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1 Введение
Пусть Ω — односвязная область на комплексной плоскости C и через 𝜕Ω обозначим
ее границу. Рассмотрим физический функционал жесткость кручения области Ω:

P(Ω) := 2

∫︁ ∫︁
Ω

𝑢(𝑥, 𝑦) 𝑑𝑥𝑑𝑦,

где функция напряжения 𝑢 = 𝑢(𝑥, 𝑦) — решение уравнения Пуассона △𝑢 = −2 с
граничным условием 𝑢 = 0.

Задача о двусторонней оценке жесткости кручения через один и тот же геометри-
ческий функционал области или некоторую их комбинацию возникла в работах Сен-
Венана. В 1998 г. эта задача в классе односвязных областей была решена Ф. Г. Ав-
хадиевым [1], им была получена двусторонняя оценка жесткости кручения в терми-
нах евклидова момента инерции I2(Ω):

I2(Ω) ≤ P(Ω) ≤ 64I2(Ω), I2(Ω) =

∫︁ ∫︁
Ω

𝜌(𝑧,Ω)2 𝑑𝑥𝑑𝑦, (1)

где 𝜌(𝑧,Ω) — функция расстояния от точки 𝑧 до границы области Ω.
Также известно большое число результатов, связанных с задачей Сен-Венана, в

классе выпуклых областей. Например, в 1951 г. Г.Полиа и Г. Сеге была доказана
оценка:

P(Ω) ≥ 1

2
A(Ω)𝜌(Ω)2, (2)

где 𝜌(Ω) := sup 𝜌(𝑧,Ω) : 𝑧 ∈ Ω}, A(Ω) — площадь области Ω.
В 1962 г. Е. Макаи получил обратную оценку:

P(Ω) <
4

3
A(Ω)𝜌(Ω)2. (3)

Одним из наиболее важных неравенств для жесткости кручения является нера-
венство Сен-Венана–Полиа

P(Ω) ≤ A(Ω)2

2𝜋
.

Л.Е. Пейн показал, что в действительности последнее неравенство является след-
ствием более сильного изопериметрического неравенства. А именно, справедливо
неравенство

A(Ω)2 − 2𝜋P(Ω) ≥ (A(Ω) − 2𝜋u(Ω))2,

где u(Ω) = sup𝑥,𝑦∈Ω 𝑢(𝑥, 𝑦). В обоих неравенствах равенство достигается тогда и
только тогда, когда Ω — круг.

Далее было установлено, что евклидовы моменты области и жесткость кручения
обладают схожими изопериметрическими свойствами. И в работе [2] были получены
аналоги неравенства Сен-Венана–Полиа для евклидовых моментов, также Р. Г. Сала-
худинов [6] получил аналоги неравенство Пейна для евклидовых моментов порядка 𝑞:

Теорема A. Пусть Ω – односвязная область конечной площади и I1(Ω) < +∞,
𝑞 ≥ 1. Тогда имеет место неравенство

I𝑞(Ω) − 2𝜋𝜌(Ω)𝑞+2

(𝑞 + 1)(𝑞 + 2)
≤ 2𝜌(Ω)𝑞−1

(𝑞 + 1)
(I1(Ω) − 𝜋𝜌(Ω)3

3
).
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Теорема B. Пусть Ω – односвязная область конечной площади и 𝑞 ≥ 0. Тогда
имеет место неравенство

I𝑞(Ω) − 2𝜋𝜌(Ω)𝑞+2

(𝑞 + 1)(𝑞 + 2)
≤ 𝜌(Ω)𝑞

(𝑞 + 1)
(A(Ω) − 𝜋𝜌(Ω)2).

I𝑞(Ω) − 2𝜋𝜌(Ω)𝑞+2

(𝑞 + 1)(𝑞 + 2)
≥ l(𝜌(Ω))𝜌(Ω)𝑞+1

(𝑞 + 1)
,

где l(𝜌(Ω)) длина границы множества уровня, расположенного на расстоянии
𝜌(Ω) от 𝜕Ω.

Случаи равенства в двух теоремах совпадают со случаями равенства в неравен-
стве Боннезена (т. е. экстремальные области Ω являются выпуклыми и состоят из
прямоугольника и двух полукругов).

Обобщения по размерности приведенных неравенств с точными константами неиз-
вестны. Некоторое обобщение неравенства (1) на многомерный случай было получено
в работе [3] для областей, удовлетворяющих строгому условию Харди.

Основными результатами данной работы являются обобщение теоремы А и тео-
ремы В на 3-мерный случай в классе выпуклых тел.
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2 Основные обозначения и определения
Рассмотрим в R3 выпуклый компакт 𝐺. Обозначим через V(𝐺), S(𝐺) объем и пло-
щадь поверхности тела 𝐺 соответственно. Определим в 𝐺 множество

𝐺(𝑡) := {𝑧 ∈ 𝐺|𝜌(𝑧,𝐺) > 𝑡}, (0 ≤ 𝑡 < 𝜌(𝐺)),

где 𝜌(𝑧,𝐺) — расстояние от точки 𝑧 до границы 𝜕𝐺 области 𝐺 и 𝜌(𝐺) := sup𝑧∈𝐺 𝜌(𝑧,𝐺),
которое называется внутренним параллельным множеством множества 𝐺 на рассто-
янии 𝑡 (см. рис.1).
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Рис. 1

Будем использовать следующие обозначения для оценок на параллельных мно-
жествах функции расстояния 𝜌(𝑧,𝐺):

𝐺(𝜌) := {𝑧 ∈ 𝐺|𝜌(𝑧,𝐺) = 𝜌(𝐺)}, 𝑉 (𝑡) := V(𝐺(𝑡)) =

∫︁
𝐺(𝑡)

𝑑𝑉,

𝑆(𝑡) := S(𝐺(𝑡)) (0 ≤ 𝑡 < 𝜌(𝐺)), S(𝜌(𝐺)) := lim
𝑡→𝜌(𝐺)

𝑆(𝑡).

Например, для прямоугольного параллелепипеда с ребрами 𝑎, 𝑏, 𝑐 (𝑎 < 𝑏 < 𝑐)
множеством 𝐺(𝜌) является прямоугольник 𝐴𝐵𝐶𝐷, а в случае 𝑏 = 𝑎 отрезок 𝑀𝑁 , в
обоих случаях 𝜌(𝐺) =

𝑎

2
= 𝑅 (см. рис. 2).

