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ISOPERIMETRIC INEQUALITIES FOR LP-NORMS
OF THE DISTANCE FUNCTION TO THE BOUNDARY

R.G. Salahudinov

Abstract

The main goal of the paper is to prove that L?-norms of dist(z,0G) and dist™'(z,0G)
are decreasing functions of p, where G is a domain in R"(n > 2). We also obtain a sharp esti-
mation of the rate of decreasing for these norms using L —norms of the distance function for a
consistent ball. We prove a new isoperimetric inequality for L” —norms of dist(x,dG), this in-
equality is analogous to the inequality of LP —norms of the conformal radii (see Avkhadiev F.G.,
Salahudinov R.G. // J. of Inequal.& Appl. — 2002. — V. 7, No 4. — P. 593-601).

Note that L?-norm of dist(x,dG) plays an important role to investigate the torsional
rigidity in Mathematical Physics (see, for instance, Avkhadiev F.G. // Sbornik: Math. — 1998.
—V. 189, No 12. — P. 1739-1748; Banuelos R., van den Berg M., Carroll T. // J. London Math.
Soc. — 2002. — V. 66, No 2. — P. 499-512). As a consequence we get new inequalities in the
torsional rigidity problem.

Also we generalize the n-dimensional isoperimetric inequality.

Introduction

Let G be a domain in R™(n > 2). Let us consider the following geometrical func-
tional [1, 2]

I(p, G) = / dist? (z, OG) dA. (1)
G

Here dist(z, 0G) denotes the distance function from = € G to the boundary 9G, dA
is the volume element dxy,...,dz,, and p > —1. In [1] it was noted, that it might be
justified to call I(p, G) the p-order eulidean moment of G with respect to its boundary.
First we remark some applications of (1), and further we note connection of (1) with
a new conception of isoperimetrical monotonicity.
It is clear that O-order moment is the volume of G. Also, as a limit case of (1),
we can get d(G) = max dist(z, 0G). We also found that for a wide class of domains

(—1)-order moment is, up to a constant factor, the surface area of G.

Further, we remark a new geometrical functional of G that recently appears in the
elastic torsion problem. This is the second order eulidean moment or, otherwise, the
eulidean moment of inertia with respect to the boundary. Consider the boundary value
problem

Au=—-1in G, u=0on JG,

where —A\ is the Dirichlet Laplacian, and let

P(G) = 4/u(:£) dA,

G

P(G) is exactly the torsional rigidity of a simply connected domain G. Just as in [3] we
call P(G) the torsional rigidity of G, even if n > 2 and/or G is not simply connected.
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We begin from the case n = 2. In 1995 F.G. Avkhadiev [1] proved the two-sided
inequality
I(2,G) <P(G) <641(2,G). (2)
Later in [4] the left-side hand of the inequality was improved to 3I(2,G) < 2P(G).
Let us remark that an n-dimensional generalization of was recently proved in [5]

%1(2, G) < P(GQ) < C61(2,G), (3)

under the additional restriction that G satisfies a strong Hardy inequality with some
constant (see [6]), where Cg is a functional on G. In particular, the two-sided inequali-
ties (2), (3) answered the question: “ When is the torsional rigidity of a simply connected
domain in R™ bounded?’, however for n > 3 the question is still open.

Another application of (1) was discovered by F.G. Avkhadiev in [2], this is also
generalize (2) on an n-dimentional case. Consider the functional

[ 111 aa
G
[ 1erad 70z |

G

1/q

K, ,G)= sup

FECE(G) /e’

K, 4(G) appears in the Poincare - Sobolev’s inequality. In [2] it was proved the two
sided estimations for K, ;(G) using (1).

The first property of isoperimetric monotonicity was conjectured by J. Hersch [7],
and it was proved by M.-Th. Kohler-Jobin [8]. We shall consider the following boundary
value problem [9]

A+ pv+1=0inG, v=00ndG (—oo<f<M(Q) (4)
and the corresponding functional

Q) = [vda.

