UDK 512.5

ON THE LOCUS OF p-CHARACTERS DEFINING SIMPLE REDUCED ENVELOPING ALGEBRAS

S.M. Skryabin

Abstract

We confirm in two cases the conjecture stating that the reduced enveloping algebra $U_{\xi}(\mathfrak{g})$ of a restricted Lie algebra \mathfrak{g} is simple if and only if the alternating bilinear form associated with the given p-character $\xi \in \mathfrak{g}^*$ is nondegenerate.

Key words: restricted Lie algebras, solvable Lie algebras, Frobenius Lie algebras, reduced enveloping algebras.

In the representation theory of a finite dimensional p-Lie algebra $\mathfrak g$ over an algebraically closed field k of characteristic p>0 one is naturally led to consider the family of reduced enveloping algebras $U_\xi(\mathfrak g)$ associated with linear functions $\xi\in\mathfrak g^*$ (see [1]). The algebra $U_\xi(\mathfrak g)$ is defined as the factor algebra of the universal enveloping algebra $U(\mathfrak g)$ by its ideal generated by central elements $x^p-x^{[p]}-\xi(x)^p\cdot 1$ with $x\in\mathfrak g$, and ξ is called the p-character of any $\mathfrak g$ -module which can be realized as a module over $U_\xi(\mathfrak g)$. There is a certain, still far from fully understood, relation between generic properties of the family of reduced enveloping algebras and generic properties of the family of stabilizers of linear functions. The stabilizer $\mathfrak z(\xi)$ of $\xi\in\mathfrak g^*$ coincides with the radical of the alternating bilinear form $\beta_\xi:\mathfrak g\times\mathfrak g\to k$ defined by the rule

$$\beta_{\xi}(x,y) = \xi([x,y]) \text{ for } x,y \in \mathfrak{g}.$$

The Lie algebra \mathfrak{g} is called Frobenius if β_{ξ} is nondegenerate for at least one ξ .

In general one cannot determine the type of one particular algebra $U_{\xi}(\mathfrak{g})$ just knowing $\mathfrak{z}(\xi)$. It is quite interesting and surprising that sometimes this can be done. In [2] it was conjectured that $U_{\xi}(\mathfrak{g})$ is simple if and only if $\mathfrak{z}(\xi) = 0$, that is, if and only if β_{ξ} is nondegenerate. The purpose of the present article is to verify this conjecture in two cases. When \mathfrak{g} is solvable and p > 2 we do this using the description of irreducible \mathfrak{g} -modules due to Strade [3]. We have to make more careful selections of subalgebras from which irreducible \mathfrak{g} -modules are obtained by induction. The second case occurs when \mathfrak{g} is Frobenius and all adjoint derivations of \mathfrak{g} lie in the Lie algebra of the automorphism group. Here we apply geometric arguments to the extension of the family of reduced enveloping algebras constructed in [4].

An example at the end of the paper shows that semisimplicity of the algebra $U_{\xi}(\mathfrak{g})$ cannot be recognized in terms of $\mathfrak{z}(\xi)$ by means of a possible generalization of the above conjecture.

1. Solvable Lie algebras

It is assumed in this section that \mathfrak{g} is solvable and p > 2. Recall that a polarization of \mathfrak{g} at $\xi \in \mathfrak{g}^*$ is a Lie subalgebra which is simultaneously a maximal totally isotropic subspace with respect to the alternating bilinear form β_{ξ} [5].

Denote by \mathcal{P} the set of all triples $(\mathfrak{p},\mathfrak{a},\lambda)$ such that $\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{g}$ are vector subspaces, $\lambda \in \mathfrak{a}^*$ is a linear function and there exists a chain of subspaces

$$0 = \mathfrak{a}_0 \subset \mathfrak{a}_1 \subset \ldots \subset \mathfrak{a}_n = \mathfrak{a} \subset \mathfrak{p} = \mathfrak{p}_n \subset \ldots \subset \mathfrak{p}_1 \subset \mathfrak{p}_0 = \mathfrak{g} \tag{1}$$

with the property that

$$[\mathfrak{p}_{i-1},\mathfrak{a}_i] \subset \mathfrak{a}_i \quad \text{and} \quad \mathfrak{p}_i = \{x \in \mathfrak{p}_{i-1} \mid \lambda([x,\mathfrak{a}_i]) = 0\}$$
 (2)

for all i = 1, ..., n. As one checks by induction on i, each \mathfrak{p}_i is a p-subalgebra of \mathfrak{g} , and \mathfrak{a}_i is an ideal of \mathfrak{p}_{i-1} . In particular, \mathfrak{p} is a p-subalgebra of \mathfrak{g} , and \mathfrak{a} is an ideal of \mathfrak{p} . Furthermore, λ vanishes on $[\mathfrak{p},\mathfrak{a}]$ and, therefore, also on $[\mathfrak{a},\mathfrak{a}]$.

Lemma 1. Suppose that $(\mathfrak{p},\mathfrak{a},\lambda) \in \mathcal{P}$. If $\xi \in \mathfrak{g}^*$ is a linear function such that $\lambda(x)^p - \lambda(x^{[p]}) = \xi(x)^p$ for all $x \in \mathfrak{a}$ and W is an irreducible $U_{\xi}(\mathfrak{p})$ -module such that $xw = \lambda(x)w$ for all $x \in \mathfrak{a}$ and $w \in W$, then the induced \mathfrak{g} -module $U_{\xi}(\mathfrak{g}) \otimes_{U_{\xi}(\mathfrak{p})} W$ is irreducible.

Here $U_{\xi}(\mathfrak{p})$ stands for the reduced enveloping algebra of \mathfrak{p} corresponding to the restriction of ξ to \mathfrak{p} . The proof is obtained by a repeated application of the characteristic p analog of Blattner's irreducibility criterion [6, Theorem 3].

