Том 152, кн. 2

Физико-математические науки

2010

УДК 535.3

СПЕКТРАЛЬНЫЕ СВОЙСТВА И ВРЕМЕННАЯ СТРУКТУРА ПЕРВИЧНОГО ФОТОННОГО ЭХА В ПОЛИМЕРНЫХ ПЛЕНКАХ, ДОПИРОВАННЫХ КРАСИТЕЛЕМ

О.Х. Хасанов, О.М. Федотова, В.В. Самарцев, В.С. Лобков, Г.М. Сафиуллин

Аннотация

Исследуется первичное фотонное эхо в полимерных пленках, легированных молекулами красителя. Рассматриваются спектральные свойства и временная структура эхоотклика в условиях неколлинеарного возбуждения. Анализируются условия формирования сателлитов и спектрального переключения частоты сигнала эха.

Ключевые слова: фотонное эхо, неоднородное уширение, легированные красителями полимеры, сателлиты, сдвиг частоты, дифракция, спектральное переключение.

Введение

С момента предсказания [1] и экспериментального обнаружения [2] фотонное эхо (Φ Э) стало мощным инструментом исследования твердых тел, газов, биологических объектов, тканей и т. д. Другой перспективной областью применения ФЭ является создание эхо-процессоров, которые по плотности записи информации и скорости ее обработки при оптимальных условиях могут превосходить существующие процессоры. Существенным эксплуатационным недостатком уже созданных наносекундных оптических твердотельных эхо-процессоров (ОТЭП) является то, что их носители информации находятся в оптическом криостате при температуре жидкого гелия. Преодолеть указанный недостаток можно, либо достигая оптимальных условий функционирования эхо-процессора в условиях лазерного охлаждения, либо работая при комнатной температуре с использованием фемтосекундных источников излучения. К сожалению, эффективность процессов лазерного охлаждения, исследованных к настоящему времени, невысока. Уже первые эксперименты по наблюдению фемтосекундного ФЭ при комнатной температуре показали перспективность использования в качестве регистрирующей среды полимерных пленок, легированных молекулами красителя (поливинилбутираль с молекулами фталоцианина) [3].

Другой характерной чертой легированных полимерных пленок является предельно большая неоднородная ширина линии. Использование фемтосекундных импульсов света, также обладающих большой спектральной шириной, для возбуждения сигналов ФЭ в пленках может привести к определенным временным закономерностям наблюдения эхо-откликов и изменению их спектральных свойств. К сожалению, те немногие работы, в которых экспериментально исследовалось фемтосекундное ФЭ, не отвечают на поставленный вопрос. В настоящей работе детально исследуются спектральные свойства и временная структура первичного ФЭ при использовании неколлинеарной схемы возбуждения.

1. Эхо-отклик и его сателлиты при неколлинеарной схеме возбуждения

При неколлинеарном возбуждении сигналов ФЭ, как следует из условия пространственного синхронизма, их несущая частота смещена в синюю область спектра относительно центральной частоты перехода атомов даже при условии, что ансамбль атомов возбуждается в условиях точного резонанса. В излучаемый эхоотклик в этом случае больший вклад дают те атомы, частота перехода которых лежит в синей области спектра. Остановимся на временной структуре сигнала первичного ФЭ при условии возбуждения среды ультракороткими импульсами света с одинаковой спектральной шириной, сравнимой с неоднородной шириной линии. В этом случае зависимость спонтанного отклика от времени определяется неэквивалентным возбуждением различных спектральных пакетов атомов и асимметричным их вкладом в наблюдаемый сигнал в соответствии с условиями пространственного синхронизма. Результатом сказанного, как можно показать [4], является то, что генерируемый отклик определяется интерференционным вкладом основного отклика:

$$E_0\left(\tilde{t}\right) \propto \int_{-\infty}^{\infty} \frac{\Delta}{\Omega_{R1}\Omega_{R2}^2} e^{i\Delta\tilde{t}} g\left(\Delta + \delta\right) \, d\Delta \tag{1}$$