G

In particular, we have Q(0) = P(G)/4, Q(\) = mjg/ (8X3(G)), and (-3)Q(8) —

B——oc
A(G) (see, for example, [12]).
By Q(f) we denote the radius of a ball in R™ with same Q(/3).

Theorem A [8, 10]. Let G be a bounded domain and not a ball in R™, then Q(03)
is a decreasing function on 8. If G is a ball, then Q(3) is a constant function.

This monotonicity property contains several well-known plane isoperimetric inequal-
ities (see [12]), which include functionals A\;(G), P(G), and A(G). On the other hand,
existence theorems for P(G), and A1 (G) are expressing in terms of I(o, G) (see [,
11]). Further, other monotonicity properties were discovered by C. Bandle [13], and by
J. Hersch [12]. All of these isoperimetric monotonicity properties were connected with
the solutions of the differential equations (4). So, the conjecture on the isoperimetric
monotonicity property of (1) is a geometrical analog of Theorem A. On the other hand,
this work was intended as an attempt to bind continuously the well-known geometrical
quantities of a domain in R™ such as the surface area, the volume, the radius of the
largest ball contained in the domain.
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1. Main results and corollaries
Let a > n — 1. Further it would be suitable to use a constant

T(n/2)T(a+1)

an ‘= I - 7B = )
Ca, [ (Ot n 1)] QW”/QF(afnJrl)F(n)

(5)

where Bj is a unit ball in R™, and I'(+) is Euler’s Gamma function.

Theorem 1. Let « > > n—1, and G is a domain in R™ such that I(a—n,G) <
< 00. Then

/ dist® P " (2, 0G) dA < Cg“"ﬂ / dist® " (z, 9G) dAx
a+pB,n
G G

y / dist? " (z,0G) dA  (6)
G

The equality holds iff G is a ball in R™.

This kind of inequality was first proved in [14] for conformal moments of a simply
connected plane domain. Also, in [14] a chain of plane isoperimetric inequalities was
obtained in order to get sharp lower bound in the torsional problem. This chain is
similar to ‘discrete isoperimetric monotonicity.” Note that the inequality (6) contains
three geometrical characteristics of G.

Corollary 1. Let n =2 and o = 3 =1 in Theorem 1, then inequality (6) turns
to the plane classical isoperimetric inequality
L*(G)
4T

AG) <

In the next two assertions we prove isoperimetric monotonicity properties for integral
functionals which depend on dist(z, 0G).

Theorem 2. i) Let |dist(z,0G)|, < oo, then

|dist(z, 0G)|, _ |dist(z, 2D1)ly
|dist(z, 0G)|, = |dist(z,dD1)|p

(7)

where p' > p > p” >0, p’ > p”, and Dy is a ball such that |dist(x,0D1)|, =
|dist(z, 0G)|, . Equality holds only for a ball in R™.
ii) Let [dist™"(z,0G)|, < oo, then

|dist ™" (2, 0G),» < |dist™" (2, 0Dy)
Jdist (7,06l = ldist (2, 0Dl

where 0 < p' <p<p’" <1, p <p”, and D3 is a ball such that ||dist_1(:£,8D2)||p =
|dist™" (x,0G)|, . Equality holds iff G a ball in R™.

In the plane case for p = p” = 0 the inequality (7) is an analogous of famous
St Venant’s and Polya’s inequality for P(G). In the case p = p” = 0, and for p’ = 1 the
inequality (7) was proved by J. Leavitt and P. Ungar [15], and in the case p =p” =0,
and p’ > 0 in [16].

