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ON THE LOCUS OF p-CHARACTERS DEFINING
SIMPLE REDUCED ENVELOPING ALGEBRAS

S.M. Skryabin

Abstract

We confirm in two cases the conjecture stating that the reduced enveloping algebra Ug(g)
of a restricted Lie algebra g is simple if and only if the alternating bilinear form associated
with the given p-character £ € g* is nondegenerate.
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In the representation theory of a finite dimensional p-Lie algebra g over an alge-
braically closed field k of characteristic p > 0 one is naturally led to consider the family
of reduced enveloping algebras Ug(g) associated with linear functions & € g* (see [1]).
The algebra Ug(g) is defined as the factor algebra of the universal enveloping algebra
U(g) by its ideal generated by central elements 2 — z[Pl —£(z)P -1 with = € g, and ¢ is
called the p-character of any g-module which can be realized as a module over Ug(g).
There is a certain, still far from fully understood, relation between generic properties
of the family of reduced enveloping algebras and generic properties of the family of
stabilizers of linear functions. The stabilizer 3(£) of £ € g* coincides with the radical
of the alternating bilinear form (¢ : g X g — k defined by the rule

Be(z,y) = £([z,y]) for z,y € g.

The Lie algebra g is called Frobenius if 3¢ is nondegenerate for at least one §.

In general one cannot determine the type of one particular algebra Ue(g) just know-
ing 3(¢). It is quite interesting and surprising that sometimes this can be done. In [2]
it was conjectured that Ug(g) is simple if and only if 3(§) = 0, that is, if and only if
B¢ is nondegenerate. The purpose of the present article is to verify this conjecture in
two cases. When g is solvable and p > 2 we do this using the description of irreducible
g-modules due to Strade [3]. We have to make more careful selections of subalgebras
from which irreducible g-modules are obtained by induction. The second case occurs
when g is Frobenius and all adjoint derivations of g lie in the Lie algebra of the auto-
morphism group. Here we apply geometric arguments to the extension of the family of
reduced enveloping algebras constructed in [4].

An example at the end of the paper shows that semisimplicity of the algebra Ug(g)
cannot be recognized in terms of 3(£) by means of a possible generalization of the above
conjecture.

1. Solvable Lie algebras

It is assumed in this section that g is solvable and p > 2. Recall that a polarization
of g at £ € g* is a Lie subalgebra which is simultaneously a maximal totally isotropic
subspace with respect to the alternating bilinear form ¢ [5].
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Denote by P the set of all triples (p, a, A) such that a C p C g are vector subspaces,
A € a* is a linear function and there exists a chain of subspaces

0=apCoC...Cap,=0aCp=p,C...CpP1Cho=g¢g (1)
with the property that
[pi-1,0] Ca; and  p; = {z € pi—1 [ A([z, a;]) = 0} (2)

for all # =1,...,n. As one checks by induction on i, each p; is a p-subalgebra of g,
and a; is an ideal of p;_;. In particular, p is a p-subalgebra of g, and a is an ideal of
p. Furthermore, A vanishes on [p,a] and, therefore, also on [a, a].

Lemma 1. Suppose that (p,a,\) € P. If £ € g* is a linear function such that
Mx)? — AzlP) = £(z)P for all x € a and W is an irreducible Ug(p)-module such that
zw = Nz)w for all x € a and w € W, then the induced g-module Ug(g) @y, py W is
irreducible.

Here Ug(p) stands for the reduced enveloping algebra of p corresponding to the
restriction of & to p. The proof is obtained by a repeated application of the characteristic
p analog of Blattner’s irreducibility criterion [6, Theorem 3].

We will need additional conditions on triples. Denote by P’ the set of all triples
(p,a,\) such that a C p C g are vector subspaces, A € a* is a linear function, and
there exists a chain of subspaces

0=apCa1C...Ca,=aCPCP,C...CP1CPo=g (3)
with the property that
[Pi—1, 0] C aj, (4)
pi={z €pi-1 | A([z,a]) =0}, where af ={y€a;|Ay) =0} (5)
p={z €pn|Az,a]) =0} (6)

for all i =1,...,n. We will say that chain (3) is (p, a, A)-admissible in this case.

Lemma 2. In a (p,a, \) -admissible chain each p; is a p-subalgebra, a; is an ideal
of Pi—1, and a. is an ideal of p;. Furthermore, p is an ideal of p, .

