 М H₂SO₄.

Экспериментальная часть

Аминирование *п*-хлоранилина выполняли в стеклянной электрохимической ячейке с разделенными керамической диафрагмой катодным и анодным пространствами. Конструкция нашей ячейки [8], снабженной рубашкой для термостатирования, обратным холодильником, капилляром Луггина и капилляром для пропускания инертного газа, позволяла использовать как платиновый (8.2 см²), так и ртутный (12.3 см²) электроды при неизменной площади последнего в условиях интенсивного перемешивания электролита с помощью магнитной мешалки.

Католит, водный раствор объемом 25 мл, содержал 0.25 М Ti(IV), 0.2 М NH_2OH , 0.1 М n-хлоранилина и требуемую концентрацию H_2SO_4 . Перед электролизом католит в течение 30 мин дезаэрировали потоком аргона, пропущенным предварительно через склянку Дрекселя с водным раствором серной кислоты исследуемой концентрации. После прогрева раствора до 40 °C проводили электролиз, аргон при этом пропускали над электролитом.

Перед каждым электролизом платиновый электрод промывали ацетоном и водой и подвергали анодно-катодной поляризации при силе тока ± 0.5 А в растворе H_2SO_4 рассматриваемой концентрации. Такая обработка электрода обеспечивала воспроизводимость изменения его потенциала в ходе эксперимента. Анодом служил электрод из платинированной платины, анолитом — водный раствор H_2SO_4 , имеющий аналогичную с католитом концентрацию.

Функционализацию *п*-хлоранилина проводили при плотности тока –4 мА/см², задаваемой посредством потенциостата-гальваностата IPC-Pro MF (Вольта, Россия) или Autolab PGSTAT 302N (Metrohm, Нидерланды). Изменение потенциала

катода в процессе электролиза контролировали относительно хлоридсеребряного электрода.

По окончании электролиза католит перемешивали в ячейке еще в течение 10 мин. Затем разбавляли холодной водой до концентрации H_2SO_4 1.0-1.5 М и нейтрализовали последовательной обработкой насыщенным водным раствором NaOH (охлаждая) и $NaHCO_3$.

Аминосоединения экстрагировали бензолом [14, 15], концентрировали отгонкой растворителя в вакууме с помощью роторного испарителя RE-52AA (LEKI, Финляндия) и анализировали методом газожидкостной хроматографии, используя хроматограф Хроматэк-Кристалл 5000.2 (Хроматэк, Россия) с пламенно-ионизационным детектором и капиллярными колонками SP-Sil 8 CB и BPX35 (60 м × 0.25 мм × 0.25 мкм). Температура колонок и давление гелия, газаносителя, составляли соответственно 160 °C и 200 кПа.

В работе использовали 15%-ный раствор сернокислого титана(IV) в водной 4 М H_2SO_4 (ч.д.а.); H_2SO_4 (х.ч.); перекристаллизованный в воде сульфат гидроксиламина (Acros, 99%); перегнанные ацетон (ч.д.а.) и бензол (х.ч.); NaOH (ч.д.а); NaHCO₃ (х.ч.); сульфат *n*-хлоранилиния, полученный из перегнанного в вакууме над KOH (Acros, for analysis, 85%) *n*-хлоранилина (Lancaster, 98%); сублимированные в вакууме *n*-фенилендиамин (ч.), 4-хлор-1,2- и 4-хлор-1,3-фенилендиамины (Aldrich, 97%); ртуть (P0), очищенную одновременной обработкой кислородом воздуха и 10%-ным водным раствором перегнанной HNO₃ (х.ч.); бидистиллированную воду.

Результаты и их обсуждение

При выборе n-хлоранилина в качестве объекта исследования исходили из соображений аналогии ориентирующего влияния метоксигруппы и атома хлора, а следовательно, корректности сравнительного анализа процессов с участием анилинов, имеющих в кольце активирующий или дезактивирующий заместитель. В расчет принимались также стабильность данного субстрата в средах с высоким содержанием H_2SO_4 и то, что функционализация и связанных, и не связанных в ионные пары ионов n-хлоранилиния должна приводить к образованию одного и того же продукта — 4-хлор-1,3-фенилендиамина (4-Cl-1,3-ФДА). В первом приближении аминирование n-хлоранилина на примере его катионной формы можно представить схемой 1.