Известно [4], что для множеств 𝐺(𝑡) площадь поверхности 𝑆(𝑡) и объем 𝑉 (𝑡) свя-
заны простым соотношением:

−𝑑𝑉 (𝑡)

𝑑𝑡
= 𝑆(𝑡). (4)

Т.е. площадь поверхности параллельного тела есть производная объема параллель-
ного тела по параметру 𝑡.

4



a

b

c
r

r
rr

C

D

A

B

R

a

c
r

r
rr

r

R
a

M

rN

HH
HH

H
HH

Рис. 2

Определим евклидовый момент тела 𝐺 относительно его границы порядка 𝑝 ≥ 0
как геометрический функционал:

I𝑝(𝐺) =

∫︁ ∫︁
𝐺

𝜌(𝑧,𝐺)𝑝 𝑑𝑥𝑑𝑦,

где 𝜌(𝑧,𝐺) — функция расстояния от точки 𝑧 до границы тела 𝐺.
Используя определение интеграла по Лебегу и интегрирование по частям, функ-

ционал I𝑝(𝐺) можно представить в виде:

I𝑝(𝐺) =

∫︁ 𝑉 (𝐺)

0

𝑡𝑝(𝑉 )𝑑𝑉 = 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1𝑉 (𝑡)𝑑𝑡. (5)

Функционал евклидовый момент порядка 𝑝 ≥ 0 можно рассматривать как есте-
ственное обобщение объема тела 𝐺.
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3 Аналог неравенства Боннезена. Неравенство Дис-
канта.

В двумерном случае хорошо известно справедливое для произвольной односвязной
области Ω неравенство Боннезена (например, [5]):

𝜌(Ω)L(Ω) ≥ A(Ω) + A(𝐷𝜌),

где A(Ω), L(Ω) — площадь и длина границы области Ω, 𝐷𝜌 — круг радиуса 𝜌(Ω) .
Экстремальной областью в этом неравенстве является круг и область типа Боннезе-
на, состоящая из двух полукругов радиуса 𝑟 и прямоугольника со сторонами 2𝑟 и 𝑑
(см. рис. 3).

d r

Рис. 3

Обобщением неравенства Боннезена на многомерный случай служит неравенство,
справедливое для выпуклого компакта 𝐺:

𝜌(𝐺)S(𝐺) ≥ V(𝐺) + (𝑛− 1)V(𝐵𝜌), (6)

где 𝐵𝜌 — шар радиуса 𝜌(𝐺). Равенство достигается только в том случае, когда 𝐺
совпадает с 𝐵𝜌.

Неравенство (6) является следствием неравенства Дисканта (например, [5]):

V
𝑛

𝑛−1 (𝐺, 𝑛− 1) −V(𝐺)V
1

𝑛−1 (𝐵) ≥ (V
1

𝑛−1 (𝐺, 𝑛− 1) − 𝜌(𝐺)V
1

𝑛−1 (𝐵))𝑛, (7)

где V(𝐺, 𝑛 − 1) — (𝑛 − 1)-мерный объем тела 𝐺 и 𝑛V(𝐺, 𝑛 − 1) = S(𝐺), 𝐵 — шар
единичного радиуса. Равенство достигается только в случае шара.

Приведем доказательство неравенства (6) для случая 𝑛 = 3 (доказательство в
общем случае приведено, например, в [5]).

Введем функцию 𝑓(𝑥) = (𝑥− 𝑎)3 − 𝑥3 + 3𝑥2𝑎 и покажем, что она возрастает при
𝑎 > 0 на интервале [𝑎;∞). Для этого оценим производную 𝑓 ′(𝑥) = 3(𝑥 − 𝑎)2 − 3𝑥2 +
6𝑥𝑎 = 3𝑎2, очевидно, при 𝑎 > 0 справедливо 𝑓 ′(𝑥) > 0.

Положим теперь 𝑥 =

(︂
S(𝐺)

3

)︂ 1
2

и 𝑎 = 𝜌(𝐺)V
1
2 (𝐵). Из того, что 𝐵𝜌 ⊂ 𝐺, следует

S(𝐺)

3
≥ S(𝐵𝜌)

3
=

𝜌2(𝐺)S(𝐵)

3
=

4𝜋𝜌2(𝐺)

3
= 𝜌2(𝐺)V(𝐵).

Таким образом, имеем 𝑥 ≥ 𝑎. Оценим правую часть неравенства (7) при 𝑛 = 3:

(𝑥− 𝑎)3 = 𝑥3 − 3𝑥2𝑎 + 𝑓(𝑥) ≥ 𝑥3 − 3𝑥2𝑎 + 𝑓(𝑎) = 𝑥3 − 3𝑥2𝑎 + 2𝑎3 =
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=

(︂
S(𝐺)

3

)︂ 3
2

− S(𝐺)𝜌(𝐺)V
1
2 (𝐵) + 2𝜌3(𝐺)V

3
2 (𝐵).

Из последнего неравенства и (7) при 𝑛 = 3 следует

(︂
S(𝐺)

3

)︂ 3
2

−V(𝐺)V
1
2 (𝐵) ≥

(︂
S(𝐺)

3

)︂ 3
2

− S(𝐺)𝜌(𝐺)V
1
2 (𝐵) + 2𝜌3(𝐺)V

3
2 (𝐵).

С помощью очевидных сокращений из последнего неравенства получим (6). Слу-
чай равенства в неравенстве (6) совпадает со случаем равенства в неравенстве Дис-
канта.

Для доказательства неравенства Дисканта рассмотрим семейство функций 𝐻𝜆(𝑢) =
𝐻𝐺(𝑢)− 𝜆𝐻𝐵(𝑢), где 𝐻𝐺(𝑢), 𝐻𝐵(𝑢) — опорные функции 𝐺 и 𝐵. Из того, что 𝐵𝜌 ⊂ 𝐺,
следует 𝐻𝜆(𝑢) > 0 при 0 ≤ 𝜆 ≤ 𝜌(𝐺). Таким образом, 𝐻𝜆(𝑢) является опорной
функцией некоторого выпуклого компакта 𝐶𝜆, который образован из пересечения
конечного числа полупространств.

