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UDK 512.5ON THE LOCUS OF p-CHARACTERS DEFININGSIMPLE REDUCED ENVELOPING ALGEBRASS.M. SkryabinAbstra
tWe 
on�rm in two 
ases the 
onje
ture stating that the redu
ed enveloping algebra Uξ(g)of a restri
ted Lie algebra g is simple if and only if the alternating bilinear form asso
iatedwith the given p -
hara
ter ξ ∈ g∗ is nondegenerate.Key words: restri
ted Lie algebras, solvable Lie algebras, Frobenius Lie algebras, redu
edenveloping algebras.In the representation theory of a �nite dimensional p-Lie algebra g over an alge-brai
ally 
losed �eld k of 
hara
teristi
 p > 0 one is naturally led to 
onsider the familyof redu
ed enveloping algebras Uξ(g) asso
iated with linear fun
tions ξ ∈ g∗ (see [1℄).The algebra Uξ(g) is de�ned as the fa
tor algebra of the universal enveloping algebra
U(g) by its ideal generated by 
entral elements xp −x[p]−ξ(x)p ·1 with x ∈ g , and ξ is
alled the p-
hara
ter of any g-module whi
h 
an be realized as a module over Uξ(g) .There is a 
ertain, still far from fully understood, relation between generi
 propertiesof the family of redu
ed enveloping algebras and generi
 properties of the family ofstabilizers of linear fun
tions. The stabilizer z(ξ) of ξ ∈ g∗ 
oin
ides with the radi
alof the alternating bilinear form βξ : g × g → k de�ned by the rule

βξ(x, y) = ξ
(
[x, y]

) for x, y ∈ g .The Lie algebra g is 
alled Frobenius if βξ is nondegenerate for at least one ξ .In general one 
annot determine the type of one parti
ular algebra Uξ(g) just know-ing z(ξ) . It is quite interesting and surprising that sometimes this 
an be done. In [2℄it was 
onje
tured that Uξ(g) is simple if and only if z(ξ) = 0 , that is, if and only if
βξ is nondegenerate. The purpose of the present arti
le is to verify this 
onje
ture intwo 
ases. When g is solvable and p > 2 we do this using the des
ription of irredu
ible
g-modules due to Strade [3℄. We have to make more 
areful sele
tions of subalgebrasfrom whi
h irredu
ible g-modules are obtained by indu
tion. The se
ond 
ase o

urswhen g is Frobenius and all adjoint derivations of g lie in the Lie algebra of the auto-morphism group. Here we apply geometri
 arguments to the extension of the family ofredu
ed enveloping algebras 
onstru
ted in [4℄.An example at the end of the paper shows that semisimpli
ity of the algebra Uξ(g)
annot be re
ognized in terms of z(ξ) by means of a possible generalization of the above
onje
ture. 1. Solvable Lie algebrasIt is assumed in this se
tion that g is solvable and p > 2 . Re
all that a polarizationof g at ξ ∈ g∗ is a Lie subalgebra whi
h is simultaneously a maximal totally isotropi
subspa
e with respe
t to the alternating bilinear form βξ [5℄.



SIMPLE REDUCED ENVELOPING ALGEBRAS 197Denote by P the set of all triples (p, a, λ) su
h that a ⊂ p ⊂ g are ve
tor subspa
es,
λ ∈ a∗ is a linear fun
tion and there exists a 
hain of subspa
es

0 = a0 ⊂ a1 ⊂ . . . ⊂ an = a ⊂ p = pn ⊂ . . . ⊂ p1 ⊂ p0 = g (1)with the property that
[pi−1, ai] ⊂ ai and pi = {x ∈ pi−1 | λ([x, ai]) = 0} (2)for all i = 1, . . . , n . As one 
he
ks by indu
tion on i , ea
h pi is a p-subalgebra of g ,and ai is an ideal of pi−1 . In parti
ular, p is a p-subalgebra of g , and a is an ideal of

