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UDK 517.5ISOPERIMETRIC INEQUALITIES FOR L

p -NORMSOF THE DISTANCE FUNCTION TO THE BOUNDARYR.G. SalahudinovAbstra
tThe main goal of the paper is to prove that Lp -norms of dist(x, ∂G) and dist−1(x, ∂G)are de
reasing fun
tions of p , where G is a domain in R
n(n ≥ 2) . We also obtain a sharp esti-mation of the rate of de
reasing for these norms using Lp �norms of the distan
e fun
tion for a
onsistent ball. We prove a new isoperimetri
 inequality for Lp �norms of dist(x, ∂G) , this in-equality is analogous to the inequality of Lp �norms of the 
onformal radii (see Avkhadiev F.G.,Salahudinov R.G. // J. of Inequal.& Appl. � 2002. � V. 7, No 4. � P. 593�601).Note that L2 -norm of dist(x, ∂G) plays an important role to investigate the torsionalrigidity in Mathemati
al Physi
s (see, for instan
e, Avkhadiev F.G. // Sbornik: Math. � 1998.� V. 189, No 12. � P. 1739�1748; Ba�nuelos R., van den Berg M., Carroll T. // J. London Math.So
. � 2002. � V. 66, No 2. � P. 499�512). As a 
onsequen
e we get new inequalities in thetorsional rigidity problem.Also we generalize the n-dimensional isoperimetri
 inequality.Introdu
tionLet G be a domain in R

n(n ≥ 2) . Let us 
onsider the following geometri
al fun
-tional [1, 2℄ I(p, G) =

∫

G

distp(x, ∂G) dA. (1)Here dist(x, ∂G) denotes the distan
e fun
tion from x ∈ G to the boundary ∂G , dAis the volume element dx1, . . . , dxn , and p ≥ −1 . In [1℄ it was noted, that it might bejusti�ed to 
all I(p, G) the p-order eulidean moment of G with respe
t to its boundary.First we remark some appli
ations of (1), and further we note 
onne
tion of (1) witha new 
on
eption of isoperimetri
al monotoni
ity.It is 
lear that 0 -order moment is the volume of G . Also, as a limit 
ase of (1),we 
an get d(G) = max
x∈G

dist(x, ∂G) . We also found that for a wide 
lass of domains
(−1)-order moment is, up to a 
onstant fa
tor, the surfa
e area of G .Further, we remark a new geometri
al fun
tional of G that re
ently appears in theelasti
 torsion problem. This is the se
ond order eulidean moment or, otherwise, theeulidean moment of inertia with respe
t to the boundary. Consider the boundary valueproblem

△u = −1 in G, u = 0 on ∂G,where −△ is the Diri
hlet Lapla
ian, and letP(G) := 4

∫

G

u(x) dA,P(G) is exa
tly the torsional rigidity of a simply 
onne
ted domain G . Just as in [3℄ we
all P(G) the torsional rigidity of G , even if n > 2 and/or G is not simply 
onne
ted.



152 R.G. SALAHUDINOVWe begin from the 
ase n = 2 . In 1995 F.G. Avkhadiev [1℄ proved the two-sidedinequality I(2, G) ≤ P(G) ≤ 64 I(2, G). (2)Later in [4℄ the left-side hand of the inequality was improved to 3I(2, G) < 2P(G) .Let us remark that an n-dimensional generalization of was re
ently proved in [5℄
2

n
I(2, G) ≤ P(G) ≤ CGI(2, G), (3)under the additional restri
tion that G satis�es a strong Hardy inequality with some
onstant (see [6℄), where CG is a fun
tional on G . In parti
ular, the two-sided inequali-ties (2), (3) answered the question: �When is the torsional rigidity of a simply 
onne
teddomain in R

n bounded?�, however for n ≥ 3 the question is still open.Another appli
ation of (1) was dis
overed by F.G. Avkhadiev in [2℄, this is alsogeneralize (2) on an n-dimentional 
ase. Consider the fun
tional
Kp,q(G) = sup

f∈C∞

0 (G)




∫∫

G

|f |q(x) dA




1/q




∫∫

G

|grad f |p(x) dA




1/p

.

