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UDK 517.5ISOPERIMETRIC INEQUALITIES FOR L

p -NORMSOF THE DISTANCE FUNCTION TO THE BOUNDARYR.G. SalahudinovAbstratThe main goal of the paper is to prove that Lp -norms of dist(x, ∂G) and dist−1(x, ∂G)are dereasing funtions of p , where G is a domain in R
n(n ≥ 2) . We also obtain a sharp esti-mation of the rate of dereasing for these norms using Lp �norms of the distane funtion for aonsistent ball. We prove a new isoperimetri inequality for Lp �norms of dist(x, ∂G) , this in-equality is analogous to the inequality of Lp �norms of the onformal radii (see Avkhadiev F.G.,Salahudinov R.G. // J. of Inequal.& Appl. � 2002. � V. 7, No 4. � P. 593�601).Note that L2 -norm of dist(x, ∂G) plays an important role to investigate the torsionalrigidity in Mathematial Physis (see, for instane, Avkhadiev F.G. // Sbornik: Math. � 1998.� V. 189, No 12. � P. 1739�1748; Ba�nuelos R., van den Berg M., Carroll T. // J. London Math.So. � 2002. � V. 66, No 2. � P. 499�512). As a onsequene we get new inequalities in thetorsional rigidity problem.Also we generalize the n-dimensional isoperimetri inequality.IntrodutionLet G be a domain in R

n(n ≥ 2) . Let us onsider the following geometrial fun-tional [1, 2℄ I(p, G) =

∫

G

distp(x, ∂G) dA. (1)Here dist(x, ∂G) denotes the distane funtion from x ∈ G to the boundary ∂G , dAis the volume element dx1, . . . , dxn , and p ≥ −1 . In [1℄ it was noted, that it might bejusti�ed to all I(p, G) the p-order eulidean moment of G with respet to its boundary.First we remark some appliations of (1), and further we note onnetion of (1) witha new oneption of isoperimetrial monotoniity.It is lear that 0 -order moment is the volume of G . Also, as a limit ase of (1),we an get d(G) = max
x∈G

dist(x, ∂G) . We also found that for a wide lass of domains
(−1)-order moment is, up to a onstant fator, the surfae area of G .Further, we remark a new geometrial funtional of G that reently appears in theelasti torsion problem. This is the seond order eulidean moment or, otherwise, theeulidean moment of inertia with respet to the boundary. Consider the boundary valueproblem

△u = −1 in G, u = 0 on ∂G,where −△ is the Dirihlet Laplaian, and letP(G) := 4

∫

G

u(x) dA,P(G) is exatly the torsional rigidity of a simply onneted domain G . Just as in [3℄ weall P(G) the torsional rigidity of G , even if n > 2 and/or G is not simply onneted.



152 R.G. SALAHUDINOVWe begin from the ase n = 2 . In 1995 F.G. Avkhadiev [1℄ proved the two-sidedinequality I(2, G) ≤ P(G) ≤ 64 I(2, G). (2)Later in [4℄ the left-side hand of the inequality was improved to 3I(2, G) < 2P(G) .Let us remark that an n-dimensional generalization of was reently proved in [5℄
2

n
I(2, G) ≤ P(G) ≤ CGI(2, G), (3)under the additional restrition that G satis�es a strong Hardy inequality with someonstant (see [6℄), where CG is a funtional on G . In partiular, the two-sided inequali-ties (2), (3) answered the question: �When is the torsional rigidity of a simply onneteddomain in R

n bounded?�, however for n ≥ 3 the question is still open.Another appliation of (1) was disovered by F.G. Avkhadiev in [2℄, this is alsogeneralize (2) on an n-dimentional ase. Consider the funtional
Kp,q(G) = sup

f∈C∞

0 (G)




∫∫

G

|f |q(x) dA




1/q




∫∫

G

|grad f |p(x) dA




1/p

.