Using a result from [4] we can get the following lower estimations for the torsional
rigidity of a plane domain.
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Corollary 2. Let G be a simply connected plane domain, and let P(G) is bounded,
then we have for o > 4

4/

3 ) 06(042; 1)/dista72($7aG)dA <P(G).
G

ala—1

Now we shall consider a normalized version of I(ax — n, G)
1/a

1.(G) = [ can / dist™ " (z,0G)dA | | (8)
G

where o > n — 1. In the Lebesgue’s sense I,,_1(G) does not exist, however we give a
meaningful definition for the case &« = n — 1. In that case we suppose that G has a
smooth boundary 9G, which belongs to C'(G), and we put

/(1)
I, 1(G) = lim I (G)= F("/Q)/ds , 9)

a—(n—1)+0 “ /2
oG

where dS is the volume element of 0G. On the other hand, we have

lim I,(G) = d(G). (10)
Therefore, d(G) < oo is the necessary condition to apply our theorems. Further we
prove that the evaluations given in (9) and (10) are well defined.

Theorem 3. Let G is a domain in R™, and suppose that 1,,(G) is bounded for
some ag >n— 1. Then

i) If G is not a ball in R™, then 1,(QG) is a strictly decreasing function of a for
a>ap and Io(G) = d(G).

i) If G is a ball in R™, then 1,(G) is the radius of the ball G for all o >n — 1.

Corollary 3. Let G is a domain in R™ such that 1,(G) < oo for a € [n—1,n),
then
I.(G) < Io(G), and 1.(G) < I,_1(G).

In the both equalities the equalities hold only for a ball in R™.

The last inequalities are a generalization of the classical n-dimentional isoperimetric
inequality, which was proved by E. Schmidt [17], moreover, our assertion is a more
sharper result.

2. Proofs of theorems

We begin by proving some simple important properties of the functional I(«, G) for
a>—1.
Throughout the proof we will use the following notations

Gi(a) = {x € G|dist*(z,0G) > A},

Ta(e) == {z € G |dist®(z,0G) = A}

a(@) ::/dA,

G
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and denote by []s the Schwarz symmetrization of a domain in R™, and of a function
over the domain. We will usually fix a parameter « in our proof, and in those cases, for
brevity, we will drop «, for example, G := G («).

Lemma 1. Let a > 0, and G be an unbounded domain in R™ such that I(a, G) <
< 00. Then: 1) a(Gy) < oo for 0 < X < d¥G), in particular, d(G) < oo;

Proof. Let A\ > 0, then we have a chain of inequalities

(o, G) > / dist® (2,0G) 44 > a(Ga) inf dist® (2,0G) = \a(Gh),
G
so a(Gy) < A (o, G) < 00.
Further, note that
(o, G) = / dist® (2, 9G) dA + / dist® (2, 0G) dA.
G G\Gx

Using the definition of integral by Lebesgues, and integration by parts, we obtain

a(Gx) d*(G@)
/dist“(m, 0G)dA = / Ma)da = Na(Gy) + / a(Gy) dt.
Ga 0 A

The last integral bounded by I(«, G). Hence a(G,) is integrable on [0, d”(G)] because
a(Gy) > 0 for all admissible A. Therefore

A
0 < lim Aa(Gy) < lim /a(Gt)dt =0.
A—0 A—0
0

O

In the sequel we will use some well-known properties of the level sets (see, for
example, [7]), in particular, we will frequently make use of the relations

a?(@)

/ dist” (z, 0G) dA = / a(GA(B))dx  for >0,
G 0
/ dist’ (z,0G) dA = a(@)d?(G) + / a(Ga(8))d\ for (<0, (12)
G d47(G)
da(Gx(1))
o / a5

(1)

Lemma 2. Let G be not a ball in R™, and []s is the Schwarz symmetrization of
a domain Gy . Then:

1) /dista(x,aG) dA < / dist®(z,0[G]s)dA  for a > 0;
G

[Gals

2) /disto‘(:c, 0G)dA > / dist®(x,9[G]s)dA  for —1<a<0.

G [GAls
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Proof. Let = € G, then it is easy to check that
dist(z, 8G) = dist(z, dG) + A1/, (13)

The assertion follows by means of the Schwarz symmetrization of G . Indeed, we
have [dist(-,0G\)]g (z) < dist(z,0[Ga]s) for z € [Ga]g, and a([Girls) < a(([G]s),)
(see [7] ). Using (13) we obtain

[dist(-, 0G)] g (x) = [dist(-, 9G) + Al/a} (@) = [dist(, 0G5 (2) + X1/ <
< dist(z,[Ga]s) + AV < dist(z,0 ([G]s),) + A/ = dist(z, d[G]s).