По теореме Фубини величину V(𝐺) можем представить в виде

V(𝐺) = 𝑛

∫︁ 𝜌(𝐺)

0

𝑉 (𝐶𝜆, 𝑛− 1) 𝑑𝜆. (8)

Используя обобщение теоремы Брунна-Минковского ([5], с.147), получим нера-
венство

V
1

𝑛−1 (𝐶𝜆 + 𝜆𝐵, 𝑛− 1) ≥ V
1

𝑛−1 (𝐶𝜆, 𝑛− 1) + 𝜆V
1

𝑛−1 (𝐵). (9)

Из того, что 𝐶𝜆 + 𝜆𝐵 ⊂ 𝐺, следует

V(𝐶𝜆 + 𝜆𝐵, 𝑛− 1) ≤ V(𝐺, 𝑛− 1). (10)

Тогда из (9) и (10) получим

V
1

𝑛−1 (𝐶𝜆, 𝑛− 1) ≤ V
1

𝑛−1 (𝐺, 𝑛− 1) − 𝜆V
1

𝑛−1 (𝐵).

Подставим последнюю оценку в (8) и после интегрирования получим неравенство
Дисканта.
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4 Оценки на множествах уровня функции расстояния.
Лемма 4.1 Пусть 𝐺 выпуклое тело конечного объема. Тогда справедлива следую-
щая оценка

S(𝜌(𝐺)) +
4

3
𝜋(𝜌(𝐺) − 𝑡)2 ≤ 𝑉 (𝑡)

𝜌(𝐺) − 𝑡
≤ V(𝐺)

𝜌(𝐺)
+

4

3
𝑡(𝑡− 2𝜌(𝐺)),

где 0 ≤ 𝑡 < 𝜌(𝐺). Равенство возможно только в случае шара.

Доказательство. Запишем неравенство (6) при 𝑛 = 3 в более удобной форме:

S(𝐺) ≥ V(𝐺)

𝜌(𝐺)
+

8

3
𝜋𝜌(𝐺)2, (11)

Так как тело 𝐺 выпуклое, то все множества 𝐺(𝑡) (0 ≤ 𝑡 < 𝜌(𝐺)) также выпуклые,
поэтому к 𝐺(𝑡) можем применить неравенство (11), имеем

𝑆(𝑡) ≥ 𝑉 (𝑡)

𝜌(𝐺(𝑡))
+

8

3
𝜋𝜌(𝐺(𝑡))2. (12)

Далее, известно (например, [4]), что справедливы равенства

−𝑑𝑉 (𝑡)

𝑑𝑡
= 𝑆(𝑡), 𝜌(𝐺(𝑡)) = 𝜌(𝐺) − 𝑡. (13)

Тогда неравенство (12) для множества 𝐺(𝑡) примет вид

−𝑉 ′(𝑡)(𝜌(𝐺) − 𝑡) ≥ 𝑉 (𝑡) +
8

3
𝜋(𝜌(𝐺) − 𝑡)3.

Последнее неравенство эквивалентно

𝑑

𝑑𝑡

[︂
𝑉 (𝑡)

𝜌(𝐺) − 𝑡

]︂
≤ −8

3
𝜋(𝜌(𝐺) − 𝑡). (14)

Функция 𝑉 (𝑡) непрерывна и дифференцируема на интервале [0;𝜌(𝐺)) [4]. Следова-
тельно, функция 𝑉 (𝑡)(𝜌(𝐺) − 𝑡)−1 может быть представлена как определенный ин-
теграл с переменным верхним пределом от своей производной. Из неравенства (14)
вытекает, что 𝑉 (𝑡)(𝜌(𝐺) − 𝑡)−1 является неотрицательной и убывающей функцией.
Тогда существует предел функции 𝑉 (𝑡)(𝜌(𝐺) − 𝑡)−1 при 𝑡 → 𝜌(𝐺). Из определения
S(𝜌(𝐺)) и равенства V(𝜌(𝐺)) = 0 вычислим

lim
𝑡→𝜌(𝐺)

𝑉 (𝑡)

𝜌(𝐺) − 𝑡
= S(𝜌(𝐺)).

Проинтегрируем обе части неравенства (14) по 𝑡 ∈ [0; 𝑡1] и 𝑡 ∈ [𝑡2,𝜌(𝐺)], учитывая
последнее выражение, получим необходимые неравенства. Случаи равенства в обоих
неравенствах совпадают со случаем равенства в неравенстве (6).

�
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5 Двусторонняя оценка евклидовых граничных мо-
ментов выпуклых тел.

Теорема 5.1 Пусть 𝐺 — выпуклое тело конечного объема и 𝑝 ≥ 0. Тогда справед-
ливы следующие неравенства:

I𝑝(𝐺) ≤ V(𝐺)𝜌(𝐺)𝑝

𝑝 + 1
− 4𝜋𝑝(𝑝 + 5)𝜌(𝐺)𝑝+3

3(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

и

I𝑝(𝐺) ≥ S(𝜌(𝐺))𝜌(𝐺)𝑝+1

𝑝 + 1
+

8𝜋𝜌(𝐺)𝑝+3

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
.

Равенство возможно только в случае шара.

Доказательство. Воспользуемся представлением (5) для I𝑝(𝐺) и верхней оценкой из
леммы 4.1, тогда получим

I𝑝(𝐺) = 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1𝑉 (𝑡)𝑑𝑡 ≤ 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1

(︂
V(𝐺)

𝜌(𝐺)
+

4

3
𝑡(𝑡− 2𝜌(𝐺))

)︂
(𝜌(𝐺) − 𝑡)𝑑𝑡.

Из последнего выражения, получим правую часть первого неравенства теоремы.
Покажем справедливость второго неравенства теоремы. Для этого воспользуемся

нижней оценкой из леммы 4.1, имеем

I𝑝(𝐺) = 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1𝑉 (𝑡)𝑑𝑡 ≥ 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1

(︂
S(𝜌(𝐺)) +

4

3
𝜋(𝜌(𝐺) − 𝑡)2

)︂
(𝜌(𝐺) − 𝑡)𝑑𝑡.

После несложных вычислений получим необходимое неравенство.
Случай равенства в обоих неравенствах совпадает со случаем равенства в (6).