Kp,q(G) appears in the Poin
are � Sobolev's inequality. In [2℄ it was proved the twosided estimations for Kp,q(G) using (1).The �rst property of isoperimetri
 monotoni
ity was 
onje
tured by J. Hers
h [7℄,and it was proved by M.-Th. Kohler-Jobin [8℄. We shall 
onsider the following boundaryvalue problem [9℄
△v + βv + 1 = 0 in G, v = 0 on ∂G ( −∞ < β < λ1(G)) (4)and the 
orresponding fun
tional

Q(β) :=

∫

G

v dA.In parti
ular, we have Q(0) = P(G)/4 , Q(λ1) = πj4
0

/
(8λ2

1(G)) , and (−β)Q(β) −→
β→−∞

A(G) (see, for example, [12℄).By Q(β) we denote the radius of a ball in R
n with same Q(β) .Theorem A [8, 10℄. Let G be a bounded domain and not a ball in R

n , then Q(β)is a de
reasing fun
tion on β . If G is a ball, then Q(β) is a 
onstant fun
tion.This monotoni
ity property 
ontains several well-known plane isoperimetri
 inequal-ities (see [12℄), whi
h in
lude fun
tionals λ1(G) , P(G) , and A(G) . On the other hand,existen
e theorems for P(G) , and λ1(G) are expressing in terms of I(α, G) (see [1,11℄). Further, other monotoni
ity properties were dis
overed by C. Bandle [13℄, and byJ. Hers
h [12℄. All of these isoperimetri
 monotoni
ity properties were 
onne
ted withthe solutions of the di�erential equations (4). So, the 
onje
ture on the isoperimetri
monotoni
ity property of (1) is a geometri
al analog of Theorem A. On the other hand,this work was intended as an attempt to bind 
ontinuously the well-known geometri
alquantities of a domain in R
n su
h as the surfa
e area, the volume, the radius of thelargest ball 
ontained in the domain.
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orollariesLet α > n − 1 . Further it would be suitable to use a 
onstant
α,n := [I(α − n, B1)]
−1

=
Γ(n /2)Γ(α + 1)

2πn/2 Γ(α − n + 1)Γ(n)
, (5)where B1 is a unit ball in R

n , and Γ(·) is Euler's Gamma fun
tion.Theorem 1. Let α ≥ β ≥ n−1 , and G is a domain in R
n su
h that I(α−n, G) <

< ∞ . Then
∫

G

distα+β−n(x, ∂G) dA ≤

α,n
β,n
α+β,n

∫

G

distα−n(x, ∂G) dA×

×

∫

G

distβ−n(x, ∂G) dA (6)The equality holds i� G is a ball in R
n .This kind of inequality was �rst proved in [14℄ for 
onformal moments of a simply
onne
ted plane domain. Also, in [14℄ a 
hain of plane isoperimetri
 inequalities wasobtained in order to get sharp lower bound in the torsional problem. This 
hain issimilar to `dis
rete isoperimetri
 monotoni
ity.' Note that the inequality (6) 
ontainsthree geometri
al 
hara
teristi
s of G .Corollary 1. Let n = 2 and α = β = 1 in Theorem 1 , then inequality (6) turnsto the plane 
lassi
al isoperimetri
 inequalityA(G) ≤

L2(G)

4π
.In the next two assertions we prove isoperimetri
 monotoni
ity properties for integralfun
tionals whi
h depend on dist(x, ∂G) .Theorem 2. i) Let ||dist(x, ∂G)||p < ∞ , then

||dist(x, ∂G)||p′

||dist(x, ∂G)||p′′

≤
||dist(x, ∂D1)||p′

||dist(x, ∂D1)||p′′

, (7)where p′ ≥ p ≥ p′′ ≥ 0 , p′ > p′′ , and D1 is a ball su
h that ||dist(x, ∂D1)||p :=
||dist(x, ∂G)||p . Equality holds only for a ball in R