We will need additional conditions on triples. Denote by \mathcal{P}' the set of all triples $(\mathfrak{p},\mathfrak{a},\lambda)$ such that $\mathfrak{a}\subset\mathfrak{p}\subset\mathfrak{g}$ are vector subspaces, $\lambda\in\mathfrak{a}^*$ is a linear function, and there exists a chain of subspaces

$$0 = \mathfrak{a}_0 \subset \mathfrak{a}_1 \subset \ldots \subset \mathfrak{a}_n = \mathfrak{a} \subset \mathfrak{p} \subset \widetilde{\mathfrak{p}}_n \subset \ldots \subset \widetilde{\mathfrak{p}}_1 \subset \widetilde{\mathfrak{p}}_0 = \mathfrak{g}$$
 (3)

with the property that

$$[\widetilde{\mathfrak{p}}_{i-1},\mathfrak{a}_i]\subset\mathfrak{a}_i,$$
 (4)

$$\widetilde{\mathfrak{p}}_i = \{ x \in \widetilde{\mathfrak{p}}_{i-1} \mid \lambda([x, \mathfrak{a}'_i]) = 0 \}, \text{ where } \mathfrak{a}'_i = \{ y \in \mathfrak{a}_i \mid \lambda(y) = 0 \},$$
 (5)

$$\mathfrak{p} = \{ x \in \widetilde{\mathfrak{p}}_n \mid \lambda([x,\mathfrak{a}]) = 0 \}$$
 (6)

for all i = 1, ..., n. We will say that chain (3) is $(\mathfrak{p}, \mathfrak{a}, \lambda)$ -admissible in this case.

Lemma 2. In a $(\mathfrak{p},\mathfrak{a},\lambda)$ -admissible chain each $\widetilde{\mathfrak{p}}_i$ is a p-subalgebra, \mathfrak{a}_i is an ideal of $\widetilde{\mathfrak{p}}_{i-1}$, and \mathfrak{a}'_i is an ideal of $\widetilde{\mathfrak{p}}_i$. Furthermore, \mathfrak{p} is an ideal of $\widetilde{\mathfrak{p}}_n$.

Proof. Since $[\widetilde{\mathfrak{p}}_i, \mathfrak{a}_i] \subset \mathfrak{a}_i$ by (4) and λ vanishes on $[\widetilde{\mathfrak{p}}_i, \mathfrak{a}'_i]$ by (5), we deduce that $[\widetilde{\mathfrak{p}}_i, \mathfrak{a}'_i] \subset \mathfrak{a}'_i$. Since the normalizer of \mathfrak{a}'_i in \mathfrak{g} is a p-subalgebra, an induction on i shows that so too is $\widetilde{\mathfrak{p}}_i$. Now $[\mathfrak{p}, \mathfrak{a}] \subset \mathfrak{a}$ and λ vanishes on $[\mathfrak{p}, \mathfrak{a}]$ by (4) and (6), whence $[\mathfrak{p}, \mathfrak{a}] \subset \mathfrak{a}'_n$. It follows $[[\widetilde{\mathfrak{p}}_n, \mathfrak{p}], \mathfrak{a}] \subset [\widetilde{\mathfrak{p}}_n, \mathfrak{a}'_n] + [\mathfrak{p}, \mathfrak{a}] \subset \mathfrak{a}'_n$, and so $[\widetilde{\mathfrak{p}}_n, \mathfrak{p}] \subset \mathfrak{p}$.

Lemma 3. It holds $\mathcal{P}' \subset \mathcal{P}$.

Proof. Let $(\mathfrak{p}, \mathfrak{a}, \lambda) \in \mathcal{P}'$. Consider a $(\mathfrak{p}, \mathfrak{a}, \lambda)$ -admissible chain (3) and for each i define $\mathfrak{p}_i = \{x \in \widetilde{\mathfrak{p}}_i \mid \lambda([x, \mathfrak{a}_i]) = 0\}$. We obtain then a chain (1) with $\mathfrak{p}_i \subset \widetilde{\mathfrak{p}}_i$, and it is checked straightforwardly that (2) is fulfilled. Thus $(\mathfrak{p}, \mathfrak{a}, \lambda) \in \mathcal{P}$.

Lemma 4. Suppose that \mathfrak{a} is a one-dimensional ideal of a solvable Lie algebra \mathfrak{h} , and \mathfrak{b} is an ideal of \mathfrak{h} , minimal with respect to the property that $\mathfrak{a} \subset \mathfrak{b}$, $\mathfrak{a} \neq \mathfrak{b}$ and $[\mathfrak{a},\mathfrak{b}] = 0$. Then \mathfrak{b} is abelian.

Proof. Put $\mathfrak{c} = \{x \in \mathfrak{b} \mid [x,\mathfrak{b}] = 0\}$. Then \mathfrak{c} is an ideal of \mathfrak{h} and $\mathfrak{a} \subset \mathfrak{c} \subset \mathfrak{b}$. By the minimality of \mathfrak{b} we have either $\mathfrak{c} = \mathfrak{b}$ or $\mathfrak{c} = \mathfrak{a}$. In the first case $[\mathfrak{b},\mathfrak{b}] = 0$, and we are done. Suppose that $\mathfrak{c} = \mathfrak{a}$. Then the multiplication in \mathfrak{b} induces a nondegenerate alternating bilinear form $\mathfrak{b}/\mathfrak{a} \times \mathfrak{b}/\mathfrak{a} \to \mathfrak{a}$. In particular, $\mathfrak{b}/\mathfrak{a}$ has even dimension. On the other hand, $\mathfrak{b}/\mathfrak{a}$ is an irreducible \mathfrak{h} -module by the minimality of \mathfrak{b} , and therefore $\dim \mathfrak{b}/\mathfrak{a}$ is a power of p, hence odd, by [3, Satz 3]. We arrive at a contradiction. \square

Lemma 5. Suppose that $(\mathfrak{p},\mathfrak{a},\lambda) \in \mathcal{P}'$. If $\mathfrak{a} \neq \mathfrak{p}$, then there exists a vector subspace $\mathfrak{b} \subset \mathfrak{p}$ such that \mathfrak{a} is contained in \mathfrak{b} properly, $[\mathfrak{b},\mathfrak{b}] \subset \mathfrak{a}' = \ker \lambda$, and for every linear function $\mu \in \mathfrak{b}^*$ extending λ there exists \mathfrak{q} satisfying $(\mathfrak{q},\mathfrak{b},\mu) \in \mathcal{P}'$.