За основу эксперимента взяли условия, использованные в работе [8]. Однако, принимая во внимание цепной механизм электрохимического процесса (Ti(III) генерируется не только на катоде, но и в объеме католита), для снижения скорости реакции (1) электролизы системы $Ti(IV) - NH_2OH - n$ -хлоранилин выполняли при меньшей катодной плотности тока. При выборе нижней границы исследуемых концентраций H_2SO_4 учитывали тот факт, что при функционализации анилина в растворах 9–11 М кислоты аминокатион-радикалы взаимодействуют практически лишь с высокореакционноспособными частицами $C_6H_5NH_2\cdot HSO_4$, а M-фенилендиамин, образующийся из связанных и не связанных в ионные пары катионов анилиния, вновь появляется только в более кислых растворах [8]. Количество электричества, потребляемое в ходе электролиза (250 Кл), составляло, как и в работе [8], немногим более 50% от величины 482.4 Кл, теоретически

Ті(ІІІ)
$$H^+$$
 NH_2OH H^+ NH_3OH NH_2OH NH_2OH NH_2OH NH_2OH NH_3OH NH_4OH NH_4OH

необходимой для полной выработки гидроксиламина из расчета потребления одного электрона на его молекулу. Мерой эффективности электрохимического процесса служил выход по току (ВТ) продуктов аминирования хлоранилина.

Электролизы системы $Ti(IV) - NH_2OH - n$ - $ClC_6H_4NH_2$, выполненные в 9 и 11 М H_2SO_4 , показали, что появление атома хлора в ароматическом кольце анилина сопровождается сужением области концентраций кислоты, пригодной для функционализации субстрата при использовании как ртутного, так и платинового катодов.

В отличие от анилина [8] и изомерных анизидинов [11] n-хлоранилин способствует окислению ртути титаном(IV), например, по реакции (2):

$$Ti(IV) + Hg(0)$$
 \longrightarrow $Ti(III) + Hg(I)$ (2)

Поверхность электрода покрывается серым налетом сульфата ртути уже в 9 М H_2SO_4 , и электролиз протекает при потенциалах электрохимического восстановления ионов гидроксония (точнее частиц $H_5O_2^+$ [16]). Повышение окислительного потенциала Ti(IV) связано, очевидно, с участием ионов n-хлоранилиния в процессах комплексообразования с ионами титана.

Замена ртутного электрода платиновым не устраняет проблему выделения водорода. В присутствии n-хлоранилина процесс восстановления ионов гидроксония в данных средах является, по-видимому, электрокаталитическим [17]. Если при аминировании анилина выделение водорода, начинающее интенсивно протекать на платиновом катоде при потенциалах около -0.2 В, наблюдается в растворах с концентрацией H_2SO_4 менее 7 М [8], то при функционализации n-хлоранилина, даже при меньшей катодной плотности тока, водород образуется и в 11 М кислоте (рис. 1).

Продуктами аминирования n-хлоранилина в растворах 9–11 М H_2SO_4 являются 4-Cl-1,3- Φ ДА, 4-Cl-1,2- Φ денилендиамин (4-Cl-1,2- Φ ДА) и n-фенилендиамин (1,4- Φ ДА). Образование 4-Cl-1,2- Φ ДА связано, очевидно, с наличием в данных средах ассоциатов n-ClC $_6H_4NH_2$ ·HSO $_4$, n-фенилендиамина — с unco-замещением атома хлора [12, 13]. Вследствие реализации процесса электрохимического выделения водорода общая эффективность аминирования n-хлоранилина в этих условиях не превышает 3.5% (табл. 1).