Этим завершается доказательство теоремы.

�

Хорошо известно, что на плоскости такие функционалы как площадь, длина гра-
ницы и радиус наибольшего круга, содержащегося в выпуклой области связаны про-
стым неравенством:

A(Ω) ≥ L(Ω)𝜌(Ω)

2
. (15)

Доказательство этого неравенства достаточно вести на примере выпуклого мно-
гоугольника. В трехмерном случае применение такого же метода доказательства для
многогранников приводит к неравенству (доказательство приведено ниже):

V(𝐺) ≥ S(𝐺)

3
𝜌(𝐺). (16)

Таким образом, неравенство (15) легко обобщается по размерности.
Следующее неравенство дает некоторое уточнение неравенства (15)

A(Ω) ≥ L(Ω) + l(𝜌(Ω))

2
𝜌(Ω), (17)

9



где l(𝜌(Ω)) длина границы множества, находящегося на расстоянии 𝜌(Ω) от гра-
ницы области Ω. Естественным является предположение о существовании подобного
неравенства для выпуклых тел в трехмерном пространстве. Однако, в отличие от
предыдущей простой аналогии между неравенствами (15) и (16), здесь без нало-
жения дополнительных условий на тело, полный аналог неравенства (17) пока не
доказан. Рассмотрим подробнее некоторые особенности, которые возникают в этом
случае.

Любая плоская выпуклая область Ω с ненулевым значением функционала l(𝜌(Ω))
содержит в себе некоторый прямоугольник со сторонами 𝑑 и 2𝑟, где 𝑟 — это радиус
наибольшего круга, содержащегося в этой области (см. рис. 4). Остальные части,
составляющие область Ω достаточно произвольны, главное, чтобы область Ω не вы-
ходила из класса выпуклых областей.

d
r
r

Рис. 4

В случае любого сколь угодно малого добавления площади к этому прямоугольни-
ку, например, в виде треугольника (см. рис. 5), сразу же следует увеличение значения
функционала 𝜌(Ω) до некоторого 𝑅:

r d
R

Рис. 5

Также заметим, если сжать область Ω вдоль 𝑑, то полученное таким образом
новое множество может быть только выпуклым и отсюда следует, что для него будет
справедливо неравенство (15).

Теперь рассмотрим аналогичные случаи в трехмерном пространстве. А именно,
любое выпуклое тело 𝐺 с ненулевым значением функционала l(𝜌(𝐺)) содержит в
себе цилиндр высоты ℎ и радиусом основания 𝜌(𝐺) = 𝑟. В отличие от двумерного
случая, здесь мы можем найти такое добавление к цилиндру, что значение 𝑟 при
этом не изменится, например:

r r r r

��

#
##

�
�

��

r r
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Также существенные отличия от двумерного пространства наблюдаются при сжа-
тии тела 𝐺 вдоль отрезка ℎ, который проходит через центр вписанного шара. Это
обстоятельство поясним на конкретном примере.

Рассмотрим в качестве поперечного сечения тела 𝐺 треугольник описанный около
окружности радиуса 𝑟. Тогда та часть тела 𝐺, которая содержит в себе цилиндр,
может быть образована путем растяжения сечения вдоль ℎ. Очевидно, построенная
таким способом фигура может быть только треугольной призмой (см. рис. 7).

h
*

*

r

Рис. 7

Другой метод построения этой части тела 𝐺 состоит из одновременного растя-
жения сечения вдоль ℎ и его вращения. Этот способ приводит к более сложным
и достаточно разнообразным фигурам. Такие условия позволяют утверждать, что
множество, полученное из 𝐺 после удаления той части, которая содержит цилиндр,
может оказаться невыпуклым и тогда справедливость неравенства (16) для такого
множества не доказана.

Из последних замечаний видно, что в отличие от достаточно простого доказатель-
ства неравенства (16), для обобщения неравенства (17) уже требуются более тонкие
рассуждения.

Удалось получить некоторые результаты для тел с ненулевым значением функ-
ционала S(𝜌(𝐺)). Если рассматривать этот случай на примере многогранника, тогда
такие тела содержат в себе произвольную призму высоты 2𝑅 (𝑅 = 𝜌(𝐺)) (например,
см. рис. 8).

Покажем, что для таких фигур справедлива

Лемма 5.1 Для выпуклого компакта 𝐺 справедливо неравенство

V(𝐺) ≥ S(𝐺) + S(𝜌(𝐺))

3
𝜌(𝐺). (18)

Равенство возможно в случае шара и описанного многогранника.

11
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Рис. 8

Доказательство. Прежде чем доказывать лемму, отметим частный случай нера-
венства (18). Построим доказательство для произвольного выпуклого многогранника
𝑄 (например, рис. 9).

Далее будем использовать обозначения 𝑅 = 𝜌(𝑄), 𝑟 = 𝜌(𝑄(𝑡)), через 𝑄𝑖 (𝑖 = 1, 𝑛)
обозначим 𝑖-ую грань многогранника 𝑄. Предположим, что шар наибольшего радиу-
са 𝑅 с центром в точке 𝑂 касается всех граней за исключением грани 𝑄𝑛. Тогда объем
многогранника можем представить в виде суммы пирамид с вершинами в точке 𝑂 и
основаниями 𝑄𝑖:

V(𝑄) =
1

3
(𝑅

𝑛−1∑︁
𝑖=1

A(𝑄𝑖) + ℎA(𝑄𝑛)),

где ℎ это расстояние от вершины 𝑂 до грани 𝑄𝑛. Из очевидного неравенства ℎ ≥ 𝑅
следует

V(𝑄) ≥ 1

3
𝑅

𝑛∑︁
𝑖=1

A(𝑄𝑖) =
1

3
S(𝑄)𝑅.

Из построенного доказательства видно, что равенство выполняется только в слу-
чае описанного многогранника и шара.

