

МНТК ДЕТАЛИ МАШИНОСТРОЕНИЯ ИЗ ЧУГУНА С ВЕРМИКУЛЯРНЫМ ГРАФИТОМ. СВОЙСТВА. ТЕХНОЛОГИЯ. КОНТРОЛЬ. 17-18 октября 2017 года

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

# О СТРУКТУРНОЙ НАСЛЕДСТВЕННОСТИ И ЕЁ ВЛИЯНИИ НА РЕЗУЛЬТАТЫ КОНТРОЛЯ ХИМИЧЕСКОГО СОСТАВА МОДИФИКАТОРОВ ЧУГУНА

Д.т.н. Панов А.Г. ООО ИЦМ, ФГАОУ ВО НЧИ КФУ г. Набережные Челны,







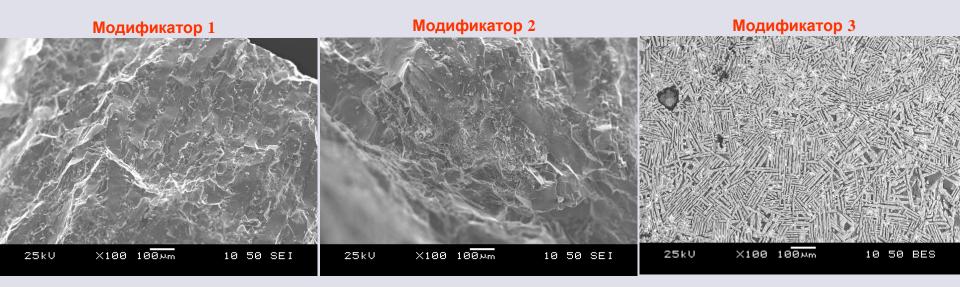


## НАСЛЕДСТВЕННОСТЬ В СИСТЕМЕ «ШИХТА-РАСПЛАВ-ЛИТОЕ ИЗДЕЛИЕ» (НИКИТИН В.И. – ПАНОВ А.Г.)



I – закладка, II – трансформация и передача, III – проявление: при охлаждении, анализе и т.д2

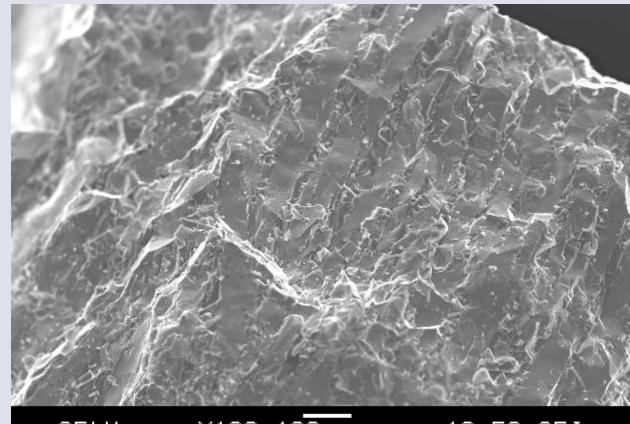
## ОТЕЧЕСТВЕННАЯ ПРАКТИКА ПРИГОТОВЛЕНИЯ РАСПЛАВОВ МОДИФИКАТОРОВ


- Сплавление компонентов.
- Растворение в базовом расплаве на основе ферросилиция в печи или в форме.
- Углеродотермический.
- Металлотермические (силикотермический, алюминосиликотермический, алюминотермический).

#### ОТЕЧЕСТВЕННАЯ ПРАКТИКА КРИСТАЛЛИЗАЦИИ РАСПЛАВОВ МОДИФИКАТОРОВ

- в изложницах с получением «толстого» слитка толщиной более 10 см,
- в изложницах с получением «тонкого» слитка толщиной от 2 до 10 см,
- намораживанием с получением ленты толщиной от 0,1 до 0,3 см,
- центробежным литьём с получением «тонкого» слитка толщиной от 0,3 до 5 см.