и четырех его сателлитов:

$$E_{j}^{\pm}(\tilde{t}) \propto \int_{-\infty}^{\infty} \frac{\Delta}{\Omega_{R1}\Omega_{R2}^{2}} \left(1 \mp \frac{\Delta}{\Omega_{R1}}\right) \exp\left\{i\left(\Delta \tilde{t} \pm 2\Theta_{j}\right)\right\} g\left(\Delta + \delta\right) \, d\Delta, \tag{2}$$

$$E_2^{\pm}(\tilde{t}) = \int_{-\infty}^{\infty} \frac{\Delta}{\Omega_{R1}\Omega_{R2}^2} \exp\left\{i\left(\Delta \tilde{t} \pm 2\Theta_2\right)\right\}g\left(\Delta + \delta\right) \, d\Delta,\tag{3}$$

где E_0 – амплитуда основного отклика, E_j^{\pm} – амплитуда j-го сателлита, j = 1, 3, 4; $\Theta_{3,4} = \Theta_1 \mp \Theta_2$, $\Omega_{Rl} = \sqrt{\Delta^2 + \chi_l^2}$, $\chi_l = \theta_l/\tau_p$, l = 1, 2; $\theta_l = d_{12}E_l\tau_p/2\hbar$ – площадь, E_l – амплитуда l-го возбуждающего импульса (ВИ), d_{12} – дипольный момент резонансного перехода, $\Delta = \omega_{21} - \omega_{21}^0$ – отклонение частоты перехода отдельного атома от центральной частоты ансамбля атомов, $\delta = \omega_e - \omega_{21}^0$, ω_e – несущая частота эхоотклика, $\tilde{t} = t - 2\tau_{12} - 2\tau_p$, τ_p – длительность ВИ, τ_{12} – временная задержка между импульсами, $\Theta_j = 1/2\sqrt{\tau_p^2}(\Delta - \delta)^2 + \theta_j^2$. Считаем, что функция $g(\Delta)$ распределения излучателей по частотам описывается лоренцианом, а несущая частота возбуждающих импульсов совпадает с центральной частотой перехода, $\omega_p = \omega_{21}^0$. По отношению ко времени наблюдения основного отклика $t = 2(\tau_p + \tau_{12})$ сателлиты могут появляться как с опережением, так и с запаздыванием. Как правило, интенсивность сателлитов монотонно спадает по мере увеличения их порядка по отношению к главному отклику. Однако при определенных соотношениях θ_1/θ_2 , $\sigma/\chi_{1,2}$, и $\delta/\chi_{1,2}$, где σ – неоднородная ширина спектральной линии, сателлит первого порядка может превышать основной отклик по интенсивности. В частности, такая ситуация реализуется при $\theta_1 = \pi/2$, $\theta_2 = \pi$, $\tau_p \sigma = 1.875$, а угол β между волновыми векторами ВИ варьируется от 1° до 3°.

Более того, как показывает анализ [4], только в средах с широкой спектральной линией реализуется ситуация, когда на начальном этапе изменения угла β от 0° до некоторого значения интенсивность наблюдаемого сигнала за счет вклада сателлитов может увеличиваться, а затем при дальнейшем увеличении β она падает. Это происходит при $\theta_1 < \theta_2$, $\sigma \tau_p > 1$ (рис. 1). Наоборот, с средах с узкой

Рис. 1. Временное поведение интенсивности ФЭ при $\theta_1 = 3\pi/2$; $\theta_2 = 3\pi$; $\sigma = 1.25 \cdot 10^{13} \text{ c}^{-1}$; $T = (t_e - t)/\tau_p$; угол $\beta = 0^\circ$; 5°; 7.5°

спектральной линией даже при незначительном увеличении β интенсивность сателлитов резко падает. Временной интервал, разделяющий все отклики друг от друга при равенстве длительностей обоих ВИ, $\tau_{p1} = \tau_{p2} = \tau_p$, практически равен τ_p . Оценки показывают, что при определенном соотношении площадей ВИ генерация указанных сигналов может приобретать вид многократного Φ Э [4].