J
J
J
J
J
J
J
Jrr

O
















A
AA

R

h

A
AA

PPP

O

Qi

r r

r
r
r

R-r

r

Qi(t)

















Рис. 9

12



Перейдем к доказательству основного неравенства.
Далее, зафиксируем значение 𝑡 = 𝑅 − 𝑟 (0 ≤ 𝑡 ≤ 𝑅) и соответствующее ему мно-

жество уровня 𝑄(𝑡). Тогда многогранник 𝑄 можем разбить на усеченные пирамиды с
основаниями 𝑄𝑖 и 𝑄𝑖(𝑡) (𝑖 = 1, 𝑛) и пирамиды с вершинами в точке 𝑂 и основаниями
𝑄𝑖(𝑡) (𝑖 = 1, 𝑛) (см. рис. 9), таким образом найдем объем многогранника 𝑄:

V(𝑄) =
1

3
(𝑅− 𝑟)

𝑛∑︁
𝑖=1

(︁
A(𝑄𝑖) +

√︀
A(𝑄𝑖)A(𝑄𝑖(𝑡)) + A(𝑄𝑖(𝑡))

)︁
+

+
1

3

𝑛−1∑︁
𝑖=1

(𝑟A(𝑄𝑖(𝑡)) + (ℎ− (𝑅− 𝑟))A(𝑄𝑛(𝑡))).

Как и ранее, учтем неравенство ℎ ≥ 𝑅, тогда получим оценку

V(𝑄) ≥ 1

3
(𝑅− 𝑟)

𝑛∑︁
𝑖=1

(︁
A(𝑄𝑖) +

√︀
A(𝑄𝑖)A(𝑄𝑖(𝑡)) + A(𝑄𝑖(𝑡))

)︁
+

1

3
𝑟

𝑛∑︁
𝑖=1

A(𝑄𝑖(𝑡)) =

=
1

3
(𝑅− 𝑟)

𝑛∑︁
𝑖=1

(︁
A(𝑄𝑖) +

√︀
A(𝑄𝑖)A(𝑄𝑖(𝑡))

)︁
+

1

3
𝑅

𝑛∑︁
𝑖=1

A(𝑄𝑖(𝑡)) =

=
1

3

(︃
(𝑅− 𝑟)S(𝑄) + 𝑅S(𝑄(𝑡)) + (𝑅− 𝑟)

𝑛∑︁
𝑖=1

√︀
A(𝑄𝑖)A(𝑄𝑖(𝑡))

)︃
.

Так как последнее неравенство справедливо для 0 ≤ 𝑡 ≤ 𝑅, тогда при 𝑡 → 𝑅
будем иметь

V(𝑄) ≥ lim
𝑡→𝑅

1

3

(︃
(𝑅− 𝑟)S(𝑄) + 𝑅S(𝑄(𝑡)) + (𝑅− 𝑟)

𝑛∑︁
𝑖=1

√︀
A(𝑄𝑖)A(𝑄𝑖(𝑡))

)︃
=

=
1

3
𝑅

(︃
S(𝑄) + S(𝑄(𝑅)) +

𝑛∑︁
𝑖=1

√︀
A(𝑄𝑖)A(𝑄𝑖(𝑅))

)︃
≥ 1

3
𝑅 (S(𝑄) + S(𝑄(𝑅))) .

Последняя оценка эквивалентна неравенству из леммы.
В этом случае равенство возможно при ℎ = 𝑅, т. е. в случае описанного много-

гранника и шара.

�

Лемма 5.1 позволяет получить следующую оценку

Лемма 5.2 Для выпуклого компакта 𝐺 конечного объема справедливо неравенство

V(𝑡)

(𝜌(𝐺) − 𝑡)3
≥ S(𝜌(𝐺))

(︂
1

(𝜌(𝐺) − 𝑡)2
− 1

𝜌2(𝐺)

)︂
+

V(𝐺)

𝜌3(𝐺)
.

Равенство возможно в случае шара и описанного многогранника.

13



Доказательство. Так как тело 𝐺 выпуклое, то все множества 𝐺(𝑡) (0 ≤ 𝑡 < 𝜌(𝐺))
также выпуклые, поэтому к 𝐺(𝑡) можем применить неравенство из леммы 5.1, имеем

𝑉 (𝑡) ≥ 𝑆(𝑡) + S(𝜌(𝐺))

3
𝜌(𝐺(𝑡)). (19)

Как и ранее, воспользуемся выражениями (16), тогда неравенство (19) для множества
𝐺(𝑡) примет вид

𝑉 (𝑡) ≥ −𝑉 ′(𝑡) + S(𝜌(𝐺))

3
(𝜌(𝐺) − 𝑡).

Последнее неравенство эквивалентно

𝑑

𝑑𝑡

[︂
𝑉 (𝑡)

(𝜌(𝐺) − 𝑡)3

]︂
≥ 𝑑

𝑑𝑡

[︂
S(𝜌(𝐺))

(𝜌(𝐺) − 𝑡)2

]︂
.

Проинтегрируем обе части последнего неравенства по 𝑡 ∈ [0; 𝑡1], тогда получим

𝑉 (𝑡)

(𝜌(𝐺) − 𝑡)3
− V(𝐺)

𝜌3(𝐺)
≥ S(𝜌(𝐺))

(︂
1

(𝜌(𝐺) − 𝑡)2
− 1

𝜌2(𝐺)

)︂
.

Таким образом, получили неравенство эквивалентное требуемому неравенству.
Равенство в лемме достигается в случае равенства в (18).

�

Теорема 5.2 Пусть 𝐺 — выпуклое тело конечного объема и 𝑝 ≥ 0. Тогда справед-
ливо следующее неравенство:

I𝑝(𝐺) ≥ 𝜌(𝐺)𝑝

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
(6V(𝐺) + 𝑝(𝑝 + 5)𝜌(𝐺)S(𝜌(𝐺))).

Равенство возможно в случае шара и описанного многогранника.

Доказательство. Воспользуемся представлением (5) для I𝑝(𝐺) и оценкой из леммы
5.2, тогда получим

I𝑝(𝐺) = 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1𝑉 (𝑡)𝑑𝑡 ≥ 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1S(𝜌(𝐺))

(︂
1

(𝜌(𝐺) − 𝑡)2
− 1

𝜌2(𝐺)

)︂
(𝜌(𝐺)−𝑡)3𝑑𝑡+

+𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1 V(𝐺)

𝜌3(𝐺)
)(𝜌(𝐺)− 𝑡)3𝑑𝑡 =

S(𝜌(𝐺))𝜌(𝐺)𝑝+1

𝑝 + 1
+

6𝜌(𝐺)𝑝 (V(𝐺) − S(𝜌(𝐺))𝜌(𝐺))

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
.