Proof. Consider a $(\mathfrak{p},\mathfrak{a},\lambda)$ -admissible chain (3). By Lemma 2 \mathfrak{a} and \mathfrak{p} are ideals of $\widetilde{\mathfrak{p}}_n$. Let us choose an ideal \mathfrak{b} of $\widetilde{\mathfrak{p}}_n$ such that $\mathfrak{a} \subset \mathfrak{b} \subset \mathfrak{p}$, $\mathfrak{a} \neq \mathfrak{b}$, and \mathfrak{b} is minimal with respect to these properties. Then $[\mathfrak{b},\mathfrak{b}] \subset \mathfrak{a}$ since $\widetilde{\mathfrak{p}}_n$ is solvable and $[\mathfrak{b},\mathfrak{a}] \subset \mathfrak{a}'$ by (6). If $\mathfrak{a} \neq \mathfrak{a}'$, then dim $\mathfrak{a}/\mathfrak{a}' = 1$. Lemma 4 applied to the Lie algebra $\widetilde{\mathfrak{p}}_n/\mathfrak{a}'$ and its one-dimensional ideal $\mathfrak{a}/\mathfrak{a}'$ shows that $\mathfrak{b}/\mathfrak{a}'$ is abelian in this case. Thus we have $[\mathfrak{b},\mathfrak{b}] \subset \mathfrak{a}'$ in any case. If $\mu \in \mathfrak{b}^*$ extends λ , then put

$$\widetilde{\mathfrak{p}}_{n+1} = \{x \in \widetilde{\mathfrak{p}}_n \mid \mu([x,\mathfrak{b}']) = 0\} \quad \text{and} \quad \mathfrak{q} = \{x \in \widetilde{\mathfrak{p}}_{n+1} \mid \mu([x,\mathfrak{b}]) = 0\},$$

where $\mathfrak{b}' = \{ y \in \mathfrak{b} \mid \mu(y) = 0 \}$. Note that $\mathfrak{b} \subset \mathfrak{q}$ since μ is zero on $[\mathfrak{b}, \mathfrak{b}] \subset \mathfrak{a}'$. Obviously $\mathfrak{q} \subset \widetilde{\mathfrak{p}}_{n+1} \subset \widetilde{\mathfrak{p}}_n$. Setting $\mathfrak{a}_{n+1} = \mathfrak{b}$, we obtain an extension of (3) to a $(\mathfrak{q}, \mathfrak{b}, \mu)$ -admissible chain. Thus $(\mathfrak{q}, \mathfrak{b}, \mu) \in \mathcal{P}'$.

We say that $(\mathfrak{p},\mathfrak{a},\lambda)\in\mathcal{P}$ is maximal if $\mathfrak{p}=\mathfrak{a}$. Denote by $\mathcal{P}_{\max}\subset\mathcal{P}$ the subset of all maximal triples and put $\mathcal{P}'_{\max}=\mathcal{P}_{\max}\cap\mathcal{P}'$. All conclusions of the next proposition with \mathcal{P} in place of \mathcal{P}' were obtained by Strade [3] in a somewhat different language.

Proposition 1. (i) Given $\xi \in \mathfrak{g}^*$, there exists $(\mathfrak{p}, \mathfrak{a}, \lambda) \in \mathcal{P}'_{\max}$ such that $\lambda = \xi|_{\mathfrak{p}}$. In this case \mathfrak{p} is a polarization of \mathfrak{g} at ξ .

(ii) Given an irreducible \mathfrak{g} -module V, there exists $(\mathfrak{p},\mathfrak{a},\lambda) \in \mathcal{P}'_{\max}$ such that the subspace $V_{\lambda} = \{v \in V \mid xv = \lambda(x)v \text{ for all } x \in \mathfrak{a}\}$ is nonzero.

Proof. Denote by $\mathcal{P}'_{\xi} \subset \mathcal{P}'$ the subset of those triples $(\mathfrak{p},\mathfrak{a},\lambda)$ for which $\lambda = \xi|_{\mathfrak{p}}$. This subset is nonempty as we may take $\mathfrak{a} = 0$, $\mathfrak{p} = \mathfrak{g}$. Suppose that $(\mathfrak{p},\mathfrak{a},\lambda) \in \mathcal{P}'_{\xi}$ and $\mathfrak{p} \neq \mathfrak{a}$. Find \mathfrak{b} as in Lemma 5 and set $\mu = \xi|_{\mathfrak{b}}$. There exists $(\mathfrak{q},\mathfrak{b},\mu) \in \mathcal{P}'$ which belongs to \mathcal{P}'_{ξ} by the choice of μ . We have here $\dim \mathfrak{b} > \dim \mathfrak{a}$. This argument shows that $\mathcal{P}'_{\xi} \cap \mathcal{P}'_{\max}$ is nonvoid. Indeed, it suffices to pick out $(\mathfrak{p},\mathfrak{a},\lambda) \in \mathcal{P}'_{\xi}$ for which $\dim \mathfrak{a}$ is maximal possible. By Lemma 3 $(\mathfrak{p},\mathfrak{a},\lambda) \in \mathcal{P}$. There exists then a chain (1) satisfying (2). It follows by induction on i that $\mathfrak{p}_i = \{x \in \mathfrak{g} \mid \xi([x,\mathfrak{a}_i]) = 0\}$. Hence $\mathfrak{p} = \mathfrak{a}$ is a maximal totally isotropic subspace of \mathfrak{g} with respect to β_{ξ} .