Using the basic properties of the Schwarz symmetrization, for o > 0, we get

/ dist® (2, 0G) dA — / ([dist(-, 0G)] 5 () dA < / dist®(z, O[G]s) dA.
Ga [GAls [Gils

In the case —1 < a < 0 we get the same inequality, but with the revers sign.
O

We now define a ball D(C R™), which corresponds to the domain G. From (5) we
can conclude that I(a, D), for fixed «, is a strictly increasing function of the radius of
D, and runs from 0 to oo with the radius of D. Therefore there is exactly one ball
D, up to an Euclidean motion, such that I(a, D) = I(«r, G). Note that D depends of
a and G, and it plays very important role in our proof.

According to Lemma 2 we shall distinguish two cases: 1) a > 0, and 2) —1 < @ < 0.

Proposition 1. Let o« > 0, and D is the ball defined as above, then

1) I(v,G) <1(y,D)  forvy>a; (14)

2)1(v,G) 21(y,D)  for0<y <o (15)
In the both cases the equalities hold if and only if G is a ball.

Proof. To prove the assertion we apply the M.-Th. Kohler-Jobin symmetrization
with a slight modification. This method was introduced in [8, 10], and it was applied to
study isoperimetric properties of the solutions of (4), A\1(G), and the first eigenfunction
of (4) (see [3, 8, 10, 12]).

First of all we note that the case o = 0 is the special case of Lemma 2 with
A = 0. Therefore let us fix o > 0. Further note that the case v = 0 also is another
interpretation of Lemma 2 with A = 0. Indeed, we have

I(a’ D) = I(Oé, G) < I(a7 [G]S)a

and using (5), we obtain I(0, D) = a(D) < a([G]s) = a(G) =1(0,G).
Thus we can suppose v > 0.
Set

i) = / dist®(z,9G) dA — Aa(G).
G
The corresponding value for D we denote by i*(\*).
From (12) we obtain
d*(@)
= [ aGat

A
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and since i(d“(G)) = 0, we have

di(\)
- = . 1
ax a(G)\) ( 6)
An analogous computation for Dy« leads to
di* (N
B dg\* ) :a(D/\*)'

Now let us define a correspondence between G and D+ by requiring that i(\) =
= 7*(\*). By the definition of D, for A = A* =0 we have i(0) = I(o, G) = I(«r, D) =
=*(0).

Because G, is bounded, by Lemma 1, applying Lemma 2 to G, and Dy« , we obtain
a(Dy~) < a(G)y). Let A(i) be the inverse of i(\). Hence by the defined correspondence
we must have the inequality

B dX* (1) o dA(4)
di di -~
Again, using A*(I(o, D)) = 0 = A\(I(«r, G)), we obtain by integration from io(> 0) to

(o, G)
A(@) = A2). (17)

> A
In particular, we have the inequality d(D) > d(G), which, indeed, follows immediately
form Lemma 2 and the definition of D.
From the definition (11) easily follows G(8) = Gjass, where S > 0. Using
Lemma 1, (11), (12), and the equality —di(\) = a(Gy)dA, by (16), we get

a(G) d7(G) d7(G)
/ dist” (z, 0G)dA — / Ma)da = / a(Gi(7)) dt = / A(Gyoyn) dt =
G 0 0 0
4° (@) 4 (@) (,@)
2 pretayae = -2 / platgigy =2 [ xe-1Gyai (18)
(6% (6% (8%
0 0 0

In the both cases v > «, and 0 < v < «, using (17), we obtain (14), and (15), but
in the second case we suppose that I(y,G) < co. The cases of equality immediately
follows from Lemma 2. O

Proposition 2. Let —1 < a <0, v <0, and D is the ball defined in the same
way like above, then

1) I(v,G) <I(y,D) for 0>v>q

2) I(v,G) 21(v, D) for a> 1.