С учетом некоторых упрощений последнее неравенство совпадает с неравенством
из теоремы. Осталось заметить, что случаи равенства в теореме совпадают со слу-
чаями равенства в лемме 5.2.

�

В дальнейшем при доказательстве основных результатов главную роль играет
функционал

i1(𝑡) := I1(𝐺(𝑡)),

где 0 ≤ 𝑡 ≤ 𝜌(𝐺). Следующая лемма позволяет оценить введенный функционал
i1(𝑡).
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Лемма 5.3 Пусть 𝐺 — выпуклое тело конечного объема и I1(𝐺) < +∞. Тогда для
0 ≤ 𝑡 ≤ 𝜌(𝐺) справедливы следующие неравенства:

S(𝜌(𝐺))

(︂
1

(𝜌(𝐺) − 𝑡)2
− 1

𝜌(𝐺)2

)︂
+

I1(𝐺)

𝜌(𝐺)4
≤ i1(𝑡)

(𝜌(𝐺) − 𝑡)2
≤ 𝜋

3
𝑡(𝑡− 2𝜌(𝐺)) +

I1(𝐺)

𝜌(𝐺)2

Доказательство. Рассмотрим вспомогательный функционал i1(𝑡), где 0 ≤ 𝑡 ≤ 𝜌(𝐺).
Зафиксируем значение 𝑡 > 0 и соответствующее ему множество уровня 𝐺(𝑡), тогда

i1(𝑡) := I1(𝐺(𝑡)) =

∫︁ 𝑉 (𝑡)

0

𝑡*(𝑉 *)𝑑𝑉 * =

∫︁ 𝜌(𝐺(𝑡))

0

𝑉 *(𝑡*)𝑑𝑡*,

используя очевидное равенство 𝑉 *(𝑡*) = 𝑉 (𝑡 + 𝑡*), окончательно получим

i1(𝑡) =

∫︁ 𝜌(𝐺(𝑡))

0

𝑉 (𝑡* + 𝑡)𝑑𝑡* =

∫︁ 𝜌(𝐺(𝑡))+𝑡

𝑡

𝑉 (𝜆)𝑑(𝜆) =

∫︁ 𝜌(𝐺)

𝑡

𝑉 (𝜆)𝑑(𝜆).

Таким образом, имеем
𝑑𝑖1(𝑡)

𝑑𝑡
= −𝑉 (𝑡). (20)

Используя первое неравенство из теоремы 5.1, для i1(𝑡) получим оценку

i1(𝑡) ≤
𝑉 (𝑡)𝜌(𝐺(𝑡))

2
− 𝜋𝜌(𝐺(𝑡))4

3
. (21)

Применяя (20) и 𝜌(𝐺(𝑡)) = 𝜌(𝐺) − 𝑡 к (21), неравенство примет вид

i1(𝑡) ≤
−i′1(𝑡)(𝜌(𝐺) − 𝑡)

2
− 𝜋(𝜌(𝐺) − 𝑡)4

3
.

Последнее неравенство эквивалентно

𝑑

𝑑𝑡

[︂
i1(𝑡)

(𝜌(𝐺) − 𝑡)2

]︂
≤ −2𝜋

3
(𝜌(𝐺) − 𝑡).

Проинтегрируем обе части неравенства по 𝑡 ∈ [0; 𝑡1], тогда получим:

i1(𝑡)

(𝜌(𝐺) − 𝑡)2
− I1(𝐺)

𝜌(𝐺)2
≤ 𝜋

3

(︀
(𝜌(𝐺) − 𝑡)2 − 𝜌2(𝐺))

)︀
. (22)

С помощью очевидных упрощений неравенство (22) можно привести к виду правой
части требуемого неравенства.

Для вывода левой части неравенства леммы воспользуемся теоремой 5.2, тогда
при 𝑝 = 1 для i1(𝑡) имеем оценку

i1(𝑡) ≥
𝑉 (𝑡) + 𝜌(𝐺(𝑡))S(𝜌(𝐺))

4
𝜌(𝐺(𝑡)). (23)

Как и ранее в доказательстве воспользуемся выражениями (20) и 𝜌(𝐺(𝑡)) = 𝜌(𝐺)− 𝑡,
тогда (23) примет вид

i1(𝑡) ≥
−i′1(𝑡) + (𝜌(𝐺) − 𝑡)S(𝜌(𝐺))

4
(𝜌(𝐺) − 𝑡).

Последнее неравенство эквивалентно
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𝑑

𝑑𝑡

[︂
i1(𝑡)

(𝜌(Ω) − 𝑡)4

]︂
≤ 𝑑

𝑑𝑡

[︂
𝑆(𝜌(Ω))

(𝜌(Ω) − 𝑡)2

]︂
.

Проинтегрируем обе части полученного неравенства по 𝑡 ∈ [0; 𝑡1], отсюда

i1(𝑡)

(𝜌(𝐺) − 𝑡)4
− I1(𝐺)

𝜌(𝐺)4
≥ S(𝜌(𝐺))

(︂
1

(𝜌(𝐺) − 𝑡)2
− 1

(𝜌(𝐺))2

)︂
,

что дает нам левую оценку из неравенства леммы.
�

Выразим I𝑝(𝐺) через вспомогательный функционал i1(𝑡), для этого используем
его как новую переменную в (5) и после интегрирования по частям, получим новое
представление для I𝑝(𝐺):

I𝑝(𝐺) = 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1𝑉 (𝑡) 𝑑𝑡 = 𝑝

∫︁ I1(𝐺)

0

𝑡𝑝−1(i1) 𝑑i1 = 𝑝(𝑝− 1)

∫︁ 𝜌(𝐺)

0

𝑡𝑝−2i1(𝑡) 𝑑𝑡. (24)

Тогда с помощью леммы 5.3 и (24) получим двусторонние оценки для функционала
I𝑝(𝐺) в терминах I1(𝐺) и других геометрических функционалов. А именно

Теорема 5.3 Пусть 𝐺 — выпуклое тело конечного объема и 𝑝 ≥ 1, I1(𝐺) < +∞.
Тогда справедливы следующие неравенства:

I𝑝(𝐺) ≤ 2𝜌(𝐺)𝑝−1

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

(︂
(𝑝 + 2)(𝑝 + 3)I1(𝐺) − 𝜋(𝑝− 1)(𝑝 + 6)𝜌(𝐺)4

3

)︂
и

I𝑝(𝐺) ≥ 2𝜌(𝐺)𝑝−1

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

(︀
12I1(𝐺) + (𝑝− 1)(𝑝 + 6)𝜌(𝐺)2S(𝜌(𝐺))

)︀
.