Denote by $\mathcal{P}'_V \subset \mathcal{P}'$ the subset of those triples $(\mathfrak{p},\mathfrak{a},\lambda)$ for which $V_\lambda \neq 0$. The triple $(\mathfrak{g},0,0)$ is again in \mathcal{P}'_V . Suppose that $(\mathfrak{p},\mathfrak{a},\lambda) \in \mathcal{P}'_V$ and $\mathfrak{p} \neq \mathfrak{a}$. Let \mathfrak{b} be as in Lemma 5. Since $[\mathfrak{b},\mathfrak{a}] \subset \mathfrak{a}'$, the subspace V_λ is stable under \mathfrak{b} . Hence the abelian Lie algebra $\mathfrak{b}/\mathfrak{a}'$ operates in V_λ . It follows that V_λ contains a one-dimensional \mathfrak{b} -submodule, say kv. The equality $xv = \mu(x)v$ defines a linear function $\mu \in \mathfrak{b}^*$ which extends λ . We have $v \in V_\mu$ by the construction. Lemma 5 provides a triple $(\mathfrak{q},\mathfrak{b},\mu) \in \mathcal{P}'$ which belongs to \mathcal{P}'_V . The intersection $\mathcal{P}'_V \cap \mathcal{P}'_{\max}$ is therefore nonvoid, similarly as in case (i).

Proposition 2. Suppose that $\xi \in \mathfrak{g}^*$ and $(\mathfrak{p}, \mathfrak{a}, \lambda) \in \mathcal{P}'_{\max}$ with $\lambda = \xi|_{\mathfrak{p}}$. If ξ vanishes on $\mathfrak{z}(\xi)$, then $\xi(\mathfrak{p}^{[p]}) = 0$. In this case the one-dimensional \mathfrak{p} -module k_{λ} on which \mathfrak{p} operates via λ has p-character λ , and so $U_{\xi}(\mathfrak{g}) \otimes_{U_{\lambda}(\mathfrak{p})} k_{\lambda}$ is an irreducible \mathfrak{g} -module of dimension $p^{\frac{1}{2}(\dim \mathfrak{g} - \dim \mathfrak{z}(\xi))}$.

Proof. For each subspace $\mathfrak{h} \subset \mathfrak{g}$ denote by $\mathfrak{h}^{\perp} \subset \mathfrak{g}$ its orthogonal complement with respect to β_{ξ} . One has then $(\mathfrak{h}^{\perp})^{\perp} = \mathfrak{h} + \mathfrak{z}(\xi)$. Consider a $(\mathfrak{p}, \mathfrak{a}, \lambda)$ -admissible chain (3). Put $\widetilde{\mathfrak{p}} = \widetilde{\mathfrak{p}}_n$ and $\mathfrak{p}' = \mathfrak{a}'_n$. Note that $\mathfrak{a}'_{i-1} \subset \mathfrak{a}'_i$ for all $i = 1, \ldots, n$. It follows then from (5) by induction on i that $\widetilde{\mathfrak{p}}_i = \mathfrak{a}'^{\perp}_i$ for each i. For i = n we obtain $\mathfrak{p}'^{\perp} = \widetilde{\mathfrak{p}}$. Hence $\widetilde{\mathfrak{p}}^{\perp} = \mathfrak{p}' + \mathfrak{z}(\xi)$. Note that $\mathfrak{z}(\xi) \subset \mathfrak{p}$ since \mathfrak{p} is a maximal totally isotropic subspace of \mathfrak{g} with respect to β_{ξ} . Under the hypotheses of Proposition 2 $\mathfrak{z}(\xi) \subset \mathfrak{p} \cap \ker \xi = \mathfrak{p}'$. Thus $\widetilde{\mathfrak{p}}^{\perp} = \mathfrak{p}'$.

Observe that $[\widetilde{\mathfrak{p}},\mathfrak{p}^{[p]}] \subset [\mathfrak{p},\mathfrak{p}]$ since \mathfrak{p} is an ideal of $\widetilde{\mathfrak{p}}$ by Lemma 2. Hence ξ vanishes on $[\widetilde{\mathfrak{p}},\mathfrak{p}^{[p]}]$, and so $\mathfrak{p}^{[p]}\subset\widetilde{\mathfrak{p}}^{\perp}=\mathfrak{p}'$. This shows that $\xi(\mathfrak{p}^{[p]})=0$. The claim about irreducibility follows from Lemma 1, and the dimension formula follows from the equality $\dim \mathfrak{g} - \dim \mathfrak{p} = \frac{1}{2} (\dim \mathfrak{g} - \dim \mathfrak{z}(\xi)).$

Proposition 3. Suppose that $\xi \in \mathfrak{g}^*$ and $(\mathfrak{p}, \mathfrak{a}, \lambda) \in \mathcal{P}_{\max}$ with $\lambda = \xi|_{\mathfrak{p}}$. Then every maximal torus of $\mathfrak{z}(\xi)$ is a maximal torus of \mathfrak{p} .

Proof. Consider a chain (1) satisfying (2). We have $\mathfrak{a}_i^{\perp} = \mathfrak{p}_i$, and therefore $\mathfrak{p}_i^{\perp} =$ $=\mathfrak{z}(\xi)+\mathfrak{a}_i$. As \mathfrak{a}_i is an ideal of \mathfrak{p}_{i-1} , we get $[\mathfrak{p}_{i-1},\mathfrak{a}_i^{[p]}]\subset [\mathfrak{a}_i,\mathfrak{a}_i]$ for i>0, which is contained in the kernel of ξ . This shows that $\mathfrak{a}_i^{[p]} \subset \mathfrak{p}_{i-1}^{\perp} = \mathfrak{z}(\xi) + \mathfrak{a}_{i-1}$. Denote by \mathfrak{b}_i the [p]-closure of \mathfrak{a}_i . Then \mathfrak{b}_i is an ideal of \mathfrak{p} since so is \mathfrak{a}_i . Hence

 $\mathfrak{z}(\xi) + \mathfrak{b}_i$ is a p-subalgebra for each i, and it follows that $\mathfrak{b}_i^{[p]} \subset \mathfrak{z}(\xi) + \mathfrak{b}_{i-1}$.