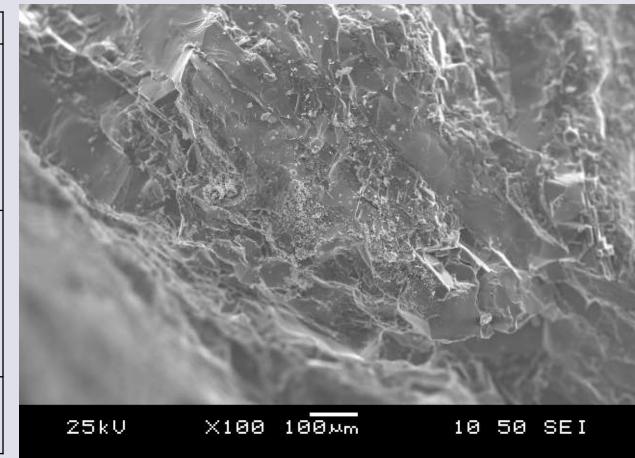
## СТРУКТУРНЫЕ РАЗЛИЧИЯ МОДИФИКАТОРОВ ТИПА ФСМг


| Manyahyyaaran               | Массовая доля, % |     |          |      |     |  |
|-----------------------------|------------------|-----|----------|------|-----|--|
| Модификатор                 | Mg               | Ca  | ∑P3M     | Si   | Al  |  |
| Модификатор 1 чушка, крупка | 5,5              | 0,4 | 0,3 (La) | 47,1 | 0,9 |  |
| Модификатор 2 чушка, крупка | 5,9              | 0,5 | 0,6      | 52,4 | 1,2 |  |
| Модификатор 3 чипс          | 5,9              | 0,8 | 0,8      | 51,8 | 1,2 |  |



#### СТРУКТУРА МОДИФИКАТОРА 1 ТИПА ФСМг

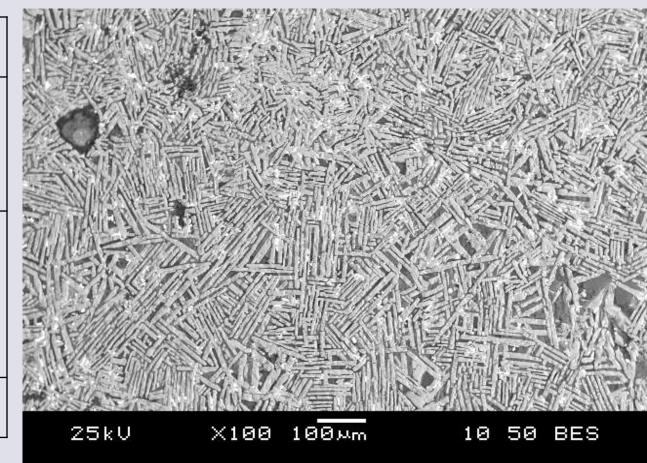
| Magyahyyagan                | Массовая доля, % |     |          |      |     |  |
|-----------------------------|------------------|-----|----------|------|-----|--|
| Модификатор                 | Mg               | Ca  | ΣP3M     | Si   | Al  |  |
| Модификатор 1 чушка, крупка | 5,5              | 0,4 | 0,3 (La) | 47,1 | 0,9 |  |


| Характеристика оксидов |                                                                 |  |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|
| Распределение          | Очень редкие<br>включения                                       |  |  |  |  |  |  |
| Размеры                | Округлые включения размерами ~ 1-3 мкм, ~ 1 шт./мм <sup>3</sup> |  |  |  |  |  |  |
| Виды оксидов           | Al <sub>2</sub> O <sub>3</sub> , до 10%<br>СаО и до 2%<br>MgO   |  |  |  |  |  |  |



#### СТРУКТУРА МОДИФИКАТОРА 2 ТИПА ФСМг

| Maryhanan                   | Массовая доля, % |     |      |      |     |  |
|-----------------------------|------------------|-----|------|------|-----|--|
| Модификатор                 | Mg               | Ca  | ΣP3M | Si   | Al  |  |
| Модификатор 2 чушка, крупка | 5,9              | 0,5 | 0,6  | 52,4 | 1,2 |  |


| Характеристика оксидов |                                                                                     |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| Распределение          | Скопления пластин и отдельные пластины Области скоплений 50 – 100 мкм               |  |  |  |  |  |
| Размеры                | Гексагональны е пластины толщиной 1 мкм, диаметром 5 мкм, ~ 106 шт./мм <sup>3</sup> |  |  |  |  |  |
| Виды оксидов           | Al <sub>2</sub> O <sub>3</sub> , иногда с<br>MgO KO, NaO<br>и CaO                   |  |  |  |  |  |