p . Furthermore, λ vanishes on [p, a] and, therefore, also on [a, a] .Lemma 1. Suppose that (p, a, λ) ∈ P . If ξ ∈ g∗ is a linear fun
tion su
h that
λ(x)p − λ(x[p]) = ξ(x)p for all x ∈ a and W is an irredu
ible Uξ(p)-module su
h that
xw = λ(x)w for all x ∈ a and w ∈ W , then the indu
ed g-module Uξ(g) ⊗Uξ(p) W isirredu
ible.Here Uξ(p) stands for the redu
ed enveloping algebra of p 
orresponding to therestri
tion of ξ to p . The proof is obtained by a repeated appli
ation of the 
hara
teristi

p analog of Blattner's irredu
ibility 
riterion [6, Theorem 3℄.We will need additional 
onditions on triples. Denote by P ′ the set of all triples
(p, a, λ) su
h that a ⊂ p ⊂ g are ve
tor subspa
es, λ ∈ a∗ is a linear fun
tion, andthere exists a 
hain of subspa
es

0 = a0 ⊂ a1 ⊂ . . . ⊂ an = a ⊂ p ⊂ p̃n ⊂ . . . ⊂ p̃1 ⊂ p̃0 = g (3)with the property that
[p̃i−1, ai] ⊂ ai, (4)

p̃i = {x ∈ p̃i−1 | λ([x, a′i]) = 0}, where a′i = {y ∈ ai | λ(y) = 0}, (5)
p = {x ∈ p̃n | λ([x, a]) = 0} (6)for all i = 1, . . . , n . We will say that 
hain (3) is (p, a, λ)-admissible in this 
ase.Lemma 2. In a (p, a, λ)-admissible 
hain ea
h p̃i is a p-subalgebra, ai is an idealof p̃i−1 , and a′i is an ideal of p̃i . Furthermore, p is an ideal of p̃n .Proof. Sin
e [p̃i, ai] ⊂ ai by (4) and λ vanishes on [p̃i, a

′
i] by (5), we dedu
e that

[p̃i, a
′
i] ⊂ a′i . Sin
e the normalizer of a′i in g is a p-subalgebra, an indu
tion on i showsthat so too is p̃i . Now [p, a] ⊂ a and λ vanishes on [p, a] by (4) and (6), when
e

[p, a] ⊂ a′n . It follows [[p̃n, p], a] ⊂ [p̃n, a′n] + [p, a] ⊂ a′n , and so [p̃n, p] ⊂ p .Lemma 3. It holds P ′ ⊂ P .Proof. Let (p, a, λ) ∈ P ′ . Consider a (p, a, λ)-admissible 
hain (3) and for ea
h ide�ne pi = {x ∈ p̃i | λ([x, ai]) = 0} . We obtain then a 
hain (1) with pi ⊂ p̃i , and it is
he
ked straightforwardly that (2) is ful�lled. Thus (p, a, λ) ∈ P .Lemma 4. Suppose that a is a one-dimensional ideal of a solvable Lie algebra h ,and b is an ideal of h , minimal with respe
t to the property that a ⊂ b , a 6= b and
[a, b] = 0 . Then b is abelian.Proof. Put c = {x ∈ b | [x, b] = 0} . Then c is an ideal of h and a ⊂ c ⊂ b . By theminimality of b we have either c = b or c = a . In the �rst 
ase [b, b] = 0 , and weare done. Suppose that c = a . Then the multipli
ation in b indu
es a nondegeneratealternating bilinear form b/a×b/a → a . In parti
ular, b/a has even dimension. On theother hand, b/a is an irredu
ible h-module by the minimality of b , and therefore
dim b/a is a power of p , hen
e odd, by [3, Satz 3℄. We arrive at a 
ontradi
tion.