Suppose that \mathfrak{t} is a maximal torus of $\mathfrak{z}(\xi)$ and $s \in \mathfrak{p}$ is a [p]-semisimple element which centralizes \mathfrak{t} . We will prove that $s \in \mathfrak{t} + \mathfrak{b}_i$ by the downward induction on $i=0,\ldots,n$. For i=n the assertion is clear since $\mathfrak{t}+\mathfrak{b}_n=\mathfrak{p}$. Suppose that $s\in\mathfrak{t}+\mathfrak{b}_i$ for some i > 0. Then s = t + x, where $t \in \mathfrak{t}$, $x \in \mathfrak{b}_i$ and [t, x] = 0. By the above $s^{[p]} = t^{[p]} + x^{[p]} \in \mathfrak{z}(\xi) + \mathfrak{b}_{i-1}$. Since s is a linear combination of elements $s^{[p^r]}$ with r > 0, we get $s \in \mathfrak{z}(\xi) + \mathfrak{b}_{i-1}$. The p-Lie algebra $\mathfrak{h}_i = (\mathfrak{z}(\xi) + \mathfrak{b}_{i-1})/\mathfrak{b}_{i-1}$ is a homomorphic image of $\mathfrak{z}(\xi)$, and therefore the image of \mathfrak{t} in \mathfrak{h}_i is a maximal torus of \mathfrak{h}_i by [7, Theorem 2.16]. It follows that $s \in \mathfrak{t} + \mathfrak{b}_{i-1}$, providing the induction step. We can now conclude that $s \in \mathfrak{t} + \mathfrak{b}_0 = \mathfrak{t}$, and the proof is complete.

Corollary 1. If $\mathfrak{z}(\xi)$ is [p]-nilpotent, then so too is \mathfrak{p} .

We come to the main result of this section:

Theorem 1. Let g be a solvable finite dimensional p-Lie algebra over an algebraically closed field of characteristic p > 2, and let $\xi \in \mathfrak{g}^*$.

- (i) The algebra $U_{\xi}(\mathfrak{g})$ is simple if and only if β_{ξ} is nondegenerate.
- (ii) If β_{ξ} is nondegenerate, then ξ admits a [p]-nilpotent polarization \mathfrak{p} such that $\xi(\mathfrak{p}^{[p]})=0$, and the single irreducible $U_{\xi}(\mathfrak{g})$ -module is induced from the one-dimensional $U_{\xi}(\mathfrak{p})$ -module on which \mathfrak{p} operates via ξ .

Proof. Suppose that β_{ξ} is nondegenerate so that $\mathfrak{z}(\xi) = 0$. By Proposition 1 there exists $(\mathfrak{p},\mathfrak{p},\lambda) \in \mathcal{P}'_{\max}$ such that $\lambda = \xi|_{\mathfrak{p}}$. Then \mathfrak{p} is [p]-nilpotent by Corollary 1. By Proposition 2 $U_{\xi}(\mathfrak{g}) \otimes_{U_{\lambda}(\mathfrak{p})} k_{\lambda}$ is an irreducible \mathfrak{g} -module of dimension $p^{\frac{1}{2}\dim\mathfrak{g}}$. Since $U_{\mathcal{E}}(\mathfrak{g})$ is of dimension $p^{\dim \mathfrak{g}}$, it has to be simple. This proves (ii) and also one implication in (i).

Suppose now that $U_{\xi}(\mathfrak{g})$ is simple, and let V be its irreducible module. In view of Proposition 1, there exists $(\mathfrak{p},\mathfrak{p},\lambda) \in \mathcal{P}'_{\max}$ such that $V_{\lambda} \neq 0$. Let $0 \neq v \in V_{\lambda}$ so that $kv \subset V_{\lambda}$ is a one-dimensional irreducible $U_{\xi}(\mathfrak{p})$ -submodule. By Lemma 1 the \mathfrak{g} -module $U_{\xi}(\mathfrak{g}) \otimes_{U_{\xi}(\mathfrak{p})} kv$ is irreducible, hence of dimension $p^{\frac{1}{2}\dim\mathfrak{g}}$. Therefore $\dim\mathfrak{p}=$ $=\frac{1}{2}\dim\mathfrak{g}$. Let $\eta\in\mathfrak{g}^*$ be any linear function such that $\eta|_{\mathfrak{p}}=\lambda$. By Proposition 1 \mathfrak{p} is a maximal totally isotropic subspace of \mathfrak{g} with respect to β_{η} . The well-known formula $\dim \mathfrak{g} + \dim \mathfrak{z}(\eta) = 2 \dim \mathfrak{p}$ now yields $\mathfrak{z}(\eta) = 0$. By Proposition 2 applied to the linear function η in place of ξ the p-character of the p-module kv equals λ . Hence $\lambda = \xi|_{p}$. We may thus use $\eta = \xi$ in the argument above to conclude that $\mathfrak{z}(\xi) = 0$. The proof is complete.

2. Frobenius Lie algebras with exponentiable adjoint derivations

Let \mathfrak{g} be an arbitrary finite dimensional p-Lie algebra over the ground algebraically closed field k. We want to compare two sets

$$\mathcal{X} = \{ \xi \in \mathfrak{g}^* \mid U_{\xi}(\mathfrak{g}) \text{ is simple} \}, \quad \mathcal{Y} = \{ \xi \in \mathfrak{g}^* \mid \beta_{\xi} \text{ is nondegenerate} \}.$$

Lemma 6. There exists a homogeneous polynomial function f on the vector space $V = \mathfrak{g}^* \oplus k$ such that

$$\mathcal{X} = \{ \xi \in \mathfrak{g}^* \mid f(\xi, 1) \neq 0 \}, \quad \mathcal{Y} = \{ \xi \in \mathfrak{g}^* \mid f(\xi, 0) \neq 0 \}.$$

Proof. Let $n = \dim \mathfrak{g}$. We will exploit the algebraic family of p^n -dimensional associative algebras $U_{\xi,\lambda} = U_{\xi,\lambda}(\mathfrak{g})$ parameterized by points $(\xi,\lambda) \in V$ (see [4]). The algebra $U_{\xi,\lambda}$ contains \mathfrak{g} as a generating subspace and has defining relations

$$xy - yx = \lambda[x, y], \quad x^p = \lambda^{p-1}x^{[p]} + \xi(x)^p \cdot 1 \quad (x, y \in \mathfrak{g}).$$

In particular, two special cases of these algebras are $U_{\xi,1} \cong U_{\xi}(\mathfrak{g})$ and $U_{\xi,0} \cong S_{\xi}(\mathfrak{g})$, the factor algebra of the symmetric algebra $S(\mathfrak{g})$ by its ideal generated by all elements $x^p - \xi(x)^p \cdot 1$ with $x \in \mathfrak{g}$.