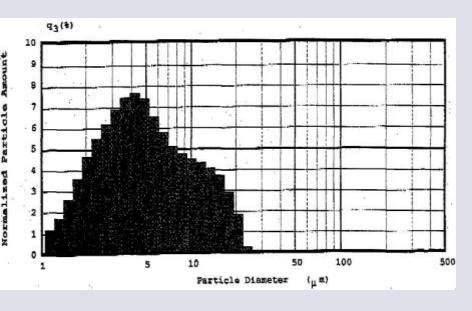


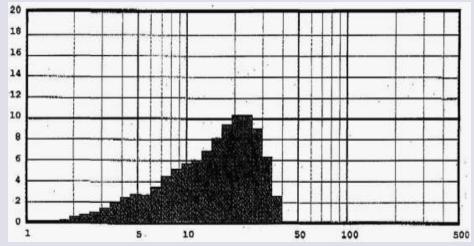
# СТРУКТУРНЫЕ РАЗЛИЧИЯ МОДИФИКАТОРОВ ТИПА ФСМг

| Модификатор        | Массовая доля, % |     |      |      |     |  |
|--------------------|------------------|-----|------|------|-----|--|
|                    | Mg               | Ca  | ∑РЗМ | Si   | Al  |  |
| Модификатор 3 чипс | 5,9              | 0,8 | 0,8  | 51,8 | 1,2 |  |

| Характеристика оксидов |                                                                                                                 |  |  |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Распреде<br>ление      | Изолированные и в виде скоплений равномерно распределённые включения.                                           |  |  |  |  |  |  |  |
| Размеры                | Округлые включения. Преобладающий размер ~ 1-5 мкм, максимальные размеры до 5 мкм, ~ $10^9$ шт./мм <sup>3</sup> |  |  |  |  |  |  |  |
| Виды<br>оксидов        | MgO, редко -<br>MgO·SiO <sub>2</sub>                                                                            |  |  |  |  |  |  |  |




#### **ХАРАКТЕРИСТИКИ ВЫЯВЛЕННЫХ ФАЗ СФЕРОИДИЗИРУЮЩИХ МОДИФИКАТОРОВ**


| Фаза                                            | Т <sub>пл</sub> , °С | Характер плавления                                                                          | Характеристики фаз                                                                 |  |  |  |  |  |  |
|-------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                 | Тугоплавкие          |                                                                                             |                                                                                    |  |  |  |  |  |  |
| γ-FeNi-C                                        | 1150-1450            | Инконгруэнтно → γ-FeNi (~1450)                                                              | Основа: дендриты диаметром до 100 мкм, эвтектические пластины толщиной менее 1 мкм |  |  |  |  |  |  |
| RESi <sub>2</sub>                               | ~1600                | Конгруэнтно                                                                                 | Зёрна порядка 10 мкм                                                               |  |  |  |  |  |  |
| RECaSi <sub>2</sub>                             | ~1600                | Конгруэнтно                                                                                 | Звездообразные зёрна порядка 10 мкм                                                |  |  |  |  |  |  |
| С                                               | > 2000               | -                                                                                           | ШГф4,5 диаметром до 55 мкм                                                         |  |  |  |  |  |  |
| RE-P                                            | ~ 3000               | Конгруэнтно                                                                                 | Зёрна менее 5 мкм                                                                  |  |  |  |  |  |  |
| Si                                              | 1414                 | Конгруэнтно                                                                                 | Основа в виде пластин и отдельные включения до 10 и до 100 мкм                     |  |  |  |  |  |  |
| $\alpha$ - FeSi <sub>2</sub>                    | 1220                 | Инконгруэнтно → FeSi (1410, конгр)                                                          | Отдельные чёткие пластины толщиной 15120 мкм и основа в виде зёрен до 1000 мкм     |  |  |  |  |  |  |
|                                                 |                      | Нетугоплан                                                                                  | вкие                                                                               |  |  |  |  |  |  |
| MgNiFeC                                         | ~1150                | -                                                                                           | Основа                                                                             |  |  |  |  |  |  |
| $Mg_2Si$                                        | 1085                 | Конгруэнтно                                                                                 | Зёрна от 5 до 100 мкм                                                              |  |  |  |  |  |  |
| MgCaSi                                          |                      |                                                                                             | Зёрна от 5 до 100 мкм                                                              |  |  |  |  |  |  |
| $\mathrm{BaSi}_2$                               | 1180                 | Конгруэнтно                                                                                 |                                                                                    |  |  |  |  |  |  |
| BaCaSi                                          | 1000-1200            | Конгруэнтно                                                                                 | Зёрна размерами порядка 100 мкм                                                    |  |  |  |  |  |  |
| Ba <sub>3</sub> Al <sub>2</sub> Si <sub>2</sub> | ~800                 | Перитектика $\rightarrow$ BaAl <sub>4</sub> (1104, конгр) + BaSi <sub>2</sub> (1180, конгр) |                                                                                    |  |  |  |  |  |  |
| Mg <sub>2</sub> Ca                              | 714                  | Конгруэнтно                                                                                 | Ликват                                                                             |  |  |  |  |  |  |
| CaAl <sub>2</sub> Si <sub>2</sub>               |                      |                                                                                             | Включения сложного состава размером до 10 мкм                                      |  |  |  |  |  |  |
| MgCaAlSi <sub>2</sub>                           | < 1100               |                                                                                             |                                                                                    |  |  |  |  |  |  |