198 S.M. SKRYABINLemma 5. Suppose that (p, a, λ) ∈ P ′ . If a 6= p , then there exists a ve
tor subspa
e
b ⊂ p su
h that a is 
ontained in b properly, [b, b] ⊂ a′ = kerλ , and for every linearfun
tion µ ∈ b∗ extending λ there exists q satisfying (q, b, µ) ∈ P ′ .Proof. Consider a (p, a, λ)-admissible 
hain (3). By Lemma 2 a and p are idealsof p̃n . Let us 
hoose an ideal b of p̃n su
h that a ⊂ b ⊂ p , a 6= b , and b is minimalwith respe
t to these properties. Then [b, b] ⊂ a sin
e p̃n is solvable and [b, a] ⊂ a′by (6). If a 6= a′ , then dim a/a′ = 1 . Lemma 4 applied to the Lie algebra p̃n/a′ andits one-dimensional ideal a/a′ shows that b/a′ is abelian in this 
ase. Thus we have
[b, b] ⊂ a′ in any 
ase. If µ ∈ b∗ extends λ , then put

p̃n+1 = {x ∈ p̃n | µ([x, b′]) = 0} and q = {x ∈ p̃n+1 | µ([x, b]) = 0},where b′ = {y ∈ b | µ(y) = 0} . Note that b ⊂ q sin
e µ is zero on [b, b] ⊂ a′ . Obviously
q ⊂ p̃n+1 ⊂ p̃n . Setting an+1 = b , we obtain an extension of (3) to a (q, b, µ)-admissible
hain. Thus (q, b, µ) ∈ P ′ .We say that (p, a, λ) ∈ P is maximal if p = a . Denote by Pmax ⊂ P the subset ofall maximal triples and put P ′

max = Pmax ∩P ′ . All 
on
lusions of the next propositionwith P in pla
e of P ′ were obtained by Strade [3℄ in a somewhat di�erent language.Proposition 1. (i) Given ξ ∈ g∗ , there exists (p, a, λ) ∈ P ′
max su
h that λ = ξ|p .In this 
ase p is a polarization of g at ξ .(ii) Given an irredu
ible g-module V , there exists (p, a, λ) ∈ P ′

max su
h that thesubspa
e Vλ = {v ∈ V | xv = λ(x)v for all x ∈ a} is nonzero.Proof. Denote by P ′
ξ ⊂ P ′ the subset of those triples (p, a, λ) for whi
h λ = ξ|p .This subset is nonempty as we may take a = 0 , p = g . Suppose that (p, a, λ) ∈ P ′

ξand p 6= a . Find b as in Lemma 5 and set µ = ξ|b . There exists (q, b, µ) ∈ P ′ whi
hbelongs to P ′
ξ by the 
hoi
e of µ . We have here dim b > dim a . This argument showsthat P ′

ξ ∩ P ′
max is nonvoid. Indeed, it su�
es to pi
k out (p, a, λ) ∈ P ′

ξ for whi
h
dim a is maximal possible. By Lemma 3 (p, a, λ) ∈ P . There exists then a 
hain (1)satisfying (2). It follows by indu
tion on i that pi = {x ∈ g | ξ([x, ai]) = 0} . Hen
e
p = a is a maximal totally isotropi
 subspa
e of g with respe
t to βξ .Denote by P ′

V ⊂ P ′ the subset of those triples (p, a, λ) for whi
h Vλ 6= 0 . The triple
(g, 0, 0) is again in P ′

V . Suppose that (p, a, λ) ∈ P ′
V and p 6= a . Let b be as in Lemma 5.Sin
e [b, a] ⊂ a′ , the subspa
e Vλ is stable under b . Hen
e the abelian Lie algebra b/a′operates in Vλ . It follows that Vλ 
ontains a one-dimensional b -submodule, say kv .The equality xv = µ(x)v de�nes a linear fun
tion µ ∈ b∗ whi
h extends λ . We have

v ∈ Vµ by the 
onstru
tion. Lemma 5 provides a triple (q, b, µ) ∈ P ′ whi
h belongs to
P ′