n .ii) Let ||dist−1(x, ∂G)||p < ∞ , then
||dist−1(x, ∂G)||p′

||dist−1(x, ∂G)||p′′

≤
||dist−1(x, ∂D2)||p′

||dist−1(x, ∂D2)||p′′

,where 0 ≤ p′ ≤ p ≤ p′′ < 1 , p′ < p′′ , and D2 is a ball su
h that ||dist−1(x, ∂D2)||p :=
||dist−1(x, ∂G)||p . Equality holds i� G a ball in R

n .In the plane 
ase for p = p′′ = 0 the inequality (7) is an analogous of famousSt Venant's and Polya's inequality for P(G) . In the 
ase p = p′′ = 0 , and for p′ = 1 theinequality (7) was proved by J. Leavitt and P. Ungar [15℄, and in the 
ase p = p′′ = 0 ,and p′ ≥ 0 in [16℄.Using a result from [4℄ we 
an get the following lower estimations for the torsionalrigidity of a plane domain.



154 R.G. SALAHUDINOVCorollary 2. Let G be a simply 
onne
ted plane domain, and let P(G) is bounded,then we have for α ≥ 4

3π

α(α − 1)



α(α − 1)

2π

∫

G

distα−2(x, ∂G) dA




4/α

< P(G).Now we shall 
onsider a normalized version of I(α − n, G)

Iα(G) =




α,n

∫

G

distα−n(x, ∂G) dA




1/α

, (8)where α > n − 1 . In the Lebesgue's sense In−1(G) does not exist, however we give ameaningful de�nition for the 
ase α = n − 1 . In that 
ase we suppose that G has asmooth boundary ∂G , whi
h belongs to C1(G) , and we put
In−1(G) := lim

α→(n−1)+0
Iα(G) =



Γ(n /2)

2πn/2

∫

∂G

dS




1/(n−1)

, (9)where dS is the volume element of ∂G . On the other hand, we have
lim

α→∞
Iα(G) = d(G). (10)Therefore, d(G) < ∞ is the ne
essary 
ondition to apply our theorems. Further weprove that the evaluations given in (9) and (10) are well de�ned.Theorem 3. Let G is a domain in R

n , and suppose that Iα0(G) is bounded forsome α0 ≥ n − 1 . Theni) If G is not a ball in R
n , then Iα(G) is a stri
tly de
reasing fun
tion of α for

α ≥ α0 and I∞(G) = d(G) .ii) If G is a ball in R
n , then Iα(G) is the radius of the ball G for all α ≥ n − 1 .Corollary 3. Let G is a domain in R

n su
h that Iα(G) < ∞ for α ∈ [n − 1, n) ,then
In(G) ≤ Iα(G), and Iα(G) ≤ In−1(G).In the both equalities the equalities hold only for a ball in R

n .The last inequalities are a generalization of the 
lassi
al n-dimentional isoperimetri
inequality, whi
h was proved by E. S
hmidt [17℄, moreover, our assertion is a moresharper result. 2. Proofs of theoremsWe begin by proving some simple important properties of the fun
tional I(α, G) for
α > −1 .Throughout the proof we will use the following notations

Gλ(α) := {x ∈ G |distα(x, ∂G) > λ} ,

Γλ(α) := {x ∈ G |distα(x, ∂G) = λ}a(G) :=

∫

G

dA,

(11)
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hwarz symmetrization of a domain in R
n , and of a fun
tionover the domain. We will usually �x a parameter α in our proof, and in those 
ases, forbrevity, we will drop α , for example, Gλ := Gλ(α) .Lemma 1. Let α > 0 , and G be an unbounded domain in R

n su
h that I(α, G) <
< ∞ . Then: 1) a(Gλ) < ∞ for 0 < λ ≤ dα(G) , in parti
ular, d(G) < ∞ ;2) λ a(Gλ) −→