Следует отметить, что как основной отклик, так и его сателлиты носят осциллирующий характер, поскольку примесные центры излучают не в резонансе. Частота осцилляций зависит от времени, максимальный отклик наблюдается в тот момент, когда мгновенная частота Раби равна δ . На малых временах наблюдения $|t_e - t| < 2\tau_p$ спад сателлитов происходит по степенному закону. Основной отклик определяется суммой трех слагаемых, затухающих по экспоненциальному закону со скоростями σ , χ_1 и χ_2 соответственно. Поэтому его временная зависимость носит достаточно сложный характер. На больших временах наблюдения $t_e \gg t + 2\tau_p$ интенсивность результирующего сигнала затухает со скоростью, равной удвоенной неоднородной ширине линии. Подытоживая результаты исследований, можно сделать следующие выводы: 1) при воздействии импульсов большой площади по мере увеличения $\delta/\chi_{1,2}$ разделение между компонентами Φ Э возрастает; 2) при уменьшении $\sigma/\chi_{1,2}$ сигналы Φ Э становятся более узкими и интенсивными. Наконец, при малых площадях ВИ $\theta_1, \theta_2 < \pi/2$ сигнал Φ Э имеет вид одиночного импульса.

2. Особенности формирования спектра сигнала фотонного эха

Остановимся на спектральных свойствах первичного ФЭ в полимерных пленках. Легко показать, что спектр отклика описывается выражением [5]:

$$I(\Delta) \propto |F(\mathbf{k}_e - \mathbf{k}) \cdot \Phi(\Delta) \cdot g(\Delta + \delta)|^2, \tag{4}$$

где k – волновой вектор (BB) наблюдаемого сигнала,

$$F(\mathbf{k}_e - \mathbf{k}) = (\sin(\mathbf{k}_e - \mathbf{k})_z L/2) / ((\mathbf{k}_e - \mathbf{k})_z L/2),$$

$$\Phi(\Delta) = \operatorname{sinc}^2(\Theta_2) \cdot \left[\operatorname{sinc}^2(\Theta_1)(\Delta \tau_p/2) + i \sin(2\Theta_1)\right].$$

Как видно из (4), спектральные свойства излучаемого сигнала определяются по существу тремя факторами: структурным фактором $F(\mathbf{k}_e - \mathbf{k})$, функцией возбуждения атомного ансамбля $\Phi(\Delta)$ и форм-фактором $g(\Delta)$. Структурный фактор отражает дифракционную природу фотонного эха и дает интервал допустимых углов β . Функция возбуждения $\Phi(\Delta)$ и форм-фактор $g(\Delta)$ учитывают интерференцию всех спектральных пакетов атомов давая результирующую картину, наблюдаемую в направлении \mathbf{k} на частоте $\omega = kc/n$, где n – показатель преломления материала. Из условия дифракционного минимума $(k_e \cos \varphi - k \cos \alpha)L = 2m\pi$ ($m = \pm 1, \pm 2, \pm 3, \ldots$) мы получаем, что для угла α минимум интенсивности эха [5] находится при

$$\omega_m = \omega_p \frac{\cos\phi \sqrt{5 - 4\cos\phi} + \frac{\lambda m}{L}}{\cos\alpha}.$$
 (5)