Kp,q(G) appears in the Poinare � Sobolev's inequality. In [2℄ it was proved the twosided estimations for Kp,q(G) using (1).The �rst property of isoperimetri monotoniity was onjetured by J. Hersh [7℄,and it was proved by M.-Th. Kohler-Jobin [8℄. We shall onsider the following boundaryvalue problem [9℄
△v + βv + 1 = 0 in G, v = 0 on ∂G ( −∞ < β < λ1(G)) (4)and the orresponding funtional

Q(β) :=

∫

G

v dA.In partiular, we have Q(0) = P(G)/4 , Q(λ1) = πj4
0

/
(8λ2

1(G)) , and (−β)Q(β) −→
β→−∞

A(G) (see, for example, [12℄).By Q(β) we denote the radius of a ball in R
n with same Q(β) .Theorem A [8, 10℄. Let G be a bounded domain and not a ball in R

n , then Q(β)is a dereasing funtion on β . If G is a ball, then Q(β) is a onstant funtion.This monotoniity property ontains several well-known plane isoperimetri inequal-ities (see [12℄), whih inlude funtionals λ1(G) , P(G) , and A(G) . On the other hand,existene theorems for P(G) , and λ1(G) are expressing in terms of I(α, G) (see [1,11℄). Further, other monotoniity properties were disovered by C. Bandle [13℄, and byJ. Hersh [12℄. All of these isoperimetri monotoniity properties were onneted withthe solutions of the di�erential equations (4). So, the onjeture on the isoperimetrimonotoniity property of (1) is a geometrial analog of Theorem A. On the other hand,this work was intended as an attempt to bind ontinuously the well-known geometrialquantities of a domain in R
n suh as the surfae area, the volume, the radius of thelargest ball ontained in the domain.



ISOPERIMETRIC INEQUALITIES FOR LP -NORMS OF THE DISTANCE . . . 1531. Main results and orollariesLet α > n − 1 . Further it would be suitable to use a onstantα,n := [I(α − n, B1)]
−1

=
Γ(n /2)Γ(α + 1)

2πn/2 Γ(α − n + 1)Γ(n)
, (5)where B1 is a unit ball in R

n , and Γ(·) is Euler's Gamma funtion.Theorem 1. Let α ≥ β ≥ n−1 , and G is a domain in R
n suh that I(α−n, G) <

< ∞ . Then
∫

G

distα+β−n(x, ∂G) dA ≤
α,nβ,nα+β,n

∫

G

distα−n(x, ∂G) dA×

×

∫

G

distβ−n(x, ∂G) dA (6)The equality holds i� G is a ball in R
n .This kind of inequality was �rst proved in [14℄ for onformal moments of a simplyonneted plane domain. Also, in [14℄ a hain of plane isoperimetri inequalities wasobtained in order to get sharp lower bound in the torsional problem. This hain issimilar to `disrete isoperimetri monotoniity.' Note that the inequality (6) ontainsthree geometrial harateristis of G .Corollary 1. Let n = 2 and α = β = 1 in Theorem 1 , then inequality (6) turnsto the plane lassial isoperimetri inequalityA(G) ≤

L2(G)

4π
.In the next two assertions we prove isoperimetri monotoniity properties for integralfuntionals whih depend on dist(x, ∂G) .Theorem 2. i) Let ||dist(x, ∂G)||p < ∞ , then

||dist(x, ∂G)||p′

||dist(x, ∂G)||p′′

≤
||dist(x, ∂D1)||p′

||dist(x, ∂D1)||p′′

, (7)where p′ ≥ p ≥ p′′ ≥ 0 , p′ > p′′ , and D1 is a ball suh that ||dist(x, ∂D1)||p :=
||dist(x, ∂G)||p . Equality holds only for a ball in R

n .ii) Let ||dist−1(x, ∂G)||p < ∞ , then
||dist−1(x, ∂G)||p′

||dist−1(x, ∂G)||p′′

≤
||dist−1(x, ∂D2)||p′

||dist−1(x, ∂D2)||p′′

,where 0 ≤ p′ ≤ p ≤ p′′ < 1 , p′ < p′′ , and D2 is a ball suh that ||dist−1(x, ∂D2)||p :=
||dist−1(x, ∂G)||p . Equality holds i� G a ball in R

n .In the plane ase for p = p′′ = 0 the inequality (7) is an analogous of famousSt Venant's and Polya's inequality for P(G) . In the ase p = p′′ = 0 , and for p′ = 1 theinequality (7) was proved by J. Leavitt and P. Ungar [15℄, and in the ase p = p′′ = 0 ,and p′ ≥ 0 in [16℄.Using a result from [4℄ we an get the following lower estimations for the torsionalrigidity of a plane domain.