λ→0
0 .Proof. Let λ > 0 , then we have a 
hain of inequalitiesI(α, G) ≥

∫

Gλ

distα(x, ∂G) dA ≥ a(Gλ) inf
x∈Gλ

distα(x, ∂G) = λa(Gλ),so a(Gλ) ≤ λ−1 I(α, G) < ∞ .Further, note thatI(α, G) =

∫

Gλ

distα(x, ∂G) dA +

∫

G\Gλ

distα(x, ∂G) dA.Using the de�nition of integral by Lebesgues, and integration by parts, we obtain
∫

Gλ

distα(x, ∂G) dA =

a(Gλ)∫

0

λ(a) da = λ a(Gλ) +

dα(G)∫

λ

a(Gt) dt.The last integral bounded by I(α, G) . Hen
e a(Gλ) is integrable on [0, dα(G)] be
ausea(Gλ) ≥ 0 for all admissible λ . Therefore
0 ≤ lim

λ→0
λ a(Gλ) ≤ lim

λ→0

λ∫

0

a(Gt) dt = 0.In the sequel we will use some well-known properties of the level sets (see, forexample, [7℄), in parti
ular, we will frequently make use of the relations
∫

G

distβ(x, ∂G) dA =

dβ(G)∫

0

a(Gλ(β))dλ for β > 0,

∫

G

distβ(x, ∂G) dA = a(G)dβ(G) +

∞∫dβ(G)

a(Gλ(β)) dλ for β < 0,

da(Gλ(1))

dλ
= −

∫

Γλ(1)

dS.

(12)
Lemma 2. Let G be not a ball in R

n , and [·]S is the S
hwarz symmetrization ofa domain Gλ . Then:1) ∫

Gλ

distα(x, ∂G) dA <

∫

[Gλ]S

distα(x, ∂[G]S) dA for α > 0;2) ∫

Gλ

distα(x, ∂G) dA >

∫

[Gλ]S

distα(x, ∂[G]S) dA for − 1 < α < 0.



156 R.G. SALAHUDINOVProof. Let x ∈ Gλ , then it is easy to 
he
k thatdist(x, ∂G) = dist(x, ∂Gλ) + λ1/α. (13)The assertion follows by means of the S
hwarz symmetrization of Gλ . Indeed, wehave [dist(·, ∂Gλ)]S (x) < dist(x, ∂[Gλ]S) for x ∈ [Gλ]S , and a ([Gλ]S) ≤ a (([G]S)λ)(see [7℄ ). Using (13) we obtain
[dist(·, ∂G)]S (x) =

[dist(·, ∂Gλ) + λ1/α
]

S
(x) = [dist(·, ∂Gλ)]S (x) + λ1/α <

< dist(x, ∂[Gλ]S) + λ1/α ≤ dist(x, ∂ ([G]S)λ) + λ1/α = dist(x, ∂[G]S).Using the basi
 properties of the S
hwarz symmetrization, for α > 0 , we get
∫

Gλ

distα(x, ∂G) dA =

∫

[Gλ]S

([dist(·, ∂G)]S (x))
α

dA <

∫

[Gλ]S

distα(x, ∂[G]S) dA.In the 
ase −1 < α < 0 we get the same inequality, but with the revers sign.We now de�ne a ball D(⊂ R
n ), whi
h 
orresponds to the domain G . From (5) we
an 
on
lude that I(α, D) , for �xed α , is a stri
tly in
reasing fun
tion of the radius of

D , and runs from 0 to ∞ with the radius of D . Therefore there is exa
tly one ball
D , up to an Eu
lidean motion, su
h that I(α, D) = I(α, G) . Note that D depends of
α and G , and it plays very important role in our proof.A