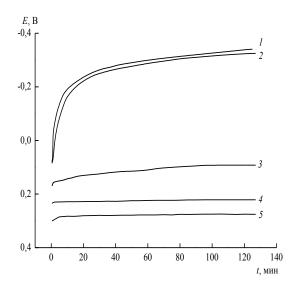


Рис. 1. Изменение потенциала платинового катода в процессе аминирования n-хлоранилина в 9 (1), 11 (2), 13 (3), 15 (4) и 17 М $\mathrm{H}_2\mathrm{SO}_4$ (5)

Табл. 1 Влияние материала катода и концентрации ${\rm H_2SO_4}$ на результаты электрохимического аминирования n-хлоранилина

	•				
Электрод	$c^{\mathrm{H_2SO_4}}$, M	BT, %			Массовая доля
		1,4-ФДА	4-Cl-1,2-ФДА	4-Cl-1,3-ФДА	4-Cl-1,3-ФДА, %
Hg	9*	0.10	1.6	1.8	51.8
	11*	0.07	0.99	2.4	69.7
Pt	9*	0.22	0.28	0.24	34.9
	11*	0.23	0.31	0.28	36.6
	13	0.84	8.4	8.0	47.0
	14	0.59	3.3	17.5	82.4
	15	0.46	1.0	34.6	96.2
	16	0.39	0.02	54.2	99.4
	17	0.33	0.00	75.2	99.7

^{*} Электролиз протекает при потенциалах электрохимического выделения водорода.

Различие соотношений выходов 4-Cl-1,3-ФДА и 4-Cl-1,2-ФДА, наблюдаемое при смене материала катода (табл. 1), связано с реализацией на поверхности ртути реакции типа (2), приводящей к появлению Ti(III) и в отсутствие тока, то есть в экспериментах с применением ртутного электрода идут процессы как электрохимического, так и химического аминирования n-хлоранилина. Составы комплексов титана, участвующих в этих процессах, по-видимому, несколько отличны, что и находит отражение в селективности замещения. Отметим, что схожая картина наблюдалась ранее [18] при аминировании анизола в водном растворе 14.6 M H_2SO_4 в случае использования ртути в отсутствие и в присутствии тока.

Как и ожидалось, повышение концентрации H_2SO_4 сопровождается возрастанием общей эффективности электрохимического процесса при уменьшении ВТ 4-Cl-1,2- Φ ДА и увеличении выхода 1,3-изомера (табл. 1). В растворе 17 М кислоты 4-Cl-1,2- Φ ДА уже не образуется, а массовая доля 4-Cl-1,3- Φ ДА достигает

99.7%, единственным побочным продуктом аминирования является 1,4-ФДА. Общий выход 4-Cl-1,3-ФДА и n-фенилендиамина по n-хлоранилину является количественным. Отсутствие 4-Cl-1,2-ФДА свидетельствует о том, что в 17 М $\rm H_2SO_4$ атаке аминокатион-радикалов подвергаются исключительно связанные и не связанные в ионные пары катионы n-ClC₆ $\rm H_4NH_3^+$; в парах n-ClC₆ $\rm H_4NH_3^+$, $\rm HSO_4^-$ ориентация замещения определяется преимущественно атомом хлора, поскольку, как уже упоминалось, воздействие аммониевой группы на ароматическое кольцо в значительной степени подавлено гидросульфат-ионом.

Сопоставляя влияние атома хлора и метоксигруппы, дезактивирующего и активирующего заместителей, на соотношение концентраций ассоциатов и ионных пар соответствующих n-замещенных анилинов, можно отметить, что метоксигруппа за счет подачи электронной плотности на ароматическое кольцо повышает энергию связей в аммониевой группе и способствует существованию параанизидина в сернокислых средах главным образом в виде ионных пар [9-11]. Вследствие чего при его аминировании в 10 М H₂SO₄ основным продуктом замещения, образующимся с ВТ 64.3%, является 4-метокси-1,3-фенилендиамин, выход 4-метокси-1,2-фенилендиамина, продукта функционализации высокореакционноспособных ассоциатов молекулярного n-анизидина, составляет всего 0.46% [9, 11]. При аминировании же n-хлоранилина в этих условиях выходы 4-Cl-1,3-ФДА и 4-Cl-1,2-ФДА сопоставимы (табл. 1). Данный результат можно объяснить тем, что атом хлора, оттягивая на себя электронную плотность с ароматического кольца п-хлоранилиния, ослабляет энергию связей в аммониевой группе и способствует тем самым отрыву от нее протона сульфат-ионом, то есть по сравнению с *n*-анизидином *n*-хлоранилин более склонен к образованию молекулярных ассоциатов.