Следовательно, спектральная ширина фундаментального максимума выражается как $\Delta\Omega = \omega_1 - \omega_{-1} = 4\pi c/(L\cos\alpha)$. Функция $\Phi(\Delta)$ зависит от площадей ВИ, длительности импульсов и задержки между ними. Что касается $g(\Delta+\delta)$, ее влияние на спектр ФЭ определяется неоднородной шириной линии поглощения и отстройкой частоты отклика $\delta = \omega_e - \omega_{21}^0$. Заметим, что для тонких полимерных пленок $\Delta\Omega$ может быть того же порядка, что и неоднородное уширение, и обе эти величины могут играть одинаково важную роль в формировании спектра ФЭ. Анализируя (4), можно заключить, что неколлинеарная генерация ФЭ приводит к смещению частоты отклика и асимметрии его спектра. Кроме того, асимметрия возрастает с углом β и становится наиболее заметной при $\sigma\tau_p \geq 1.8$. Наши вычисления проводились при следующих значениях параметров: $\lambda_0 = 780$ нм; $\tau_p = 150$ фс, L = 80 мкм, $\theta_{1,2} = \pi/2$, $\sigma = 1.25 \cdot 10^{13}$ с⁻¹, $\beta = 0^{\circ}$ и 6°.

Рассчитанная величина синего сдвига в единицах длин волн составляет $\lambda - \lambda_0 = 7.7$ нм при $\beta = 6^{\circ}$. Асимметрия спектра ФЭ и синий сдвиг возникают из-за изменения относительного вклада спектрального пакета атомов с ростом угла β . Это зависит от таких параметров, как L, σ , спектральных ширин и площадей ВИ.

Рассмотрим случай, когда ширина главного дифракционного максимума сравнима с неоднородной шириной линии. Тогда с ростом β может происходить не только постепенный рост синего сдвига частоты вместе с уменьшением интенсивности, но возможно также и переключение частоты в красную спектральную область. Природа данного явления – красного сдвига частоты $\Phi = -$ состоит в следующем. При определенной величине β главный дифракционный максимум оказывается сдвинутым достаточно далеко в синюю область спектра. Поскольку плотность атомов с собственной частотой, сдвинутой в синюю область, мала для заметного вклада в формируемый эхо-отклик, то интенсивность $\Phi = -1$ порядку дифракции и меньшей центральной частоты перехода $(\omega_{-1} < \omega_{21}^0)$, может оказаться значительно выше. Как следствие, частота наблюдаемого эхо-отклика ω_r оказывается сдвинутой в красную сторону спектра. Условия красного сдвига можно вывести из уравнения (4). Положение максимума дифракционной интенсивности $\{-1\}$ порядка определяется из уравнения:

$$(k_e \cos \psi - k \cos \varphi)L = 2.86\pi.$$

Тогда красный сдвиг частоты эха $\delta_r = \omega_r - \omega_{21}^0$ есть

$$\delta_r = \omega \, \frac{1 - \cos\beta}{\cos\beta} - \frac{2.86\pi c}{L\cos\beta} \tag{6}$$

Рис. 2. Спектральная зависимость компонент ФЭ, соответствующих $\{-1\}$ порядку дифракции при $\beta = 0^{\circ}$; 3° ; 6° ; 9° ; $\sigma = 1.25 \cdot 10^{13} \text{ c}^{-1}$, L = 80 мкм, $\Delta \lambda_r = 2\pi c \tau_p (\lambda - \lambda_0) / \lambda_0^2$

при угле наблюдения $\alpha = \beta$. Для синего сдвига имеем:

$$\delta_b = \omega(\sqrt{5 - 4\cos\beta} - 1).$$

Подставив выражения для красного и синего сдвига в уравнение (5), можно вычислить интенсивность спектральных компонент эха на этих частотах $I(\delta_r)$ и $I(\delta_b)$ соответственно. Решив неравенство $I(\delta_r) > I(\delta_b)$, вытекающее из соотношений между дифракционными максимумами $\{-1\}$ и нулевого порядков, мы получим необходимые условия для красного переключения в полимерных пленках различной толщины. Нами установлено, какой возможный красный сдвиг может иметь место в определенном интервале углов. Численное моделирование проводилось для толщины пленки L = 35 и 80 мкм. Выявлено, что с ростом размеров образца интервал величин угла β для излучения сигнала с частотой, сдвинутой в красную область, уменьшается и сдвигается в сторону меньших углов. Когда толщина превышает предельно допустимую величину L^* , переключение в красную область не возникает. Обнаружено, что L^* в нашем случае составляет около 300 мкм. Рис. 2 позволяет понять поведение интенсивности эхо-сигнала $I(\beta)$ более детально. Здесь нами представлен спектр компоненты $\Phi \Theta$, соответствующей $\{-1\}$ порядку дифракции при L = 80 мкм, $\theta_{1,2} = \pi/2$. Из рисунка можно сделать заключение, что величина красного сдвига уменьшается с увеличением β , тогда как интенсивность вышеупомянутой компоненты растет и достигает максимума при $\beta = 6^{\circ}$. При этом угле спектральная компонента, соответствующая $\{-1\}$ дифракционному порядку, более интенсивна по сравнению с нулевым порядком дифракции. Поэтому мы можем наблюдать Φ Э на частоте, сдвинутой в красную сторону. Величина β , для которой оба дифракционных порядка одинаковой интенсивности примерно равны, составляет 4.5°. При таком угле спектральное переключение имеет место в пленке толщиной 80 мкм. При больших $\beta \{-1\}$ порядок дифракции остается более интенсивным, чем нулевой порядок, но постепенно сдвигается в синюю область. Угол, при котором красный сдвиг исчезает в пленке толщиной L = 80 мкм, соответствует $\beta = 8^{\circ}$.

Остановимся чуть подробнее на анализе ситуации. Если $\beta = 0^{\circ}$, пик $\{-1\}$ порядка дифракции расположен на длине волны 792.9 нм, что соответствует крас-

ному сдвигу 12.9 нм. Однако его вклад в наблюдаемый спектр сигнала ФЭ существенно меньше нулевого порядка дифракции. Поэтому переключения спектра в красную область не происходит. Красный сдвиг уменьшается до 7.7 нм при $\beta = 3^{\circ}$ и до 1.25 нм при $\beta = 6^{\circ}$ (при этом максимальная интенсивность наблюдается при $\lambda = 781.25$ нм). При угле 9° величина красного сдвига равна 6.45 нм. Следует отметить, что отрицательная величина спектрального сдвига означает, что пик $\{-1\}$ порядка дифракции находится в синей области спектра при $\lambda = 773.55$ нм. Иными словами, при $\beta \sim 8^{\circ}$ вновь происходит спектральное переключение отклика в синюю область.

3. Выводы

Мы проанализировали влияние, которое оказывает неколлинеарная схема эксперимента на временную структуру и спектральный состав генерируемых эхооткликов в полимерных пленках, легированных молекулами красителя. Пленки характеризуются экстремально широкими неоднородно-уширенными спектральными линиями. Как оказалось, наблюдаемый сигнал ФЭ имеет сложную временную структуру. Время наблюдения главного эхо-отклика и его сателлитов, а также их интенсивностей, зависит от относительных площадей ВИ, угла между их волновыми векторами и спектральной ширины линии σ . В ряде случаев интенсивность некоторых сателлитов превышает интенсивность главного отклика. Эхо-сигналы осциллируют с переменной во времени частотой, как и в случае нерезонансного возбуждения спектральной линии. Характер релаксации генерируемых сигналов меняется во времени и может подчиняться степенному или экспоненциальному закону. Скорость релаксации зависит от частоты Раби ВИ и от ширины линии. При определенных условиях наблюдаемые отклики могут принять форму многократного ФЭ. Установлено, что временное разрешение эхо-компонент увеличивается с ростом площадей ВИ. Дополнительной особенностью ФЭ является немонотонное поведение интенсивности сигнала как функции угла β . Например, интерференция всех компонент может привести к увеличению пиковой интенсивности ФЭ с ростом β от 0° до 6° - 7°, в то время как дальнейший рост β приводит к ослаблению сигнала. Что касается спектральных особенностей, следует отметить, что вышеупомянутая схема возбуждения приводит к асимметричной форме спектра наблюдаемого отклика. В интервале определенных величин β можно наблюдать спектральное переключение частоты ФЭ между синей и красной областями по отношению к центру линии поглощения. Это следует из дифракционной природы явления эха. Условия такого переключения зависят от соотношения неоднородной ширины спектральной линии и спектральных ширин возбуждающих импульсов, а также от толщины пленки.