V . The interse
tion P ′
V ∩ P ′

max is therefore nonvoid, similarly as in 
ase (i).Proposition 2. Suppose that ξ ∈ g∗ and (p, a, λ) ∈ P ′
max with λ = ξ|p . If ξvanishes on z(ξ) , then ξ(p[p]) = 0 . In this 
ase the one-dimensional p-module kλ onwhi
h p operates via λ has p-
hara
ter λ , and so Uξ(g) ⊗Uλ(p) kλ is an irredu
ible

g-module of dimension p
1

2
(dim g−dim z(ξ)) .Proof. For ea
h subspa
e h ⊂ g denote by h⊥ ⊂ g its orthogonal 
omplement withrespe
t to βξ . One has then (h⊥)⊥ = h+ z(ξ) . Consider a (p, a, λ)-admissible 
hain (3).Put p̃ = p̃n and p′ = a′n . Note that a′i−1 ⊂ a′i for all i = 1, . . . , n . It follows then from(5) by indu
tion on i that p̃i = a′⊥i for ea
h i . For i = n we obtain p′⊥ = p̃ . Hen
e

p̃⊥ = p′ + z(ξ) . Note that z(ξ) ⊂ p sin
e p is a maximal totally isotropi
 subspa
e of gwith respe
t to βξ . Under the hypotheses of Proposition 2 z(ξ) ⊂ p ∩ ker ξ = p′ . Thus
p̃⊥ = p′ .



SIMPLE REDUCED ENVELOPING ALGEBRAS 199Observe that [p̃, p[p]] ⊂ [p, p] sin
e p is an ideal of p̃ by Lemma 2. Hen
e ξ vanisheson [p̃, p[p]] , and so p[p] ⊂ p̃⊥ = p′ . This shows that ξ(p[p]) = 0 . The 
laim aboutirredu
ibility follows from Lemma 1, and the dimension formula follows from the equality
dim g − dim p = 1

2

(
dim g − dim z(ξ)

) .Proposition 3. Suppose that ξ ∈ g∗ and (p, a, λ) ∈ Pmax with λ = ξ|p . Then everymaximal torus of z(ξ) is a maximal torus of p .Proof. Consider a 
hain (1) satisfying (2). We have a⊥i = pi , and therefore p⊥i =

= z(ξ) + ai . As ai is an ideal of pi−1 , we get [pi−1, a
[p]
i ] ⊂ [ai, ai] for i > 0 , whi
h is
ontained in the kernel of ξ . This shows that a

[p]
i ⊂ p⊥i−1 = z(ξ) + ai−1 .Denote by bi the [p]-
losure of ai . Then bi is an ideal of p sin
e so is ai . Hen
e

z(ξ) + bi is a p-subalgebra for ea
h i , and it follows that b
[p]
i ⊂ z(ξ) + bi−1 .Suppose that t is a maximal torus of z(ξ) and s ∈ p is a [p]-semisimple elementwhi
h 
entralizes t . We will prove that s ∈ t + bi by the downward indu
tion on

i = 0, . . . , n . For i = n the assertion is 
lear sin
e t + bn = p . Suppose that s ∈ t + bifor some i > 0 . Then s = t + x , where t ∈ t , x ∈ bi and [t, x] = 0 . By the above
s[p] = t[p]+x[p] ∈ z(ξ)+bi−1 . Sin
e s is a linear 
ombination of elements s[pr ] with r > 0 ,we get s ∈ z(ξ) + bi−1 . The p-Lie algebra hi =

(
z(ξ) + bi−1

)
/bi−1 is a homomorphi
image of z(ξ) , and therefore the image of t in hi is a maximal torus of hi by [7, Theorem2.16℄. It follows that s ∈ t + bi−1 , providing the indu
tion step. We 
an now 
on
ludethat s ∈ t + b0 = t , and the proof is 
omplete.Corollary 1. If z(ξ) is [p]-nilpotent, then so too is p .We 
ome to the main result of this se
tion:Theorem 1. Let g be a solvable �nite dimensional p-Lie algebra over an alge-brai
ally 
losed �eld of 
hara
teristi
 p > 2 , and let ξ ∈ g∗ .(i) The algebra Uξ(g) is simple if and only if βξ is nondegenerate.(ii) If βξ is nondegenerate, then ξ admits a [p]-nilpotent polarization p su
h that