154 R.G. SALAHUDINOVCorollary 2. Let G be a simply onneted plane domain, and let P(G) is bounded,then we have for α ≥ 4

3π

α(α − 1)



α(α − 1)

2π

∫

G

distα−2(x, ∂G) dA




4/α

< P(G).Now we shall onsider a normalized version of I(α − n, G)

Iα(G) =



α,n

∫

G

distα−n(x, ∂G) dA




1/α

, (8)where α > n − 1 . In the Lebesgue's sense In−1(G) does not exist, however we give ameaningful de�nition for the ase α = n − 1 . In that ase we suppose that G has asmooth boundary ∂G , whih belongs to C1(G) , and we put
In−1(G) := lim

α→(n−1)+0
Iα(G) =



Γ(n /2)

2πn/2

∫

∂G

dS




1/(n−1)

, (9)where dS is the volume element of ∂G . On the other hand, we have
lim

α→∞
Iα(G) = d(G). (10)Therefore, d(G) < ∞ is the neessary ondition to apply our theorems. Further weprove that the evaluations given in (9) and (10) are well de�ned.Theorem 3. Let G is a domain in R

n , and suppose that Iα0(G) is bounded forsome α0 ≥ n − 1 . Theni) If G is not a ball in R
n , then Iα(G) is a stritly dereasing funtion of α for

α ≥ α0 and I∞(G) = d(G) .ii) If G is a ball in R
n , then Iα(G) is the radius of the ball G for all α ≥ n − 1 .Corollary 3. Let G is a domain in R

n suh that Iα(G) < ∞ for α ∈ [n − 1, n) ,then
In(G) ≤ Iα(G), and Iα(G) ≤ In−1(G).In the both equalities the equalities hold only for a ball in R

n .The last inequalities are a generalization of the lassial n-dimentional isoperimetriinequality, whih was proved by E. Shmidt [17℄, moreover, our assertion is a moresharper result. 2. Proofs of theoremsWe begin by proving some simple important properties of the funtional I(α, G) for
α > −1 .Throughout the proof we will use the following notations

Gλ(α) := {x ∈ G |distα(x, ∂G) > λ} ,

Γλ(α) := {x ∈ G |distα(x, ∂G) = λ}a(G) :=

∫

G

dA,

(11)



ISOPERIMETRIC INEQUALITIES FOR LP -NORMS OF THE DISTANCE . . . 155and denote by [·]S the Shwarz symmetrization of a domain in R
n , and of a funtionover the domain. We will usually �x a parameter α in our proof, and in those ases, forbrevity, we will drop α , for example, Gλ := Gλ(α) .Lemma 1. Let α > 0 , and G be an unbounded domain in R

n suh that I(α, G) <
< ∞ . Then: 1) a(Gλ) < ∞ for 0 < λ ≤ dα(G) , in partiular, d(G) < ∞ ;2) λ a(Gλ) −→

λ→0
0 .Proof. Let λ > 0 , then we have a hain of inequalitiesI(α, G) ≥

∫

Gλ

distα(x, ∂G) dA ≥ a(Gλ) inf
x∈Gλ

distα(x, ∂G) = λa(Gλ),so a(Gλ) ≤ λ−1 I(α, G) < ∞ .Further, note thatI(α, G) =

∫

Gλ

distα(x, ∂G) dA +

∫

G\Gλ

distα(x, ∂G) dA.Using the de�nition of integral by Lebesgues, and integration by parts, we obtain
∫

Gλ

distα(x, ∂G) dA =

a(Gλ)∫

0

λ(a) da = λ a(Gλ) +

dα(G)∫

λ

a(Gt) dt.The last integral bounded by I(α, G) . Hene a(Gλ) is integrable on [0, dα(G)] beausea(Gλ) ≥ 0 for all admissible λ . Therefore
0 ≤ lim

λ→0
λ a(Gλ) ≤ lim

λ→0

λ∫

0

a(Gt) dt = 0.In the sequel we will use some well-known properties of the level sets (see, forexample, [7℄), in partiular, we will frequently make use of the relations
∫

G

distβ(x, ∂G) dA =

dβ(G)∫

0

a(Gλ(β))dλ for β > 0,

∫

G

distβ(x, ∂G) dA = a(G)dβ(G) +

∞∫dβ(G)

a(Gλ(β)) dλ for β < 0,

da(Gλ(1))

dλ
= −

∫

Γλ(1)

dS.

(12)
Lemma 2. Let G be not a ball in R

n , and [·]S is the Shwarz symmetrization ofa domain Gλ . Then:1) ∫

Gλ

distα(x, ∂G) dA <

∫

[Gλ]S

distα(x, ∂[G]S) dA for α > 0;2) ∫

Gλ

distα(x, ∂G) dA >

∫

[Gλ]S

distα(x, ∂[G]S) dA for − 1 < α < 0.