ording to Lemma 2 we shall distinguish two 
ases: 1) α ≥ 0 , and 2) −1 < α < 0 .Proposition 1. Let α ≥ 0 , and D is the ball de�ned as above, then1) I(γ, G) ≤ I(γ, D) for γ > α; (14)2) I(γ, G) ≥ I(γ, D) for 0 ≤ γ < α. (15)In the both 
ases the equalities hold if and only if G is a ball.Proof. To prove the assertion we apply the M.-Th. Kohler-Jobin symmetrizationwith a slight modi�
ation. This method was introdu
ed in [8, 10℄, and it was applied tostudy isoperimetri
 properties of the solutions of (4), λ1(G) , and the �rst eigenfun
tionof (4) (see [3, 8, 10, 12℄).First of all we note that the 
ase α = 0 is the spe
ial 
ase of Lemma 2 with
λ = 0 . Therefore let us �x α > 0 . Further note that the 
ase γ = 0 also is anotherinterpretation of Lemma 2 with λ = 0 . Indeed, we haveI(α, D) = I(α, G) ≤ I(α, [G]S),and using (5), we obtain I(0, D) = a(D) ≤ a([G]S) = a(G) = I(0, G) .Thus we 
an suppose γ > 0 .Set

i(λ) =

∫

Gλ

distα(x, ∂G) dA − λ a(Gλ).The 
orresponding value for D we denote by i∗(λ∗) .From (12) we obtain
i(λ) =

dα(G)∫

λ

a(Gt) dt,
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e i(dα(G)) = 0 , we have
−

di(λ)

dλ
= a(Gλ). (16)An analogous 
omputation for Dλ∗ leads to

−
di∗(λ∗)

dλ∗
= a(Dλ∗).Now let us de�ne a 
orresponden
e between Gλ and Dλ∗ by requiring that i(λ) =

= i∗(λ∗) . By the de�nition of D , for λ = λ∗ = 0 we have i(0) = I(α, G) = I(α, D) =
= i∗(0) .Be
ause Gλ is bounded, by Lemma 1, applying Lemma 2 to Gλ and Dλ∗ , we obtaina(Dλ∗) ≤ a(Gλ) . Let λ(i) be the inverse of i(λ) . Hen
e by the de�ned 
orresponden
ewe must have the inequality

−
dλ∗(i)

di
≥ −

dλ(i)

di
.Again, using λ∗(I(α, D)) = 0 = λ(I(α, G)) , we obtain by integration from i0(> 0) toI(α, G)

λ∗(i) ≥ λ(i). (17)In parti
ular, we have the inequality d(D) ≥ d(G) , whi
h, indeed, follows immediatelyform Lemma 2 and the de�nition of D .From the de�nition (11) easily follows Gλ(β) = Gλα/β , where β > 0 . UsingLemma 1, (11), (12), and the equality −di(λ) = a(Gλ)dλ , by (16), we get
∫

G

distγ(x, ∂G)dA =

a(G)∫

0

λ(a)da =

dγ(G)∫

0

a(Gt(γ)) dt =

dγ(G)∫

0

a(Gtα/γ ) dt =

=
γ

α

dα(G)∫

0

tγ/α−1a(Gt) dt = −
γ

α

dα(G)∫

0

tγ/α−1 di(t) =
γ

α

I(α,G)∫

0

λγ/α−1(i) di. (18)In the both 
ases γ ≥ α , and 0 < γ < α , using (17), we obtain (14), and (15), butin the se
ond 
ase we suppose that I(γ, G) < ∞ . The 
ases of equality immediatelyfollows from Lemma 2.Proposition 2. Let −1 < α < 0 , γ ≤ 0 , and D is the ball de�ned in the sameway like above, then
1) I(γ, G) ≤ I(γ, D) for 0 ≥ γ > α;

2) I(γ, G) ≥ I(γ, D) for α > γ.Proof. We will use same ideas as in Proposition 1, but in quite di�erent situation.First, we note that if we �x α , then I(α, D) is an in
reasing fun
tion of the radiusof D . Moreover, the dire
t 
al
ulation shows that the same assertion remains true fora(Dλ) with �xed α and λ . We will use this remark bellow. In parti
ular, from Lemma 2,and the de�nition of D , follow a(G) = a([G]S) ≤ a(D). (19)As in Proposition 1 the 
ase γ = 0 is the parti
ular 
ase of Lemma 2 with λ = 0 .Therefore let γ < 0 .
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z
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y
G