ξ(p[p]) = 0 , and the single irredu
ible Uξ(g)-module is indu
ed from the one-dimensional
Uξ(p)-module on whi
h p operates via ξ .Proof. Suppose that βξ is nondegenerate so that z(ξ) = 0 . By Proposition 1 thereexists (p, p, λ) ∈ P ′

max su
h that λ = ξ|p . Then p is [p]-nilpotent by Corollary 1.By Proposition 2 Uξ(g) ⊗Uλ(p) kλ is an irredu
ible g-module of dimension p
1

2
dim g .Sin
e Uξ(g) is of dimension pdim g , it has to be simple. This proves (ii) and also oneimpli
ation in (i).Suppose now that Uξ(g) is simple, and let V be its irredu
ible module. In viewof Proposition 1, there exists (p, p, λ) ∈ P ′

max su
h that Vλ 6= 0 . Let 0 6= v ∈ Vλso that kv ⊂ Vλ is a one-dimensional irredu
ible Uξ(p)-submodule. By Lemma 1 the
g-module Uξ(g)⊗Uξ(p) kv is irredu
ible, hen
e of dimension p

1

2
dim g . Therefore dim p =

= 1
2 dim g . Let η ∈ g∗ be any linear fun
tion su
h that η|p = λ . By Proposition 1 p isa maximal totally isotropi
 subspa
e of g with respe
t to βη . The well-known formula

dim g + dim z(η) = 2 dim p now yields z(η) = 0 . By Proposition 2 applied to the linearfun
tion η in pla
e of ξ the p-
hara
ter of the p -module kv equals λ . Hen
e λ = ξ|p .We may thus use η = ξ in the argument above to 
on
lude that z(ξ) = 0 . The proof is
omplete.



200 S.M. SKRYABIN2. Frobenius Lie algebras with exponentiable adjoint derivationsLet g be an arbitrary �nite dimensional p-Lie algebra over the ground algebrai
ally
losed �eld k . We want to 
ompare two sets
X = {ξ ∈ g∗ | Uξ(g) is simple}, Y = {ξ ∈ g∗ | βξ is nondegenerate}.Lemma 6. There exists a homogeneous polynomial fun
tion f on the ve
tor spa
e

V = g∗ ⊕ k su
h that
X = {ξ ∈ g∗ | f(ξ, 1) 6= 0}, Y = {ξ ∈ g∗ | f(ξ, 0) 6= 0}.Proof. Let n = dim g . We will exploit the algebrai
 family of pn -dimensionalasso
iative algebras Uξ,λ = Uξ,λ(g) parameterized by points (ξ, λ) ∈ V (see [4℄). Thealgebra Uξ,λ 
ontains g as a generating subspa
e and has de�ning relations
xy − yx = λ[x, y], xp = λp−1x[p] + ξ(x)p · 1 (x, y ∈ g).In parti
ular, two spe
ial 
ases of these algebras are Uξ,1

∼= Uξ(g) and Uξ,0
∼= Sξ(g) ,the fa
tor algebra of the symmetri
 algebra S(g) by its ideal generated by all elements

xp − ξ(x)p · 1 with x ∈ g .There is a p-representation adξ,λ : g → Der Uξ,λ su
h that adξ,λ(x)(y) = [x, y] for
x, y ∈ g . In this way Uξ,λ may be regarded as a module algebra over the restri
teduniversal enveloping algebra U0(g) and as a module over the smash produ
t algebra
Rξ,λ = Uξ,λ#U0(g) . Let

ϕξ,λ : Rξ,λ → Tξ,λ = Endk Uξ,λdenote the 
orresponding representation. Note that dimRξ,λ = dimTξ,λ = p2n . Hen
ethe map ϕξ,λ is bije
tive if and only if Uξ,λ is a simple Rξ,λ -module. Now the Rξ,λ -submodules of Uξ,λ are pre
isely those left ideals that are stable under the a
tion adξ,λ .When λ 6= 0 su
h left ideals are pre
isely the two-sided ideals, and the simpli
ity of
Uξ,λ as a Rξ,λ -module is equivalent to the simpli
ity as an algebra. In parti
ular,