156 R.G. SALAHUDINOVProof. Let x ∈ Gλ , then it is easy to hek thatdist(x, ∂G) = dist(x, ∂Gλ) + λ1/α. (13)The assertion follows by means of the Shwarz symmetrization of Gλ . Indeed, wehave [dist(·, ∂Gλ)]S (x) < dist(x, ∂[Gλ]S) for x ∈ [Gλ]S , and a ([Gλ]S) ≤ a (([G]S)λ)(see [7℄ ). Using (13) we obtain
[dist(·, ∂G)]S (x) =

[dist(·, ∂Gλ) + λ1/α
]

S
(x) = [dist(·, ∂Gλ)]S (x) + λ1/α <

< dist(x, ∂[Gλ]S) + λ1/α ≤ dist(x, ∂ ([G]S)λ) + λ1/α = dist(x, ∂[G]S).Using the basi properties of the Shwarz symmetrization, for α > 0 , we get
∫

Gλ

distα(x, ∂G) dA =

∫

[Gλ]S

([dist(·, ∂G)]S (x))
α

dA <

∫

[Gλ]S

distα(x, ∂[G]S) dA.In the ase −1 < α < 0 we get the same inequality, but with the revers sign.We now de�ne a ball D(⊂ R
n ), whih orresponds to the domain G . From (5) wean onlude that I(α, D) , for �xed α , is a stritly inreasing funtion of the radius of

D , and runs from 0 to ∞ with the radius of D . Therefore there is exatly one ball
D , up to an Eulidean motion, suh that I(α, D) = I(α, G) . Note that D depends of
α and G , and it plays very important role in our proof.Aording to Lemma 2 we shall distinguish two ases: 1) α ≥ 0 , and 2) −1 < α < 0 .Proposition 1. Let α ≥ 0 , and D is the ball de�ned as above, then1) I(γ, G) ≤ I(γ, D) for γ > α; (14)2) I(γ, G) ≥ I(γ, D) for 0 ≤ γ < α. (15)In the both ases the equalities hold if and only if G is a ball.Proof. To prove the assertion we apply the M.-Th. Kohler-Jobin symmetrizationwith a slight modi�ation. This method was introdued in [8, 10℄, and it was applied tostudy isoperimetri properties of the solutions of (4), λ1(G) , and the �rst eigenfuntionof (4) (see [3, 8, 10, 12℄).First of all we note that the ase α = 0 is the speial ase of Lemma 2 with
λ = 0 . Therefore let us �x α > 0 . Further note that the ase γ = 0 also is anotherinterpretation of Lemma 2 with λ = 0 . Indeed, we haveI(α, D) = I(α, G) ≤ I(α, [G]S),and using (5), we obtain I(0, D) = a(D) ≤ a([G]S) = a(G) = I(0, G) .Thus we an suppose γ > 0 .Set

i(λ) =

∫

Gλ

distα(x, ∂G) dA − λ a(Gλ).The orresponding value for D we denote by i∗(λ∗) .From (12) we obtain
i(λ) =

dα(G)∫

λ

a(Gt) dt,



ISOPERIMETRIC INEQUALITIES FOR LP -NORMS OF THE DISTANCE . . . 157and sine i(dα(G)) = 0 , we have
−

di(λ)

dλ
= a(Gλ). (16)An analogous omputation for Dλ∗ leads to

−
di∗(λ∗)

dλ∗
= a(Dλ∗).Now let us de�ne a orrespondene between Gλ and Dλ∗ by requiring that i(λ) =

= i∗(λ∗) . By the de�nition of D , for λ = λ∗ = 0 we have i(0) = I(α, G) = I(α, D) =
= i∗(0) .Beause Gλ is bounded, by Lemma 1, applying Lemma 2 to Gλ and Dλ∗ , we obtaina(Dλ∗) ≤ a(Gλ) . Let λ(i) be the inverse of i(λ) . Hene by the de�ned orrespondenewe must have the inequality

−
dλ∗(i)

di
≥ −

dλ(i)

di
.Again, using λ∗(I(α, D)) = 0 = λ(I(α, G)) , we obtain by integration from i0(> 0) toI(α, G)

λ∗(i) ≥ λ(i). (17)In partiular, we have the inequality d(D) ≥ d(G) , whih, indeed, follows immediatelyform Lemma 2 and the de�nition of D .From the de�nition (11) easily follows Gλ(β) = Gλα/β , where β > 0 . UsingLemma 1, (11), (12), and the equality −di(λ) = a(Gλ)dλ , by (16), we get
∫