There is a p-representation $\operatorname{ad}_{\xi,\lambda}:\mathfrak{g}\to\operatorname{Der} U_{\xi,\lambda}$ such that $\operatorname{ad}_{\xi,\lambda}(x)(y)=[x,y]$ for $x,y\in\mathfrak{g}$. In this way $U_{\xi,\lambda}$ may be regarded as a module algebra over the restricted universal enveloping algebra $U_0(\mathfrak{g})$ and as a module over the smash product algebra $R_{\xi,\lambda}=U_{\xi,\lambda}\#U_0(\mathfrak{g})$. Let

$$\varphi_{\mathcal{E},\lambda}: R_{\mathcal{E},\lambda} \to T_{\mathcal{E},\lambda} = \operatorname{End}_k U_{\mathcal{E},\lambda}$$

denote the corresponding representation. Note that $\dim R_{\xi,\lambda}=\dim T_{\xi,\lambda}=p^{2n}$. Hence the map $\varphi_{\xi,\lambda}$ is bijective if and only if $U_{\xi,\lambda}$ is a simple $R_{\xi,\lambda}$ -module. Now the $R_{\xi,\lambda}$ -submodules of $U_{\xi,\lambda}$ are precisely those left ideals that are stable under the action $\mathrm{ad}_{\xi,\lambda}$. When $\lambda \neq 0$ such left ideals are precisely the two-sided ideals, and the simplicity of $U_{\xi,\lambda}$ as a $R_{\xi,\lambda}$ -module is equivalent to the simplicity as an algebra. In particular,

$$\mathcal{X} = \{ \xi \in \mathfrak{g}^* \mid \varphi_{\xi,1} \text{ is bijective} \}.$$

On the other hand, according to [4, Proposition 3.4] the algebra $S_{\xi}(\mathfrak{g})$ has a unique maximal \mathfrak{g} -invariant ideal I, and the codimension of this ideal is $p^{\operatorname{codim}_{\mathfrak{g}}\mathfrak{z}(\xi)}$. In order that $S_{\xi}(\mathfrak{g})$ be a simple $R_{\xi,0}$ -module, it is necessary and sufficient that I=0, which amounts to $\mathfrak{z}(\xi)=0$, that is, to $\xi\in\mathcal{Y}$. It follows that

$$\mathcal{Y} = \{ \xi \in \mathfrak{g}^* \mid \varphi_{\xi,0} \text{ is bijective} \}.$$

It remains to show that the bijectivity of $\varphi_{\xi,\lambda}$ can be expressed by means of the condition $f(\xi,\lambda) \neq 0$ for a suitable homogeneous polynomial function f on V. We may view $R_{\xi,\lambda}$ and $T_{\xi,\lambda}$ as fibers of two algebraic vector bundles R and T over V. Let e_1,\ldots,e_n be any basis for \mathfrak{g} . The monomials $e_1^{a_1}\cdots e_n^{a_n}$ with $0\leq a_i< p$ form a basis for each $U_{\xi,\lambda}$. These monomials give rise to a basis for each $R_{\xi,\lambda}$ and a basis for each $T_{\xi,\lambda}$, yielding trivializations of $T_{\xi,\lambda}$ and $T_{\xi,\lambda}$. The entries of the matrix of $T_{\xi,\lambda}$ in the above bases are polynomial functions in $T_{\xi,\lambda}$. Taking $T_{\xi,\lambda}$ to be the determinant of this matrix, we see that $T_{\xi,\lambda}$ is bijective if and only if $T_{\xi,\lambda} = 0$.

As explained in [4], for each $0 \neq t \in k$ there is a \mathfrak{g} -equivariant algebra isomorphism $\theta_t: U_{\xi,\lambda} \to U_{t\xi,t\lambda}(\mathfrak{g})$. Hence the algebra $U_{\xi,\lambda}$ has no nontrivial \mathfrak{g} -invariant ideals if and only if so does $U_{t\xi,t\lambda}(\mathfrak{g})$. In other words, bijectivity of $\varphi_{\xi,\lambda}$ is equivalent to bijectivity of $\varphi_{t\xi,t\lambda}$. It follows that the zero locus of the polynomial function f is a conical subset of V, whence f is homogeneous.

Remark. It is possible to compute the degree of the polynomial function f in Lemma 6 proceeding as follows. The isomorphisms θ_t induce actions of the one-dimensional torus \mathbb{G}_m on R and T. Taking quotients modulo these actions we pass to a morphism of vector bundles $\overline{R} \to \overline{T}$ over the projective space $\mathbb{P}(V)$ associated with V. Let also $\overline{U} = U/\mathbb{G}_m$, where U is the vector bundle over $V \setminus \{0\}$ with fibers $U_{\xi,\lambda}$. Each line bundle over $\mathbb{P}(V)$ is isomorphic to some L(s), defined as the quotient of $(V \setminus \{0\}) \times k$ by the action of \mathbb{G}_m such that $t \cdot (v,c) = (tv,t^sc)$, where $s \in \mathbb{Z}$. The scalar multiples of any monomial $e_1^{a_1} \cdots e_n^{a_n}$ produce a \mathbb{G}_m -stable line subbundle of U. This leads to a decomposition

$$\overline{U} \cong \bigoplus_{\{(a_1,\dots,a_n)|0 \le a_i < p\}} L(-a_1 - \dots - a_n).$$

The bundle \overline{R} is isomorphic to a direct sum of p^n copies of \overline{U} , while $\overline{T} \cong \overline{U} \otimes \overline{U}^*$. As a result, $\bigwedge^{p^{2n}} \overline{R} \cong L(-d)$, where

$$d = p^n \cdot \sum_{\{(a_1, \dots, a_n) | 0 \le a_i < p\}} (a_1 + \dots + a_n) = \frac{np^{2n}(p-1)}{2},$$

while $\bigwedge^{p^{2n}} \overline{T} \cong L(0)$ is trivial. Now f can be identified with a section of the line bundle $\operatorname{Hom}(L(-d),L(0))\cong L(d)$. This means that $\deg f=d$.