X = {ξ ∈ g∗ | ϕξ,1 is bije
tive}.On the other hand, a

ording to [4, Proposition 3.4℄ the algebra Sξ(g) has a uniquemaximal g-invariant ideal I , and the 
odimension of this ideal is pcodimg z(ξ) . In orderthat Sξ(g) be a simple Rξ,0 -module, it is ne
essary and su�
ient that I = 0 , whi
hamounts to z(ξ) = 0 , that is, to ξ ∈ Y . It follows that
Y = {ξ ∈ g∗ | ϕξ,0 is bije
tive}.It remains to show that the bije
tivity of ϕξ,λ 
an be expressed by means of the
ondition f(ξ, λ) 6= 0 for a suitable homogeneous polynomial fun
tion f on V . We mayview Rξ,λ and Tξ,λ as �bers of two algebrai
 ve
tor bundles R and T over V . Let

e1, . . . , en be any basis for g . The monomials ea1

1 · · · ean
n with 0 ≤ ai < p form a basisfor ea
h Uξ,λ . These monomials give rise to a basis for ea
h Rξ,λ and a basis for ea
h

Tξ,λ , yielding trivializations of R and T . The entries of the matrix of ϕξ,λ in the abovebases are polynomial fun
tions in (ξ, λ) . Taking f(ξ, λ) to be the determinant of thismatrix, we see that ϕξ,λ is bije
tive if and only if f(ξ, λ) 6= 0 .As explained in [4℄, for ea
h 0 6= t ∈ k there is a g-equivariant algebra isomorphism
θt : Uξ,λ → Utξ,tλ(g) . Hen
e the algebra Uξ,λ has no nontrivial g-invariant ideals if andonly if so does Utξ,tλ(g) . In other words, bije
tivity of ϕξ,λ is equivalent to bije
tivityof ϕtξ,tλ . It follows that the zero lo
us of the polynomial fun
tion f is a 
oni
al subsetof V , when
e f is homogeneous.



SIMPLE REDUCED ENVELOPING ALGEBRAS 201Remark. It is possible to 
ompute the degree of the polynomial fun
tion f inLemma 6 pro
eeding as follows. The isomorphisms θt indu
e a
tions of the one-dimensional torus Gm on R and T . Taking quotients modulo these a
tions we passto a morphism of ve
tor bundles R → T over the proje
tive spa
e P(V ) asso
iatedwith V . Let also U = U/Gm , where U is the ve
tor bundle over V r {0} with �bers
Uξ,λ . Ea
h line bundle over P(V ) is isomorphi
 to some L(s) , de�ned as the quotientof (V r {0})× k by the a
tion of Gm su
h that t · (v, c) = (tv, tsc) , where s ∈ Z . Thes
alar multiples of any monomial ea1

1 · · · ean
n produ
e a Gm -stable line subbundle of U .This leads to a de
omposition

U ∼=
⊕

{(a1,...,an)|0≤ai<p}

L(−a1 − · · · − an).The bundle R is isomorphi
 to a dire
t sum of pn 
opies of U , while T ∼= U ⊗ U
∗ .As a result, ∧p2n

R ∼= L(−d) , where
d = pn ·

∑

{(a1,...,an)|0≤ai<p}

(a1 + · · · + an) =
np2n(p − 1)

2
,while ∧p2n

T ∼= L(0) is trivial. Now f 
an be identi�ed with a se
tion of the line bundle
Hom

(
L(−d), L(0)