Таким образом, если аминирование n-анизидина протекает селективно до 4-метокси-1,3-фенилендиамина и в разбавленных растворах H_2SO_4 [10, 11], то высокоселективный синтез 4-Cl-1,3-ФДА из n-хлоранилина возможен только в средах с высоким содержанием кислоты.

Благодарности. Работа выполнена за счет средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров, а также при финансовой поддержке Российского фонда фундаментальных исследований (проект № 16-03-01061).

Литература

- 1. *Minisci F*. Novel Applications of free-radical reactions in preparative organic chemistry // Synthesis. 1973. No 1. P. 1–24. doi: 10.1055/s-1973-22123.
- Citterio A., Gentile A., Minisci F., Navarrini V., Serravalle M., Ventura S. Polar effects in free radical reactions. homolytic aromatic amination by the amino radical cation, "NH₃: Reactivity and selectivity // J. Org. Chem. 1984. V. 49, No 23. P. 4479–4482. doi: 10.1021/jo00197a030.
- 3. *Kuznetsova N.I., Kuznetsova L.I., Detusheva L.G., Likholobov V.A., Pez G. P., Cheng H.* Amination of benzene and toluene with hydroxylamine in the presence of transition metal redox catalysts // J. Molec. Catal. A: Chem. 2000. V. 161, No 1–2. P. 1–9. doi: 10.1016/S1381-1169(00)00206-5.

- 4. Zhu L.F., Guo B., Tang D.Y., Hu X.K., Li G.Y., Hu C.W. Sodium metavanadate catalyzed one-step amination of benzene to aniline with hydroxylamine // J. Catal. 2007. V. 245, No 2. P. 446–455. doi: 10.1016/j.jcat.2006.11.007.
- 5. *Parida K.M., Dash S.S., Singha S.* Structural properties and catalytic activity of Mn-MCM-41 mesoporous molecular sieves for single-step amination of benzene to aniline // Appl. Catal. A: General. 2008. V. 351, No 1. P. 59–67. doi: 10.1016/j.apcata.2008.08.027.
- 6. Singha S., Parida K.M. A reusable Mn(II)-dampy-MCM-41 system for single step amination of benzene to aniline using hydroxylamine // Catal. Sci. Technol. 2011. V. 1, No 8. P. 1496–1505. doi: 10.1039/c1cy00247c.
- 7. *Лисицын Ю.А., Каргин Ю.М.* Электрохимическое аминирование непредельных и ароматических соединений // Электрохимия. 2000. Т. 36, № 2. С. 103–114.
- 8. *Лисицын Ю.А., Макарова О.Н., Каргин Ю.М.* Электрохимическое аминирование. VII. Введение аминогруппы в ароматическое кольцо // Журн. общ. химии. 1999. Т. 69, Вып 2. С. 286–290.
- 9. *Лисицын Ю.А., Сухов А.В.* Селективное аминирование анилинов, содержащих в четвертом положении *орто-пара*-ориентирующие заместители, до соответствующих 1,3-фенилендиаминов // Журн. орган. химии. 2015. Т. 51, Вып. 3. С. 452–453.
- 10. *Лисицын Ю.А., Сухов А.В.* Электрохимическое аминирование. Селективное введение двух аминогрупп в ароматическое кольцо // Журн. общ. химии. 2017. Т. 87, Вып. 1. С. 20–25.
- 11. *Лисицын Ю.А., Сухов А.В.* Электрохимическое аминирование. Селективная функционализация *пара* и *орто*-анизидинов в водных растворах серной кислоты // Электрохимия. 2019. Т. 55, № 1. С. 125–128.
- 12. Ингольд К. Теоретические основы органической химии. М.: Мир, 1973. 1055 с.
- 13. Сайкс П. Механизмы реакций в органической химии. М.: Химия, 1991. 448 с.
- 14. *Коренман И.М.* Экстракция в анализе органических веществ. М.: Химия, 1977. 200 с.
- 15. *Коренман И.М.* Константы распределения органических веществ между двумя жидкими фазами. Горький: Изд-во Горьк. гос. ун-та, 1979. Вып. 5. 72 с.
- 16. *Либрович Н.Б.*, *Майоров В.Д*. Ионно-молекулярный состав водных растворов серной кислоты при 25 °C // Изв. АН. СССР. Сер. Хим. 1977. Т. 26, № 3. С. 684–687.
- 17. Дамаскин Б.Б., Некрасов Л.Н., Петрий О.А., Подловченко Б.И., Стенина Е.В., Федорович Н.В. Электродные процессы в растворах органических соединений. М.: Изд-во Моск. ун-та, 1985. 312 с.
- 18. *Лисицын Ю.А., Каргин Ю.М.* Электрохимическое аминирование. II. Влияние кислотности электролита // Журн. общ. химии. 1993. Т. 63, Вып. 6. С. 1312–1317.