G

distγ(x, ∂G)dA =

a(G)∫

0

λ(a)da =

dγ(G)∫

0

a(Gt(γ)) dt =

dγ(G)∫

0

a(Gtα/γ ) dt =

=
γ

α

dα(G)∫

0

tγ/α−1a(Gt) dt = −
γ

α

dα(G)∫

0

tγ/α−1 di(t) =
γ

α

I(α,G)∫

0

λγ/α−1(i) di. (18)In the both ases γ ≥ α , and 0 < γ < α , using (17), we obtain (14), and (15), butin the seond ase we suppose that I(γ, G) < ∞ . The ases of equality immediatelyfollows from Lemma 2.Proposition 2. Let −1 < α < 0 , γ ≤ 0 , and D is the ball de�ned in the sameway like above, then
1) I(γ, G) ≤ I(γ, D) for 0 ≥ γ > α;

2) I(γ, G) ≥ I(γ, D) for α > γ.Proof. We will use same ideas as in Proposition 1, but in quite di�erent situation.First, we note that if we �x α , then I(α, D) is an inreasing funtion of the radiusof D . Moreover, the diret alulation shows that the same assertion remains true fora(Dλ) with �xed α and λ . We will use this remark bellow. In partiular, from Lemma 2,and the de�nition of D , follow a(G) = a([G]S) ≤ a(D). (19)As in Proposition 1 the ase γ = 0 is the partiular ase of Lemma 2 with λ = 0 .Therefore let γ < 0 .
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Fig. 1Set
i(λ) =

∞∫

λ

â(Gt) dt,where â(Gλ) =






a(G) for 0 ≤ λ ≤ dα(G),a(Gλ) for λ > dα(G).In partiular, using (12) we get
i(0) = a(G)dα(G) +

∞∫dα(G)

a(Gt) dt = I(α, G).For the onveniene of the reader we give an illustration for the plane ase (see Fig. 1).The orresponding value for D we denote by i∗(λ∗) .Further, almost everywhere we have
−

di(λ)

dλ
= â(Gλ). (20)An analogous omputation for Dλ∗ leads to

−
di∗(λ∗)

dλ∗
= â(Dλ∗).Let us de�ne a orrespondene between Gλ and Dλ∗ by requiring that i(λ) =

= i∗(λ∗) . By the de�nition of D , for λ = λ∗ = 0 we have i(0) = I(α, G) = I(α, D) =
= i∗(0) .



ISOPERIMETRIC INEQUALITIES FOR LP -NORMS OF THE DISTANCE . . . 159Applying Lemma 2 to Gλ and Dλ∗ , the note at the beginning of the proof, and(19), we obtain â(Dλ∗) ≥ â(Gλ) . Let λ(i) be the inverse of i(λ) . Hene by the de�nedorrespondene we must have the inequality
−

dλ∗(i)

di
≤ −

dλ(i)

di
.Using λ∗(I(α, D)) = 0 = λ(I(α, G)) , we obtain by integration from i0(> 0) to I(α, G)

λ∗(i) ≤ λ(i). (21)From the de�nition (11) easily follows Gλ(β) = Gλα/β , where β < 0 . UsingLemma 1, (11), (12), and the equality −di(λ) = â(Gλ)dλ , by (20), we get
∫

G

distγ(x, ∂G) dA = a(G)dγ(G) +

∞∫dγ(G)

a(Gt(γ)) dt = a(G) (dα(G))
γ/α

+

+

∞∫dγ(G)

a(Gtα/γ ) dt =
γ

α

dα(G)∫

0

tγ/α−1a(G) dt +
γ

α

∞∫dα(G)

tγ/α−1a(Gt) dt =

=
γ

α

∞∫

0

tγ/α−1â(Gt) dt = −
γ

α

∞∫

0

tγ/α−1 di(t) =
γ

α

I(α,G)∫

0

(λ(i))γ/α−1 di. (22)Let α < γ < 0 , then γ/α − 1 < 0 . From (21) and (22) we easy obtainI(γ, G) =
γ