Corollary 2. If g is Frobenius, that is, $\mathcal{Y} \neq \emptyset$, then $f \neq 0$, and therefore $\mathcal{X} \neq \emptyset$.

Whether $\mathcal{X} \neq \emptyset$ implies $\mathcal{Y} \neq \emptyset$ is a special case of the still open Kac–Weisfeiler conjecture from [8].

Proposition 4. If g is Frobenius and $\mathcal{Y} \subset \mathcal{X}$, then $\mathcal{X} = \mathcal{Y}$.

Proof. By Lemma 6 the complements $\mathcal{X}^c = \mathfrak{g}^* \setminus \mathcal{X}$ and $\mathcal{Y}^c = \mathfrak{g}^* \setminus \mathcal{Y}$ are hypersurfaces in \mathfrak{g}^* . The inclusion $\mathcal{Y} \subset \mathcal{X}$ entails $\mathcal{X}^c \subset \mathcal{Y}^c$. Therefore each irreducible component of \mathcal{X}^c is an irreducible component of \mathcal{Y}^c . Since \mathcal{Y}^c is a conical subset of \mathfrak{g}^* , so too is each irreducible component of \mathcal{Y}^c . It follows that \mathcal{X}^c is a conical subset as well. Hence the polynomial function $\xi \mapsto f(\xi,1)$ defining \mathcal{X}^c is homogeneous. We can write

$$f(\xi, \lambda) = \sum_{i=0}^{d} f_i(\xi) \lambda^i,$$

where each f_i is a homogeneous polynomial function of degree d-i on \mathfrak{g}^* . Since \mathfrak{g} is Frobenius, we have $\mathcal{Y} \neq \emptyset$, whence $f_0 \neq 0$. But then we must have $f_i = 0$ for all i > 0, that is, $f(\xi, \lambda)$ does not depend on λ .

Theorem 2. Let \mathfrak{g} be a Frobenius p-Lie algebra with the automorphism group G. Suppose that $\operatorname{ad} \mathfrak{g} \subset \operatorname{Lie} G$. Then $\mathcal{X} = \mathcal{Y}$.

Proof. Both \mathcal{X} and \mathcal{Y} are stable under the coadjoint action of G. For any $\xi \in \mathcal{Y}$ the nondegeneracy of β_{ξ} yields $\mathfrak{g} \cdot \xi = \mathfrak{g}^*$. Hence the tangent space at ξ to the G-orbit $G\xi$ coincides with \mathfrak{g}^* , and therefore $G\xi$ is open in \mathfrak{g}^* . Since any two nonempty open subsets of \mathfrak{g}^* have nonempty intersection, we conclude that \mathcal{Y} is a single G-orbit. As \mathcal{X} is also nonempty and open in \mathfrak{g}^* , we get $\mathcal{X} \cap \mathcal{Y} \neq \emptyset$, whence $\mathcal{Y} \subset \mathcal{X}$. Now Proposition 4 applies.

3. The semisimple locus: an example

Let us now look at a different pair of subsets of g*:

$$\mathcal{X} = \{ \xi \in \mathfrak{g}^* \mid U_{\xi}(\mathfrak{g}) \text{ is semisimple} \}, \quad \mathcal{Y} = \{ \xi \in \mathfrak{g}^* \mid \mathfrak{z}(\xi) \text{ is toral} \}.$$

It was proved in [4, Section 4] that both of them are open in \mathfrak{g}^* and that $\mathcal{Y} \neq \emptyset$ implies $\mathcal{X} \neq \emptyset$. Moreover, the stabilizers $\mathfrak{z}(\xi)$ of all linear functions $\xi \in \mathcal{Y}$ have equal dimensions. If s denotes their common dimension, then for each $\xi \in \mathcal{X}$ the semisimple algebra $U_{\xi}(\mathfrak{g})$ has precisely p^s nonisomorphic simple modules, all of equal dimension.

One may ask what are those p-Lie algebras for which $\mathcal{X} = \mathcal{Y}$. For instance, if \mathfrak{g} is the Lie algebra of a simply connected semisimple algebraic group G and p is good for the root system of G, then \mathcal{X} consists precisely of the regular semisimple linear functions [9, Corollary 3.6] so that the equality $\mathcal{X} = \mathcal{Y}$ does hold. In this section, we provide examples of nilpotent p-Lie algebras for which $\mathcal{X} \neq \mathcal{Y}$.

Consider a p-Lie algebra \mathfrak{g} whose center \mathfrak{t} is a toral subalgebra of codimension 2 in \mathfrak{g} and $[\mathfrak{g},\mathfrak{g}]\subset\mathfrak{t}$. Let $u,v\in\mathfrak{g}$ span a subspace complementary to \mathfrak{t} in \mathfrak{g} . There is an element $0\neq t\in\mathfrak{t}$ such that [u,v]=t. Then $[\mathfrak{g},\mathfrak{g}]=kt$ is a one-dimensional subspace.

Since \mathfrak{g} is nilpotent, it has a largest toral subalgebra. Clearly this subalgebra coincides with \mathfrak{t} . Now $\mathfrak{t} \subset \mathfrak{z}(\xi)$ for all $\xi \in \mathfrak{g}^*$. Hence $\mathfrak{z}(\xi)$ is toral if and only if $\mathfrak{z}(\xi) = \mathfrak{t}$. If $\mathfrak{z}(\xi) \neq \mathfrak{t}$, then $\mathfrak{z}(\xi) = \mathfrak{g}$, which occurs precisely when ξ vanishes on $[\mathfrak{g},\mathfrak{g}]$. It follows that

$$\mathcal{Y} = \{ \xi \in \mathfrak{g}^* \mid \xi(t) \neq 0 \}.$$

Denote by $\mathfrak{t}^{*(1)}$ the vector space of all *p*-semilinear maps $\mathfrak{t} \to k$, that is, $\mathfrak{t}^{*(1)}$ is the Frobenius twist of the dual space \mathfrak{t}^* . The map $\wp: \mathfrak{t}^* \to \mathfrak{t}^{*(1)}$ defined by the rule

$$\wp(\lambda)(x) = \lambda(x)^p - \lambda(x^{[p]})$$
 for $\lambda \in \mathfrak{t}^*$ and $x \in \mathfrak{t}$

is a finite surjective morphism of algebraic varieties. There is also a bijective morphism $\mathfrak{t}^* \to \mathfrak{t}^{*(1)}$ given by $\lambda \mapsto \lambda^p$, where $\lambda^p(x) = \lambda(x)^p$.