Поступила в редакцию 11.04.19

Лисицын Юрий Анатольевич, кандидат химических наук, доцент кафедры физической химии, старший научный сотрудник лаборатории синтетических физиологически активных веществ

Казанский (Приволжский) федеральный университет ул. Кремлевская, д. 18, г. Казань, 420008, Россия E-mail: *Yuri.Lisitsyn@kpfu.ru*

ISSN 2542-064X (Print) ISSN 2500-218X (Online)

UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA. SERIYA ESTESTVENNYE NAUKI

(Proceedings of Kazan University. Natural Sciences Series)

2019, vol. 161, no. 2, pp. 222-230

doi: 10.26907/2542-064X.2019.2.222-230

Electrochemical Amination of para-Chloroaniline

Yu.A. Lisitsyn

Kazan Federal University, Kazan, 420008 Russia E-mail: Yuri.Lisitsyn@kpfu.ru

Received April 11, 2019

Abstract

The process of cation-radical amination of *para*-chloroaniline using hydroxylamine and the Ti(IV)/Ti(III) mediator system was studied in aqueous solutions of 9–17 M H₂SO₄. The substitution products in these media are 4-chloro-1,3-, 4-chloro-1,2-phenylenediamines, as well as *para*-phenylenediamine. An increase in the acid concentration was accompanied by a raise in the overall efficiency of the electrochemical process with a decrease in the current yields of the last two diamino compounds. In 17 M H₂SO₄, the yield and mass fraction of 4-chloro-1,3-phenylenediamine reached 75.2 and 99.7%, respectively.

Keywords: cathode, Ti(IV)/Ti(III) mediator system, hydroxylamine, *para*-chloroaniline, cation-radical aromatic substitution, 4-chloro-1,3-phenylenediamine

Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and supported by the Russian Foundation for Basic Research (project no. 16-03-01061).

Figure Captions

Fig. 1. Platinum cathode potential during *para*-chloroaniline amination in 9 (1), 11 (2), 13 (3), 15 (4), and 17 M H₂SO₄ (5).

References

- 1. Minisci F. Novel applications of free-radical reactions in preparative organic chemistry. *Synthesis*, 1973, no 1, pp. 1–24. doi: 10.1055/s-1973-22123.
- Citterio A., Gentile A., Minisci F., Navarrini V., Serravalle M., Ventura S. Polar effects in free radical reactions. Homolytic aromatic amination by the amino radical cation, **NH₃: Reactivity and selectivity. *J. Org. Chem.*, 1984, vol. 49, no 23, pp. 4479–4482. doi: 10.1021/jo00197a030.
- 3. Kuznetsova N.I., Kuznetsova L.I., Detusheva L.G., Likholobov V.A., Pez G. P., Cheng H. Amination of Benzene and Toluene with Hydroxylamine in the Presence of Transition Metal Redox Catalysts. *J. Molec. Catal. A: Chem.*, 2000, vol. 161, nos. 1–2, pp. 1–9. doi: 10.1016/S1381-1169(00)00206-5.
- 4. Zhu L.F., Guo B., Tang D.Y., Hu X.K., Li G.Y., Hu C.W. Sodium metavanadate catalyzed one-step amination of benzene to aniline with hydroxylamine. *J. Catal.*, 2007, vol. 245, no 2, pp. 446–455. doi: 10.1016/j.jcat.2006.11.007.
- Parida K.M., Dash S.S., Singha S. Structural properties and catalytic activity of Mn-MCM-41 mesoporous molecular sieves for single-step amination of benzene to aniline. *Appl. Catal.*, A, 2008, vol. 351, no 1, pp. 59–67. doi: 10.1016/j.apcata.2008.08.027.
- Singha S., Parida K.M. A reusable Mn(II)-dampy-MCM-41 system for single step amination of benzene to aniline using hydroxylamine. *Catal. Sci. Technol.*, 2011, vol. 1, no. 8, pp. 1496–1505. doi: 10.1039/c1cy00247c.