Proof. We will use same ideas as in Proposition 1, but in quite different situation.

First, we note that if we fix «, then I(a, D) is an increasing function of the radius
of D. Moreover, the direct calculation shows that the same assertion remains true for
a(D)) with fixed o and A. We will use this remark bellow. In particular, from Lemma 2,
and the definition of D, follow

a(@) = a([G]s) < a(D). (19)

As in Proposition 1 the case v = 0 is the particular case of Lemma 2 with A = 0.
Therefore let v < 0.
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ZEA

z=d"(Q)
C ) |
Al/a G)\
X
Fig. 1
Set -

i = [ a(Go .

by
where
a(G) for 0 <\ <d%(G),
a(Gy) =

a(Gy) for A >dYG).

In particular, using (12) we get

i(0) = a(@)d*(G) + / a(Gy) dt =1(a, G).
d=(G)
For the convenience of the reader we give an illustration for the plane case (see Fig. 1).

The corresponding value for D we denote by i*(A*).
Further, almost everywhere we have

di(\) .
- = ) 2
a6y (20)
An analogous computation for Dy« leads to
dit(\)
— =a(Dy+).
e~ ADx)

Let us define a correspondence between G and Dy« by requiring that i(\) =
= ¢*(A\*). By the definition of D, for A = \* = 0 we have i(0) = I(o,G) = I(a, D) =
=1i*(0).
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Applying Lemma 2 to G and D,-, the note at the beginning of the proof, and
(19), we obtain a(Dx«) > a(Gy). Let A(z) be the inverse of i(\). Hence by the defined
correspondence we must have the inequality

_dx (i) - dA(4) .
di di
Using A*(I(a, D)) = 0 = AM(I(«r, G)), we obtain by integration from io(> 0) to I(a, G)

A (i) < A(i). (21)

From the definition (11) easily follows GA(8) = Gyass, where § < 0. Using
Lemma 1, (11), (12), and the equality —di(\) = a(Gy)dA, by (20), we get

oo

/ dist? (z, 0G) dA = a(G)d" (G) + / a(Gy(7) dt = a(G) (d*(G))/* +
aQ d7(G)

o 4*(G) o0
+ / (G ) dt = 1 / /9= 1a(G) dt + L / /e a(Gy) dt =
o o
d7(G) 0 d*(G)

I(a,G)
(A(@)/* "V di. (22)

Q=2
Q1=

o

/tV/O‘_lﬁ(Gt)dt = —1/t7/0‘—1dz'(t) =
0 0

0

Let a < v <0, then v/a—1 < 0. From (21) and (22) we easy obtain

I(a,G) I(a,D)
10:6)=2 [ oayreidais? [ oc@yetdi=16.0),
0 0

which is the first inequality of our proposition. If we interchange « and <, then the
second inequality follows from the first.
This completes the proof of Proposition 2. O

Proof of Theorem 1. We just apply Proposition 1 and Proposition 2 for the case
(o, D) = I(c, G). O

Proof of Theorem 2. To prove the first part we apply Proposition 1 for the case
I(p, D) = I(p, D1). The second part follows from Proposition 2 for the case I(p, D) =
=1(p, D2). O

Proof of Theorem 3. First note that the isoperimetric inequality I5(G) > I5(G)
for B < n < § follows easily from Lemma 2, and moreover, we have the same lower
and the upper bound I,(G) for Ig(G) and I5(G) respectively. Now we prove that
the definition (9) is well-defined for domains with smooth boundaries. For the brevity

we will use the denotation lim := lim . Indeed, using (5), (11), and (12), and
« a—(n—1)40
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applying a integration by parts, we obtain

[e3

lim (I, (G))® = lim ca,n/dist‘*‘”(:c,aG) dA =
G
a(@) d(q)
= limca., / A (a(GA(1))* " da(GA(1)) = lim —en / / dSd e+l —
0

a a—n-+1
0 Tx(1)

— lim a4+ 1)I'(n/2)
© o 27n/2T(a —n + 2)T(n)

d(G)
x |d(G)> ! / dS/A“‘”“d /dS :F(”/Q)/ds.
0

2,/Tn/2
Tace) (1) I'x(1) oG

Note that, from (5) and (8) we can see Io(D) = R for all @« > n — 1, where R is
the radius of the ball D.