## РАЗРАБОТКА МЕТОДИК РЕНТГЕНОСПЕКТРАЛЬНОГО АНАЛИЗА МОДИФИКАТОРОВ ЧУГУНА НА Fe-Si OCHOBE

#### Результаты ПФА (XRD-6000 ф. Shimadzu) и КХА содержания Mg в ФСМг7 химическим и Р/С методами

| Вид<br>мод-ра | Si    | Mg <sub>2</sub> Si | MgO  | FeSi <sub>2</sub> | FeSi | Ca <sub>2</sub> SiO <sub>4</sub> | Si <sub>PCA</sub> . | Si <sub>хим.</sub> | Mg <sub>PCA</sub> | Мд <sub>хим.</sub> |
|---------------|-------|--------------------|------|-------------------|------|----------------------------------|---------------------|--------------------|-------------------|--------------------|
| Слиток        | 25,08 | 19,16              | 6,12 | 43,62             | 1,55 | 4,46                             | 56,8                | 53,4               | 7,8               | 6,9                |
| Чипс          | 5,37  | 37,99              | нет  | 40,17             | 9,93 | 4,54                             | 55,1                | 55,5               | 6,5               | 6,4                |





Распределение по размерам частиц чушкового модификатора в излучателях для РСА

Распределение по размерам частиц чипсового модификатора в излучателях для РСА

#### **ВЫВОДЫ**

- 1. Присутствующие на рынке модификаторы, близкие по декларируемому химическому составу, имеют различные фазовые составы и микропримеси.
- 2. Энергетическое состояние элементов модификаторов (фазовый состав), влияет на процессы измельчения лабораторной пробы и флуоресценции во время её контроля рентгеноспектральным методом.
- 3. В нормативные документы на модификаторы необходимо включать описание технологии (метода) их получения, а методики подготовки проб и контроля состава модификаторов разрабатывать с учётом их типичного фазового состава.

### СПАСИБО ЗА ВНИМАНИЕ

#### ОТЕЧЕСТВЕННАЯ ПРАКТИКА ИЗГОТОВЛЕНИЯ МОДИФИКАТОРОВ

Ферросплавные массовые производства с основной задачей снижения материальных и энергетических затрат

Специализированные производства с небольшими плавильными агрегатами, высоким удельным расходом электроэнергии и дорогой основой шихты (ферросилицием)









большие объёмы неоднородных расплавов руды, лома и отходы различного происхождения, обладающие уникальной наследственностью

компенсация затрат дешёвыми отходами







макро и микро неоднородность слитков, наличие случайных микропримесей и различной структурной наследственности, передающейся модифицируемому расплаву чугуна

#### НЕОБХОДИМЫЕ ТРЕБОВАНИЯ К МОДИФИКАТОРАМ (ТЕХНИЧЕСКИЕ УСЛОВИЯ)

- 1 Область применения;
- 2 Метод изготовления;
- 3 Нормативные ссылки;
- 4 Термины и определения (в том числе, понятия "партии" модификатора);
- 5 Технические требования;
- 5.1 Требования к модификаторам (состав, структура, физические свойства,
- химические свойства, МОДИФИЦИРУЮЩАЯ СПОСОБНОСТЬ, ...);
  - 5.2 Требования к компонентам модификатора;
  - 5.3 Маркировка;
  - 5.4 Упаковка;
  - 6 Требования безопасности;
  - 7 Требования охраны окружающей среды;
  - 8 Правила приёмки;
  - 9 Методики испытаний:
    - 9.1 отбора представительных проб;
- 9.2 определения физических свойств (насыпная плотность, фракционный состав, влажность, удельная теплоёмкость, стойкость к саморассыпанию и др.);
- 9.3 определения химических свойств (химический состав, стойкость к окислению в воздушной и влажной среде);
  - 9.4 определения эффективности (модифицирующей способности)
- модификатора;
  - 10 Транспортирование и хранение;
    - 11 Указания по применению;
    - 12 Гарантии изготовителя.

# МОДЕЛЬ ДОБРОВОЛЬНОЙ СЕРТИФИКАЦИИ МОДИФИКАТОРОВ

Документы, содержащие требования к порядку проведения добровольной сертификации Документы, содержащие требования к качеству модификаторов





Шихта и технология для производства модификатора



Сертифицировать модификатор



Ресурсы, оборудование, персонал



Модификатор, соответствующий требованиям к качеству



Сертификат соответствия