Таким образом:

1) установлено, что неколлинеарное возбуждение ФЭ в полимерных пленках, легированных красителем, может привести к наблюдению сателлитов;

2) показано, что эхо-сигнал может иметь характер многократного $\Phi \Im$;

3) выявлено, что спектр сигнала ФЭ становится асимметричным;

4) предсказано переключение частоты эхо-сигнала в красную область спектра.

Работа выполнена при финансовой поддержке Программами ОФН РАН «Фундаментальная оптическая спектроскопия и ее приложения» и совместного российско-белорусского РФФИ (№ Ф08Р-195 и № 10-02-90000 Бел-а).

Summary

O.Kh. Khasanov, O.M. Fedotova, V.V. Samartsev, V.S. Lobkov, G.M. Safiullin. Spectral Properties and Time Structure of a Primary Photon Echo in Dye-Doped Polymer Films.

Primary photon echo in polymer films doped with dye molecules is investigated. Spectral properties and temporal structure of echo-response under conditions of noncollinear excitation are considered. The conditions of satellite formation and spectral switching of echo-signal frequency are analyzed.

Key words: photon echo, inhomogeneous broadening, dye-doped polymers, satellites, frequency shift, diffraction, spectral switching.

Литература

- 1. Копвиллем У.Х., Нагибаров В.Р. Световое эхо на парамагнитных кристаллах // Физика металлов и металловедение. – 1963. – Т. 15, № 2. – С. 313–315.
- Kurnit N.A., Abella I.D., Hartmann S.R. Observation of photon echoes // Phys. Rev. Lett. - 1964. - V. 13, No 19. - P. 567-568.
- Zuikov V.A., Ferri W., Ollikainen O., et al. Wave matching of femtosecond and picosecond photon echoes in dye doped polimer films // Laser Phys. - 1996. - V. 6, No 4. - P. 729-734.
- Khasanov O.K., Fedotova O.M., Samartsev V.V. Principles of angular echo-spectroscopy // J. Luminescence. - 2007. - V. 127, No 1. - P. 55-60.
- Зуйков В.А., Калачев А.А., Самарцев В.В., Ребане А.К., Вильд У.П. Пространственные и спектральные свойства фотонного эхо // Опт. и спектр. 1998. Т. 84, № 5. С. 708–710.

Поступила в редакцию 11.02.10

E-mail: *khasanov@ifttp.bas-net.by*

Федотова Ольга Михайловна – кандидат физико-математических наук, старший научный сотрудник Научно-практического центра по материаловедению НАН Беларуси, г. Минск.

E-mail: olfe@ifttp.bas-net.by

Самарцев Виталий Владимирович – доктор физико-математических наук, профессор, заведующий лабораторией нелинейной оптики Казанского физико-технического института им. Е.К. Завойского КазНЦ РАН.

E-mail: samartsev@kfti.knc.ru

Лобков Владимир Сергеевич – кандидат физико-математических наук, старший научный сотрудник, заведующий лабораторией быстропротекающих процессов Казанского физико-технического института им. Е.К. Завойского КазНЦ РАН.

E-mail: lobkov@kfti.knc.ru

Сафиуллин Георгий Маратович – кандидат физико-математических наук, старший научный сотрудник Казанского физико-технического института им. Е.К. Завойского КазНЦ РАН.

E-mail: gsafiullin@mail.ru

Хасанов Олег Хайруллович – кандидат физико-математических наук, ведущий научный сотрудник Научно-практического центра по материаловедению НАН Беларуси, г. Минск.