Let G isnot a ball in R™, and fix a(> «p), then I, (G) is bounded, by Proposition 1
and Proposition 2. Like above we can show that there is exactly one ball D(«) in R™,
up to an Euclidean motion, such that I,(G) = I, (D(«)). Further we conclude from (5)
and (6) that I,(D(a)) = I5(D(«)) for all admissible v and ¢. Therefore for a small
e > 0, from Proposition 1 and Proposition 2 follow again that I,.(G) is bounded, and
the ball D(«) gives a larger I,1.(-) than the domain G, that is

lote(G) <lage(D(@)) = La(D(@)) = La(G), (23)

which is the desired conclusion.

To complete the proof we have to prove (10). From the monotonic property of
I,(G) with respect to the domain we get the inequality I,(G) > d(G). Thus it would
be enough for us to establish the reverse inequality. Let I,,(G) < oo for some oy > n.
Then, applying (18) for a > «y, we can write the equality

I(ao—n,G) a
10(0) = (ean T~ ) = | can ot Ae-an/om ) gi | =
0
1/«
I(ao—n,G)
_ (a—ao)/(o0—n)
= d(G) (a n)col,n%VD / aof; ] (i) di ,
(a0 —n) [d(G)] d* (@)

where A corresponds to the level sets of dist®® ™ "(z,9G). Thus we easily get
. 1/«
HQ(G) < d(G) < (Oé n) Ca,n_ao I(ao — Tl,G)) .
(a0 —n) [d(G)]

Tending « to the infinity, we get I,(G) < d(G).
This finishes the proof of the theorem. |

In the conclusion we have to make a remark about reverse inequalities in the theo-
rems. Note that, using Proposition 1 we also can 'go back’ from I, (G) to I,_.(G), but
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we need to know that I,_.(G) is bounded. We now give a simple example of domain
G on the plane, such that it has I,(G) = oo and I,(G) is bounded for v > «. In par-
ticular, that means, we cannot prove the reverse inequality I,(G) > cl5(G) for a > ¢
without additional restrictions on G, here ¢ > 0 is a universal constant.

Without loss of generality we suppose a > 0, and consider the domain placed
between curves z = 1, y = 0, and y = x~/®. There exists X € R such that
dist(z,0G) = y/2, where z = x + iy, and « > X. Denote by Gx the subdomain
of G between x =1 and = = X, we obtain

Xo
1 dx

/dist“(:c,c?G) dA ~ / dist®(z, 0G) dA + 5| 7 o
X 0— 00
G Gx X
nevertheless
/dista“(x,@G) dA < /dista“(x,@G) dA—i—/lilr—x/ < 00,
x e/
G Gx X

where € > 0. The generalization to an n-dimensional case is obvious.

The author is thankful to Professor F.G. Avkhadiev for interesting discussions on
the mathematical physics and useful advices.
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Pesome

P.I". Canazydunos. M3onepumerpudeckue HepaBeHcTsa s LP -nopm dyHKIUu paccros-
HUS 710 TPAHUIIBI 00/IACTH.

JlokazaHna u30mepuMeTpuydecKasd MOHOTOHHOCTH E€BKJIMJIOBBIX CTEIEHHBIX MOMEHTOB 00ja-
CTH OTHOCHUTEJHHO CBOEH TpaHulbl. JloKa3aHHOe CBOWCTBO, KBUBAJICEHTHO W30MEPUMET-
pUYecKuM HepaBeHCTBaM 1y LP -HOpM (DYHKIMM PACCTOAHUS 0 TPAHUIIBI O0JACTH JJId Pas3-
JAYIHBIX 3HAYUEHAN .
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