With any simple \mathfrak{g} -module V one can associate a linear function $\lambda \in \mathfrak{t}^*$ such that each element $x \in \mathfrak{t}$ acts in V as a scalar multiplication by $\lambda(x)$. If ξ is the p-character of V, then $\wp(\lambda) = \xi^p|_{\mathfrak{t}}$. Conversely, for any pair $\lambda \in \mathfrak{t}^*$ and $\xi \in \mathfrak{g}^*$ satisfying the previous equality there is precisely one simple $U_{\xi}(\mathfrak{g})$ -module V which has λ as the associated function. If $\lambda(t) = 0$, then $[\mathfrak{g},\mathfrak{g}]$ annihilates V, whence $\dim V = 1$. Otherwise V is induced from a one-dimensional representation of any abelian subalgebra of codimension 1 in \mathfrak{g} so that $\dim V = p$. Since all fibers of the map \wp have cardinality $N = p^{\dim \mathfrak{t}}$, for each $\xi \in \mathfrak{g}^*$ there are precisely N nonisomorphic simple $U_{\xi}(\mathfrak{g})$ -modules. In order that $U_{\xi}(\mathfrak{g})$ be semisimple, it is necessary and sufficient that its dimension $p^{\dim \mathfrak{g}}$ be equal to $\sum (\dim V)^2$, the sum over all those modules. This happens precisely when all simple $U_{\xi}(\mathfrak{g})$ -modules have dimension p. We conclude that

$$\mathcal{X} = \{ \xi \in \mathfrak{g}^* \mid \lambda(t) \neq 0 \text{ for each } \lambda \in \wp^{-1}(\xi^p|_{\mathfrak{t}}) \}.$$

Suppose now that t is such that $t^{[p]} \notin kt$. Then neither $\mathcal{X} \subset \mathcal{Y}$ nor $\mathcal{Y} \subset \mathcal{X}$. To see this let λ and ξ be as above. If $\lambda(t) = 0$, but $\lambda(t^{[p]}) \neq 0$, then the equality $\lambda(t)^p - \lambda(t^{[p]}) = \xi(t)^p$ yields $\xi(t) \neq 0$. In this case $\xi \in \mathcal{Y}$, but $\xi \notin \mathcal{X}$. Now the subspace

$$S = \{ \lambda \in \mathfrak{t}^* \mid \lambda(t) = \lambda(t^{[p]}) = 0 \}$$

has codimension 2 in \mathfrak{t}^* . Hence $\wp(S)$ is a closed subvariety of codimension 2 in $\mathfrak{t}^{*(1)}$, and it follows that there exists $\xi \in \mathfrak{g}^*$ such that $\xi(t) = 0$, but $\xi^p|_{\mathfrak{t}} \notin \wp(S)$. In this case $\xi \notin \mathcal{Y}$, but $\xi \in \mathcal{X}$.

This work was Supported by the Russian Foundation for Basic Research (Grant No. 10-01-00431) and the Presidential Grant for Support of Leading Scientific Schools (Grant No. 5383.2012.1).

Резюме

C.M. Скрябин. О локусе p-характеров, определяющих простые редуцированные обертывающие алгебры.

В двух случаях подтверждена гипотеза, утверждающая, что редуцированная обёртывающая алгебра $U_{\xi}(\mathfrak{g})$ ограниченной алгебры Ли \mathfrak{g} является простой тогда и только тогда, когда альтернирующая билинейная форма, ассоциированная с заданным p-характером $\xi \in \mathfrak{g}^*$, невырождена.

Ключевые слова: ограниченные алгебры Ли, разрешимые алгебры Ли, фробениусовы алгебры Ли, редуцированные обертывающие алгебры.

References

- 1. Strade H., Farnsteiner R. Modular Lie Algebras and Their Representations. N. Y.: Marcel Dekker, Inc., 1988. 312 p.
- 2. Skryabin S. Hopf Galois extensions, triangular structures, and Frobenius Lie algebras in prime characteristic // J. Algebra. 2004. V. 277, No 1. P. 96–128.
- 3. Strade H. Darstellungen auflösbarer Lie-p-Algebren // Math. Ann. 1978. V. 232, No 1. P. 15–32.
- 4. Premet A., Skryabin S. Representations of restricted Lie algebras and families of associative \mathcal{L} -algebras // J. Reine Angew. Math. 1999. V. 507. P. 189–218.
- 5. Dixmier J. Algèbres Enveloppantes. Paris: Gauthier-Villars, 1974. 349 p.
- Blattner R.J. Induced and produced representations of Lie algebras // Trans. Amer. Math. Soc. – 1969. – V. 144. – P. 457–474.
- 7. Winter D.J. On the toral structure of Lie p-algebras // Acta. Math. 1969. V. 123, No 1. P. 69–81.
- 8. Weisfeiler B. Yu., Kac V. G. On irreducible representations of Lie p-algebras // Funktsion. Anal. Prilozh. 1971. V. 5, No 2. P. 28–36 (in Russian).
- 9. Friedlander E.M., Parshall B.J. Modular representation theory of Lie algebras // Amer. J. Math. 1988. V. 110, No 6. P. 1055–1093.

Поступила в редакцию 03.02.12

Skryabin, Sergei Markovich - Doctor of Physics and Mathematics, Professor, Department of Algebra and Mathematical Logic, Kazan Federal University, Kazan, Russia.

Скрябин Сергей Маркович – доктор физико-математических наук, профессор кафедры алгебры и математической логики Казанского (Приволжского) федерального университета, г. Казань, Россия.

E-mail: Serge.Skryabin@ksu.ru