)
∼= L(d) . This means that deg f = d .Corollary 2. If g is Frobenius, that is, Y 6= ∅ , then f 6= 0 , and therefore X 6= ∅ .Whether X 6= ∅ implies Y 6= ∅ is a spe
ial 
ase of the still open Ka
�Weisfeiler
onje
ture from [8℄.Proposition 4. If g is Frobenius and Y ⊂ X , then X = Y .Proof. By Lemma 6 the 
omplements X c = g∗ r X and Yc = g∗ r Y are hy-persurfa
es in g∗ . The in
lusion Y ⊂ X entails X c ⊂ Yc . Therefore ea
h irredu
ible
omponent of X c is an irredu
ible 
omponent of Yc . Sin
e Yc is a 
oni
al subset of

g∗ , so too is ea
h irredu
ible 
omponent of Yc . It follows that X c is a 
oni
al subset aswell. Hen
e the polynomial fun
tion ξ 7→ f(ξ, 1) de�ning X c is homogeneous. We 
anwrite
f(ξ, λ) =

d∑

i=0

fi(ξ)λ
i,where ea
h fi is a homogeneous polynomial fun
tion of degree d − i on g∗ . Sin
e gis Frobenius, we have Y 6= ∅ , when
e f0 6= 0 . But then we must have fi = 0 for all

i > 0 , that is, f(ξ, λ) does not depend on λ .Theorem 2. Let g be a Frobenius p-Lie algebra with the automorphism group G .Suppose that ad g ⊂ Lie G . Then X = Y .Proof. Both X and Y are stable under the 
oadjoint a
tion of G . For any ξ ∈ Ythe nondegenera
y of βξ yields g · ξ = g∗ . Hen
e the tangent spa
e at ξ to the G-orbit
Gξ 
oin
ides with g∗ , and therefore Gξ is open in g∗ . Sin
e any two nonempty opensubsets of g∗ have nonempty interse
tion, we 
on
lude that Y is a single G-orbit. As Xis also nonempty and open in g∗ , we get X

⋂
Y 6= ∅ , when
e Y ⊂ X . Now Proposition4 applies.



202 S.M. SKRYABIN3. The semisimple lo
us: an exampleLet us now look at a di�erent pair of subsets of g∗ :
X = {ξ ∈ g∗ | Uξ(g) is semisimple}, Y = {ξ ∈ g∗ | z(ξ) is toral}.It was proved in [4, Se
tion 4℄ that both of them are open in g∗ and that Y 6= ∅implies X 6= ∅ . Moreover, the stabilizers z(ξ) of all linear fun
tions ξ ∈ Y have equaldimensions. If s denotes their 
ommon dimension, then for ea
h ξ ∈ X the semisimplealgebra Uξ(g) has pre
isely ps nonisomorphi
 simple modules, all of equal dimension.One may ask what are those p-Lie algebras for whi
h X = Y . For instan
e, if gis the Lie algebra of a simply 
onne
ted semisimple algebrai
 group G and p is goodfor the root system of G , then X 
onsists pre
isely of the regular semisimple linearfun
tions [9, Corollary 3.6℄ so that the equality X = Y does hold. In this se
tion, weprovide examples of nilpotent p-Lie algebras for whi
h X 6= Y .Consider a p-Lie algebra g whose 
enter t is a toral subalgebra of 
odimension 2in g and [g, g] ⊂ t . Let u, v ∈ g span a subspa
e 
omplementary to t in g . Thereis an element 0 6= t ∈ t su
h that [u, v] = t . Then [g, g] = kt is a one-dimensionalsubspa
e.Sin
e g is nilpotent, it has a largest toral subalgebra. Clearly this subalgebra 
oin-
ides with t . Now t ⊂ z(ξ) for all ξ ∈ g∗ . Hen
e z(ξ) is toral if and only if z(ξ) = t .If z(ξ) 6= t , then z(ξ) = g , whi
h o

urs pre
isely when ξ vanishes on [g, g] . It followsthat

Y = {ξ ∈ g∗ | ξ(t) 6= 0}.Denote by t∗(1) the ve
tor spa
e of all p-semilinear maps t → k , that is, t∗(1) isthe Frobenius twist of the dual spa
e t∗ . The map ℘ : t∗ → t∗(1) de�ned by the rule
℘(λ)(x) = λ(x)p − λ(x[p]) for λ ∈ t∗ and x ∈ tis a �nite surje
tive morphism of algebrai
 varieties. There is also a bije
tive morphism