Gλλ1/α

Fig. 1Set
i(λ) =

∞∫

λ

â(Gt) dt,where â(Gλ) =






a(G) for 0 ≤ λ ≤ dα(G),a(Gλ) for λ > dα(G).In parti
ular, using (12) we get
i(0) = a(G)dα(G) +

∞∫dα(G)

a(Gt) dt = I(α, G).For the 
onvenien
e of the reader we give an illustration for the plane 
ase (see Fig. 1).The 
orresponding value for D we denote by i∗(λ∗) .Further, almost everywhere we have
−

di(λ)

dλ
= â(Gλ). (20)An analogous 
omputation for Dλ∗ leads to

−
di∗(λ∗)

dλ∗
= â(Dλ∗).Let us de�ne a 
orresponden
e between Gλ and Dλ∗ by requiring that i(λ) =

= i∗(λ∗) . By the de�nition of D , for λ = λ∗ = 0 we have i(0) = I(α, G) = I(α, D) =
= i∗(0) .



ISOPERIMETRIC INEQUALITIES FOR LP -NORMS OF THE DISTANCE . . . 159Applying Lemma 2 to Gλ and Dλ∗ , the note at the beginning of the proof, and(19), we obtain â(Dλ∗) ≥ â(Gλ) . Let λ(i) be the inverse of i(λ) . Hen
e by the de�ned
orresponden
e we must have the inequality
−

dλ∗(i)

di
≤ −

dλ(i)

di
.Using λ∗(I(α, D)) = 0 = λ(I(α, G)) , we obtain by integration from i0(> 0) to I(α, G)

λ∗(i) ≤ λ(i). (21)From the de�nition (11) easily follows Gλ(β) = Gλα/β , where β < 0 . UsingLemma 1, (11), (12), and the equality −di(λ) = â(Gλ)dλ , by (20), we get
∫

G

distγ(x, ∂G) dA = a(G)dγ(G) +

∞∫dγ(G)

a(Gt(γ)) dt = a(G) (dα(G))
γ/α

+

+

∞∫dγ(G)

a(Gtα/γ ) dt =
γ

α

dα(G)∫

0

tγ/α−1a(G) dt +
γ

α

∞∫dα(G)

tγ/α−1a(Gt) dt =

=
γ

α

∞∫

0

tγ/α−1â(Gt) dt = −
γ

α

∞∫

0

tγ/α−1 di(t) =
γ

α

I(α,G)∫

0

(λ(i))γ/α−1 di. (22)Let α < γ < 0 , then γ/α − 1 < 0 . From (21) and (22) we easy obtainI(γ, G) =
γ

α

I(α,G)∫

0

(λ(i))γ/α−1di ≤
γ

α

I(α,D)∫

0

(λ∗(i))γ/α−1 di = I(γ, D),whi
h is the �rst inequality of our proposition. If we inter
hange α and γ , then these
ond inequality follows from the �rst.This 
ompletes the proof of Proposition 2.Proof of Theorem 1 . We just apply Proposition 1 and Proposition 2 for the 
aseI(α, D) = I(α, G) .Proof of Theorem 2 . To prove the �rst part we apply Proposition 1 for the 
aseI(p, D) = I(p, D1) . The se
ond part follows from Proposition 2 for the 
ase I(p, D) =
= I(p, D2) .Proof of Theorem 3 . First note that the isoperimetri
 inequality Iβ(G) ≥ Iδ(G)for β ≤ n ≤ δ follows easily from Lemma 2, and moreover, we have the same lowerand the upper bound In(G) for Iβ(G) and Iδ(G) respe
tively. Now we prove thatthe de�nition (9) is well-de�ned for domains with smooth boundaries. For the brevitywe will use the denotation lim

α
:= lim

α→(n−1)+0
. Indeed, using (5), (11), and (12), and



160 R.G. SALAHUDINOVapplying a integration by parts, we obtain
lim
α

(Iα(G))α = lim
α


α,n

∫

G

distα−n(x, ∂G) dA =

= lim
α


α,n

a(G)∫

0

λ (a(Gλ(1)))α−n da(Gλ(1)) = lim
α


α,n

α − n + 1

d(G)∫

0

∫

Γλ(1)

dSdλα−n+1 =

= lim
α

Γ(α + 1)Γ(n/2)