Равенство в первом неравенстве возможно в случае шара. Во втором неравенстве
равенство возможно в случае шара и описанного многогранника.

Доказательство. Воспользуемся представлением (24) для I𝑝(𝐺) и верхней оценкой
из леммы 5.3, откуда

I𝑝(𝐺) = 𝑝(𝑝−1)

∫︁ 𝜌(𝐺)

0

𝑡𝑝−2i1(𝑡)𝑑𝑡 ≤ 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1

(︂
𝜋

3
𝑡(𝑡− 2𝜌(𝐺)) +

I1(𝐺)

𝜌(𝐺)2

)︂
(𝜌(𝐺)−𝑡)2𝑑𝑡 =

=
2I1(𝐺)𝜌(𝐺)𝑝−1

𝑝 + 1
− 2𝜋(𝑝− 1)(𝑝 + 6)𝜌(𝐺)𝑝+3

3(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
.

Последнюю оценку несложно представить в виде первого неравенства теоремы.
Для доказательства второго неравенства используем нижнюю оценку леммы 5.3,

тогда

I𝑝(𝐺) = 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1𝑉 (𝑡)𝑑𝑡 ≥ 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1S(𝜌(𝐺))

(︂
1

(𝜌(𝐺) − 𝑡)2
− 1

𝜌(𝐺)2

)︂
(𝜌(𝐺)−𝑡)2𝑑𝑡+

+𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1 I1(𝐺)

𝜌(𝐺)4
(𝜌(𝐺) − 𝑡)2𝑑𝑡 =

= 2S(𝜌(𝐺))𝜌(𝐺)𝑝+1

(︂
1

𝑝 + 1
− 12

𝑝(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

)︂
+

24I1(𝐺)𝜌(𝐺)𝑝−1

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
.

Таким образом, получили неравенство эквивалентное второму неравенству теоремы.
�
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6 Примеры.
Приведем несколько примеров вычисления рассмотренных функционалов и случаи
строгих неравенств в доказанных теоремах параграфа 5.

Пример 1. Рассмотрим куб 𝐺 со сторонами длины 𝑎. Тогда для 𝑝 ≥ 0 справед-
ливы:

r

a

R

V(t)

I𝑝(𝐺) =
6𝑎𝑝+3

2𝑝(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
, I1(𝐺) =

𝑎4

8
,

V(𝐺) = 𝑎3, 𝜌(𝐺) =
𝑎

2
, S(𝜌(𝐺)) = 0.

Покажем некоторые выкладки для вычислении функционала I𝑝(𝐺), 𝑝 ≥ 0:

I𝑝(𝐺) = 𝑝

∫︁ 𝜌(𝐺)

0

𝑡𝑝−1𝑉 (𝑡) 𝑑𝑡 = 𝑝

∫︁ 𝑎
2

0

𝑡𝑝−1(𝑎− 2𝑡)3 𝑑𝑡 =
3𝑎𝑝−1

2𝑝−1(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
.

Согласно теореме 5.1 неравенства для куба обращаются в строгие неравенства:

I𝑝(𝐺) < 𝐶1

(︂
V(𝐺)𝜌(𝐺)𝑝

𝑝 + 1
− 4

3

𝜋𝜌(𝐺)𝑝+3𝑝(𝑝 + 5)

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

)︂
(25)

и

I𝑝(𝐺) > 𝐶2

(︂
S(𝜌(𝐺))𝜌(𝐺)𝑝+1

𝑝 + 1
+

8𝜋𝜌(𝐺)𝑝+3

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

)︂
, (26)

где 𝐶1 и 𝐶2 некоторые константы. Чтобы найти эти константы достаточно вы-
числить все функционалы, входящие в данные неравенства. Для этого перепишем
неравенства (25), (26) в более удобной форме

I𝑝(𝐺) < 𝐶1J1(𝐺),

I𝑝(𝐺) > 𝐶2J2(𝐺).

Так как функционал I𝑝(𝐺) для куба был подсчитан нами ранее, то перейдем к
вычислению оставшихся величин, а именно

J1(𝐺) =
𝑎𝑝+3((6 − 𝜋)(𝑝2 + 5𝑝) + 36)

6 · 2𝑝(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
,

J2(𝐺) =
𝜋𝑎𝑝+3

2𝑝(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
.

Теперь нетрудно получить необходимые константы

𝐶1 =
36

(6 − 𝜋)𝑝(𝑝 + 5) + 36
< 1,
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𝐶2 =
6

𝜋
> 1.

Таким образом, для куба установлены оценки (25) и (26) с найденными констан-
тами.

Перейдем к теореме 5.2, тогда в случае куба справедливо неравенство

I𝑝(𝐺) ≥ 𝐶3

(︂
𝜌(𝐺)𝑝

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
(6V(𝐺) + 𝑝(𝑝 + 5)𝜌(𝐺)S(𝜌(𝐺)))

)︂
(27)

Как и в предыдущем случае приведем (27) к более простому виду

I𝑝(𝐺) ≥ 𝐶3J3(𝐺),

где 𝐶3 — неизвестная константа. Прямым счетом получаем

J3(𝐺) =
6𝑎𝑝+3

2𝑝(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
= I𝑝(G).

Таким образом, имеем 𝐶3 = 1, т.е. куб является экстремалью в неравенстве (27),
как и утверждается в условиях теоремы 5.2.

Установим справедливость строгих неравенств из теоремы 5.3 для куба

I𝑝(𝐺) < 𝐶4

(︂
2I1(𝐺)𝜌(𝐺)𝑝−1

𝑝 + 1
− 2𝜋(𝑝− 1)(𝑝 + 6)𝜌(𝐺)𝑝+3

3(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

)︂
. (28)

Отсюда тем же способом, что и выше несложно вычислить константу

𝐶4 =
72

(6 − 𝜋)𝑝(𝑝 + 5) + 6(6 + 𝜋)
≤ 1.