α

I(α,G)∫

0

(λ(i))γ/α−1di ≤
γ

α

I(α,D)∫

0

(λ∗(i))γ/α−1 di = I(γ, D),whih is the �rst inequality of our proposition. If we interhange α and γ , then theseond inequality follows from the �rst.This ompletes the proof of Proposition 2.Proof of Theorem 1 . We just apply Proposition 1 and Proposition 2 for the aseI(α, D) = I(α, G) .Proof of Theorem 2 . To prove the �rst part we apply Proposition 1 for the aseI(p, D) = I(p, D1) . The seond part follows from Proposition 2 for the ase I(p, D) =
= I(p, D2) .Proof of Theorem 3 . First note that the isoperimetri inequality Iβ(G) ≥ Iδ(G)for β ≤ n ≤ δ follows easily from Lemma 2, and moreover, we have the same lowerand the upper bound In(G) for Iβ(G) and Iδ(G) respetively. Now we prove thatthe de�nition (9) is well-de�ned for domains with smooth boundaries. For the brevitywe will use the denotation lim

α
:= lim

α→(n−1)+0
. Indeed, using (5), (11), and (12), and



160 R.G. SALAHUDINOVapplying a integration by parts, we obtain
lim
α

(Iα(G))α = lim
α

α,n

∫

G

distα−n(x, ∂G) dA =

= lim
α

α,n

a(G)∫

0

λ (a(Gλ(1)))α−n da(Gλ(1)) = lim
α

α,n

α − n + 1

d(G)∫

0

∫

Γλ(1)

dSdλα−n+1 =

= lim
α

Γ(α + 1)Γ(n/2)

2πn/2Γ(α − n + 2)Γ(n)
×

×



d(G)α−n+1

∫

Γd(G)(1)

dS

d(G)∫

0

λα−n+1d




∫

Γλ(1)

dS







 =
Γ(n /2)

2πn/2

∫

∂G

dS.Note that, from (5) and (8) we an see Iα(D) = R for all α ≥ n − 1 , where R isthe radius of the ball D .Let G is not a ball in R
n , and �x α(≥ α0) , then Iα(G) is bounded, by Proposition 1and Proposition 2. Like above we an show that there is exatly one ball D(α) in R

n ,up to an Eulidean motion, suh that Iα(G) = Iα(D(α)) . Further we onlude from (5)and (6) that Iγ(D(α)) = Iδ(D(α)) for all admissible γ and δ . Therefore for a small
ε > 0 , from Proposition 1 and Proposition 2 follow again that Iα+ε(G) is bounded, andthe ball D(α) gives a larger Iα+ε(·) than the domain G , that is

Iα+ε(G) < Iα+ε(D(α)) = Iα(D(α)) = Iα(G), (23)whih is the desired onlusion.To omplete the proof we have to prove (10). From the monotoni property of
Iα(G) with respet to the domain we get the inequality Iα(G) ≥ d(G) . Thus it wouldbe enough for us to establish the reverse inequality. Let Iα0(G) < ∞ for some α0 ≥ n .Then, applying (18) for α > α0 , we an write the equality

Iα(G) = (α,n I(α − n))
1/α

=



α,n
α − n

α0 − n

I(α0−n,G)∫

0

λ(α−α0)/(α0−n) (i) di





1/α

=

= d(G)




(α − n)α,n

(α0 − n) [d(G)]
−α0

I(α0−n,G)∫

0

[
λdα0−n(G)

](α−α0)/(α0−n)

(i) di





1/α

,where λ orresponds to the level sets of distα0−n(x, ∂G) . Thus we easily get
Iα(G) ≤ d(G)

(
(α − n) α,n

(α0 − n) [d(G)]−α0
I(α0 − n, G)

)1/α

.Tending α to the in�nity, we get Iα(G) ≤ d(G) .This �nishes the proof of the theorem.In the onlusion we have to make a remark about reverse inequalities in the theo-rems. Note that, using Proposition 1 we also an 'go bak' from Iα(G) to Iα−ε(G) , but
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G on the plane, suh that it has Iα(G) = ∞ and Iγ(G) is bounded for γ > α . In par-tiular, that means, we annot prove the reverse inequality Iα(G) > cIδ(G) for α > δwithout additional restritions on G , here c > 0 is a universal onstant.Without loss of generality we suppose α > 0 , and onsider the domain plaedbetween urves x = 1 , y = 0 , and y = x−1/α . There exists X ∈ R suh thatdist(z, ∂G) = y/2 , where z = x + iy , and x > X . Denote by GX the subdomainof G between x = 1 and x = X , we obtain

∫

G

distα(x, ∂G) dA ≈

∫

GX

distα(x, ∂G) dA +
1

2

X0∫

X

dx

x
−→

X0→∞
∞,nevertheless

∫

G

distα+ε(x, ∂G) dA ≤

∫

GX

distα+ε(x, ∂G) dA +

∞∫

X

dx

x1+ε/α
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