2πn/2Γ(α − n + 2)Γ(n)
×

×



d(G)α−n+1

∫

Γd(G)(1)

dS

d(G)∫

0

λα−n+1d




∫

Γλ(1)

dS







 =
Γ(n /2)

2πn/2

∫

∂G

dS.Note that, from (5) and (8) we 
an see Iα(D) = R for all α ≥ n − 1 , where R isthe radius of the ball D .Let G is not a ball in R
n , and �x α(≥ α0) , then Iα(G) is bounded, by Proposition 1and Proposition 2. Like above we 
an show that there is exa
tly one ball D(α) in R

n ,up to an Eu
lidean motion, su
h that Iα(G) = Iα(D(α)) . Further we 
on
lude from (5)and (6) that Iγ(D(α)) = Iδ(D(α)) for all admissible γ and δ . Therefore for a small
ε > 0 , from Proposition 1 and Proposition 2 follow again that Iα+ε(G) is bounded, andthe ball D(α) gives a larger Iα+ε(·) than the domain G , that is

Iα+ε(G) < Iα+ε(D(α)) = Iα(D(α)) = Iα(G), (23)whi
h is the desired 
on
lusion.To 
omplete the proof we have to prove (10). From the monotoni
 property of
Iα(G) with respe
t to the domain we get the inequality Iα(G) ≥ d(G) . Thus it wouldbe enough for us to establish the reverse inequality. Let Iα0(G) < ∞ for some α0 ≥ n .Then, applying (18) for α > α0 , we 
an write the equality

Iα(G) = (
α,n I(α − n))
1/α

=




α,n
α − n

α0 − n

I(α0−n,G)∫

0

λ(α−α0)/(α0−n) (i) di





1/α

=

= d(G)




(α − n)
α,n

(α0 − n) [d(G)]
−α0

I(α0−n,G)∫

0

[
λdα0−n(G)

](α−α0)/(α0−n)

(i) di





1/α

,where λ 
orresponds to the level sets of distα0−n(x, ∂G) . Thus we easily get
Iα(G) ≤ d(G)

(
(α − n) 
α,n

(α0 − n) [d(G)]−α0
I(α0 − n, G)

)1/α

.Tending α to the in�nity, we get Iα(G) ≤ d(G) .This �nishes the proof of the theorem.In the 
on
lusion we have to make a remark about reverse inequalities in the theo-rems. Note that, using Proposition 1 we also 
an 'go ba
k' from Iα(G) to Iα−ε(G) , but



ISOPERIMETRIC INEQUALITIES FOR LP -NORMS OF THE DISTANCE . . . 161we need to know that Iα−ε(G) is bounded. We now give a simple example of domain
G on the plane, su
h that it has Iα(G) = ∞ and Iγ(G) is bounded for γ > α . In par-ti
ular, that means, we 
annot prove the reverse inequality Iα(G) > cIδ(G) for α > δwithout additional restri
tions on G , here c > 0 is a universal 
onstant.Without loss of generality we suppose α > 0 , and 
onsider the domain pla
edbetween 
urves x = 1 , y = 0 , and y = x−1/α . There exists X ∈ R su
h thatdist(z, ∂G) = y/2 , where z = x + iy , and x > X . Denote by GX the subdomainof G between x = 1 and x = X , we obtain

∫

G

distα(x, ∂G) dA ≈

∫

GX

distα(x, ∂G) dA +
1

2

X0∫

X

dx

x
−→

X0→∞
∞,nevertheless

∫

G

distα+ε(x, ∂G) dA ≤

∫

GX

distα+ε(x, ∂G) dA +

∞∫

X

dx

x1+ε/α
< ∞,where ε > 0 . The generalization to an n-dimensional 
ase is obvious.The author is thankful to Professor F.G. Avkhadiev for interesting dis
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