Таким образом неравенство (28) для куба доказано.
Из обратного неравенства теоремы 5.3 следует

I𝑝(𝐺) ≥ 𝐶5

(︂
2𝜌(𝐺)𝑝−1

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)
((𝑝− 1)(𝑝 + 6)𝜌(𝐺)2S(𝜌(𝐺)) + 12I1(𝐺))

)︂
.

Нетрудно проверить, что 𝐶5 = 1. Так как куб является описанным многогранни-
ком, то из условий теоремы 5.3 можем сделать вывод, что константа найдена верно.

Пример 2. Рассмотрим параллелепипед 𝐺 со сторонами 𝑎, 𝑏, 𝑐 (𝑎 < 𝑏 ≤ 𝑐) (рис. 2).
Тогда для 𝑝 ≥ 0 справедливы:

I𝑝(𝐺) =
𝑎𝑝+1(𝑏(𝑝 + 3)(2𝑐 + (𝑐− 𝑎)𝑝) + 𝑎𝑝(𝑎− 3𝑐 + (𝑎− 𝑐)𝑝))

2𝑝(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

I1(𝐺) =
𝑎2(2𝑏(3𝑐− 𝑎) + 𝑎(𝑎− 𝑐))

24
,

V(𝐺) = 𝑎𝑏𝑐, 𝜌(𝐺) =
𝑎

2
, S(𝜌(𝐺)) = (𝑏− 𝑎)(𝑐− 𝑎).

Далее, все введенные обозначения в примере 1 имеют тот же смысл и для парал-
лелепипеда. Результаты для всех констант представим в виде таблиц.
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Таблица 1: значения константы 𝐶1 < 1 при 𝑝 ≥ 1 для первого неравенства из
теоремы 1.

C1 p 1 3 5 7 ∞
c/b
1 0.75794 0.558484 0.475179 0.430356 0.287654
2 0.796912 0.633152 0.564222 0.526613 0.401263
3 0.809323 0.65624 0.591496 0.555975 0.435677
4 0.815426 0.667474 0.604723 0.570193 0.452302
5 0.819055 0.674119 0.612532 0.578582 0.462098
6 0.819055 0.678509 0.617687 0.584116 0.468556
7 0.823173 0.681626 0.621344 0.588041 0.473133
10 0.826241 0.687196 0.627874 0.595048 0.4813
100 0.832628 0.698732 0.641375 0.609522 0.498152

∞ 0.8(3) = 5/6 0.7 0.642857=9/14 0.6(1)=11/8 0.5

Таблица 2: значения константы 𝐶2 > 1 при 𝑝 ≥ 1 для второго неравенства из
теоремы 1.

C2 p 1 3 5 7 ∞
c/b
1 3.71926 3.30732 3.01847 2.825 2
2 3.50021 2.99118 2.73119 2.57707 2
3 3.43979 2.91778 2.66869 2.52475 2
4 3.41149 2.88511 2.64134 2.50203 2
5 3.39508 2.86662 2.62599 2.48933 2
6 3.38436 2.85474 2.61617 2.48122 2
7 3.37681 2.84645 2.60935 2.47559 2
10 3.36345 2.83194 2.59744 2.46579 2
100 3.33628 2.80308 2.57393 2.44649 2

∞ 3.(3) = 10/3 2.8 2.57143=18/7 2.(4)=22/9 2

Таблица 3: значения константы 𝐶3 > 1 при 𝑝 ≥ 1 для неравенства из теоремы 2.

C3 p 1 3 5 7 ∞
c/b
1 1.25926 1.66667 1.91837 2.06061 2
2 1.29825 1.71429 1.93496 2.04598 2
3 1.31034 1.72727 1.93909 2.04255 2
4 1.31624 1.73333 1.94096 2.04103 2
5 1.31973 1.73684 1.94203 2.04016 2
6 1.32203 1.73913 1.94272 2.0396 2
7 1.32367 1.74074 1.9432 2.03922 2
10 1.3266 1.74359 1.94406 2.03854 2
100 1.33267 1.74937 1.94576 2.03718 2

∞ 1.(3) = 4/3 1.75 1.94595=72/37 2.03704=55/27 2
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Таблица 4: значения константы 𝐶4 < 1 при 𝑝 ≥ 1 для первого неравенства из
теоремы 3.

C4 p 2 3 5 7 ∞
c/b
1 0.842919 0.747313 0.638815 0.57976 0.388873
2 0.874307 0.798724 0.712972 0.665944 0.508055
3 0.883422 0.81345 0.733937 0.690168 0.541231
4 0.887764 0.820432 0.743834 0.701581 0.556814
5 0.890303 0.824506 0.749597 0.708221 0.565865
6 0.89197 0.827176 0.753368 0.712565 0.571779
7 0.893147 0.829061 0.756029 0.715627 0.575947
8 0.894024 0.830463 0.758006 0.717902 0.579042
9 0.894701 0.831546 0.759533 0.719659 0.581431
10 0.895241 0.832409 0.760749 0.721057 0.583331
100 0.899532 0.839254 0.770381 0.73213 0.598368
∞ 0.9 1.75 0.771429=27/35 0.7(3)=11/15 0.6

Таблица 5: значения константы 𝐶5 ≥ 1 при 𝑝 ≥ 1 для второго неравенства из
теоремы 3.

C5 p 2 3 5 7 ∞
c/b
1 1.09524 1.15385 1.20513 1.21429 1
2 1.08163 1.125 1.15534 1.15584 1
3 1.07792 1.11765 1.14371 1.14286 1
4 1.07619 1.11429 1.13853 1.13714 1
5 1.07519 1.11236 1.13559 1.13393 1
6 1.07453 1.11111 1.1337 1.13187 1
7 1.07407 1.11024 1.13239 1.13043 1
8 1.07373 1.10959 1.13142 1.12938 1
9 1.07347 1.10909 1.13067 1.12857 1
10 1.07326 1.1087 1.13008 1.12793 1
100 1.07161 1.1056 1.12549 1.12298 1
∞ 1.07143=15/14 1.10526=21/19 1.125 1.12245=55/49 1
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