- Lisitsyn Yu.A., Kargin Yu.M. Electrochemical amination of unsaturated and aromatic compounds. Russ. J. Electrochem., 2000, vol. 36, no 2, pp. 89–99. doi: 10.1007/BF02756893.
- 8. Lisitsyn Yu.A., Makarova O.N., Kargin Yu.M. Electrochemical amination: VII. Introduction of amino group into aromatic ring. *Russ. J. Gen. Chem.*, 1999, vol. 69, no 2, pp. 275–279.
- 9. Lisitsyn Yu.A., Sukhov A.V. Selective synthesis of benzene-1,3-diamines by amination of anilines containing *ortho/para*-orienting substituents in the *para* position. *Russ. J. Org. Chem.*, 2015, vol. 51, no. 3, pp. 439–440. doi: 10.1134/S1070428015030264.
- Lisitsyn Yu.A., Sukhov A.V. Electrochemical amination. Selective introduction of two amino groups into an aromatic ring. Russ. J. Gen. Chem., 2017, vol. 87, no. 1, pp. 16–21. doi 10.1134/S1070363217010042.
- Lisitsyn Yu.A., Sukhov A.V. Electrochemical amination. Selective functionalization of *para-* and *ortho*anisidines in aqueous sulfuric acid solutions. *Russ. J. Electrochem.*, 2018, vol. 54, no. 12, pp. 1294– 1294. doi: 10.1134/S102319351813027X.
- 12. Ingold C.K. Structure and Mechanism in Organic Chemistry. Ithaca, London, Cornell Univ. Press, 1969. ix, 1266 p.
- 13. Sykes P. A. A Guidebook to Mechanism in Organic Chemistry. Longman Publ. Group, 1986. 416 p.
- 14. Korenman I.M. *Ekstraktsiya v analize organicheskikh veshchestv* [Extraction in the Analysis of Organic Compounds]. Moscow, Khimiya, 1977. 200 p. (In Russian)
- 15. Korenman I.M. Konstanty raspredeleniya organicheskikh veshchestv mezhdu dvumya zhidkimi fazami [The Distribution Constants of Organic Compounds between Two Liquid Phases]. Gorky, Izd. Gork. Gos. Univ., 1979, no. 5. 72 p. (In Russian)
- 16. Librovich N.B. Maiorov V.D. Ionic-molecular composition of aqueous sulfuric acid solutions at 25 °. *Bull. Acad. Sci. USSR. Div. Chem. Sci.*, 1977, vol. 26, no. 3, pp. 621–623. doi: 10.1007/BF01179485.
- 17. Damaskin B.B., Nekrasov L.N., Petrii O.A., Podlovchenko B.I., Stenina E.V., Fedorovich, N.V. *Elektrodnye protsessy v rastvorakh organicheskikh soedinenii* [Electrode Processes in Solutions of Organic Compounds]. Moscow, Izd. Mosk. Univ., 1985. 312 p. (In Russian)
- 18. Lisitsyn Yu.A., Kargin Yu.M. Electrochemical amination. II. Effect of electrolyte acidity. *Russ. J. Gen. Chem.*, 1993, vol. 63, no. 6, part 1, pp. 917–920.

Для цитирования: Лисицын Ю.А. Электрохимическое аминирование *n*-хлоранилина // Учен. зап. Казан. ун-та. Сер. Естеств. науки. – 2019. – Т. 161, кн. 2. – С. 222–230. – doi: 10.26907/2542-064X.2019.2.222-230

For citation: Lisitsyn Yu.A. Electrochemical amination of para-chloroaniline. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 2, pp. 222–230. doi: 10.26907/2542-064X.2019.2.222-230. (In Russian)