t∗ → t∗(1) given by λ 7→ λp , where λp(x) = λ(x)p .With any simple g-module V one 
an asso
iate a linear fun
tion λ ∈ t∗ su
hthat ea
h element x ∈ t a
ts in V as a s
alar multipli
ation by λ(x) . If ξ is the p-
hara
ter of V , then ℘(λ) = ξp|t . Conversely, for any pair λ ∈ t∗ and ξ ∈ g∗ satisfyingthe previous equality there is pre
isely one simple Uξ(g)-module V whi
h has λ asthe asso
iated fun
tion. If λ(t) = 0 , then [g, g] annihilates V , when
e dimV = 1 .Otherwise V is indu
ed from a one-dimensional representation of any abelian subalgebraof 
odimension 1 in g so that dimV = p . Sin
e all �bers of the map ℘ have 
ardinality
N = pdim t , for ea
h ξ ∈ g∗ there are pre
isely N nonisomorphi
 simple Uξ(g)-modules.In order that Uξ(g) be semisimple, it is ne
essary and su�
ient that its dimension pdim gbe equal to ∑

(dim V )2 , the sum over all those modules. This happens pre
isely whenall simple Uξ(g)-modules have dimension p . We 
on
lude that
X = {ξ ∈ g∗ | λ(t) 6= 0 for ea
h λ ∈ ℘−1(ξp|t)}.Suppose now that t is su
h that t[p] /∈ kt . Then neither X ⊂ Y nor Y ⊂ X .To see this let λ and ξ be as above. If λ(t) = 0 , but λ(t[p]) 6= 0 , then the equality

λ(t)p −λ(t[p]) = ξ(t)p yields ξ(t) 6= 0 . In this 
ase ξ ∈ Y , but ξ /∈ X . Now the subspa
e
S = {λ ∈ t∗ | λ(t) = λ(t[p]) = 0}has 
odimension 2 in t∗ . Hen
e ℘(S) is a 
losed subvariety of 
odimension 2 in t∗(1) ,and it follows that there exists ξ ∈ g∗ su
h that ξ(t) = 0 , but ξp|t /∈ ℘(S) . In this 
ase

ξ /∈ Y , but ξ ∈ X .



SIMPLE REDUCED ENVELOPING ALGEBRAS 203This work was Supported by the Russian Foundation for Basi
 Resear
h (GrantNo. 10-01-00431) and the Presidential Grant for Support of Leading S
ienti�
 S
hools(Grant No. 5383.2012.1). �åçþìåÑ.Ì. Ñêðÿáèí. Î ëîêóñå p -õàðàêòåðîâ, îïðåäåëÿþùèõ ïðîñòûå ðåäóöèðîâàííûå îáåð-òûâàþùèå àëãåáðû.Â äâóõ ñëó÷àÿõ ïîäòâåðæäåíà ãèïîòåçà, óòâåðæäàþùàÿ, ÷òî ðåäóöèðîâàííàÿ îá¼ð-òûâàþùàÿ àëãåáðà Uξ(g) îãðàíè÷åííîé àëãåáðû Ëè g ÿâëÿåòñÿ ïðîñòîé òîãäà è òîëüêîòîãäà, êîãäà àëüòåðíèðóþùàÿ áèëèíåéíàÿ �îðìà, àññîöèèðîâàííàÿ ñ çàäàííûì p -õàðàê-òåðîì ξ ∈ g∗ , íåâûðîæäåíà.Êëþ÷åâûå ñëîâà: îãðàíè÷åííûå àëãåáðû Ëè, ðàçðåøèìûå àëãåáðû Ëè, �ðîáåíèó-ñîâû àëãåáðû Ëè, ðåäóöèðîâàííûå îáåðòûâàþùèå àëãåáðû.
References

1. Strade H., Farnsteiner R. Modular Lie Algebras and Their Representations. – N. Y.:

Marcel Dekker, Inc., 1988. – 312 p.

2. Skryabin S. Hopf Galois extensions, triangular structures, and Frobenius Lie algebras in

prime characteristic // J. Algebra. – 2004. – V. 277, No 1. – P. 96–128.
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