Proof. Since [p;,a;] C a; by (4) and X vanishes on [p;,a}] by (5), we deduce that
[pi,al] C a}. Since the normalizer of a} in g is a p-subalgebra, an induction on i shows
that so too is p;. Now [p,a] C a and A\ vanishes on [p,a] by (4) and (6), whence
[p,a] . Tt follows [[Bu pl,a] [P ] + [p,a] € a,, and s0 [p,,p] < p. 0

Lemma 3. It holds P' C P.

Proof. Let (p,a,A) € P’'. Consider a (p,a, \)-admissible chain (3) and for each
define p; = {x € p; | A([z,a;]) = 0}. We obtain then a chain (1) with p; C p;, and it is
checked straightforwardly that (2) is fulfilled. Thus (p,a,\) € P. O

Lemma 4. Suppose that a is a one-dimensional ideal of a solvable Lie algebra b,
and b is an ideal of b, minimal with respect to the property that a C b, a # b and
[a,6] = 0. Then b is abelian.

Proof. Put ¢={z € b|[r,b] =0}. Then ¢ is an ideal of  and a C ¢ C b. By the
minimality of b we have either ¢ = b or ¢ = a. In the first case [b,b] = 0, and we
are done. Suppose that ¢ = a. Then the multiplication in b induces a nondegenerate
alternating bilinear form b/a x b/a — a. In particular, b/a has even dimension. On the
other hand, b/a is an irreducible h-module by the minimality of b, and therefore
dimb/a is a power of p, hence odd, by [3, Satz 3]. We arrive at a contradiction. O
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Lemma 5. Suppose that (p,a,\) € P'. If a # p, then there exists a vector subspace
b C p such that a is contained in b properly, [b,b] C o’ = ker \, and for every linear
function p € b* extending \ there exists q satisfying (q,b,u) € P’.

Proof. Consider a (p,a, \)-admissible chain (3). By Lemma 2 a and p are ideals
of p,,. Let us choose an ideal b of p, such that a C b C p, a # b, and b is minimal
with respect to these properties. Then [b,b] C a since p,, is solvable and [b,a] C o
by (6). If a # a’, then dima/a’ = 1. Lemma 4 applied to the Lie algebra p, /a’ and
its one-dimensional ideal a/a’ shows that b/a’ is abelian in this case. Thus we have
[6,6] C @’ in any case. If 4 € b* extends A, then put

1 ={z € pn | u(f,b]) =0} and q= {2 €pny1|pu(x,b]) =0},

where b’ = {y € b | u(y) = 0}. Note that b C q since p is zero on [b, b] C a’. Obviously
q C Pnt1 C Pn. Setting a,41 = b, we obtain an extension of (3) to a (g, b, u)-admissible
chain. Thus (q,b, ) € P’. O

We say that (p,a,\) € P is maximal if p = a. Denote by Ppax C P the subset of
all maximal triples and put P} .. = Pmax NP’ All conclusions of the next proposition
with P in place of P’ were obtained by Strade [3] in a somewhat different language.

Proposition 1. (i) Given £ € g*, there exists (p,a,\) € Pl
In this case p is a polarization of g at €.

(i) Given an irreducible g-module V', there exists (p,a,\) € Pl
subspace Vy ={v eV | zv = A(z)v for all x € a} is nonzero.

such that A = ¢, .

such that the

Proof. Denote by P; C P’ the subset of those triples (p,a,\) for which A = ¢|,.
This subset is nonempty as we may take a = 0, p = g. Suppose that (p,a,) € P;
and p # a. Find b as in Lemma 5 and set pu = £|p. There exists (q,b, 1) € P’ which
belongs to Pé by the choice of . We have here dimb > dima. This argument shows
that Pg N Py, is nonvoid. Indeed, it suffices to pick out (p,a,A) € Pg for which
dima is maximal possible. By Lemma 3 (p,a,\) € P. There exists then a chain (1)
satisfying (2). It follows by induction on i that p; = {x € g | £([z,a;]) = 0}. Hence
p = a is a maximal totally isotropic subspace of g with respect to [¢.

Denote by P{, C P’ the subset of those triples (p, a, ) for which V) # 0. The triple
(g,0,0) is again in Py, . Suppose that (p,a,\) € P{, and p # a. Let b be as in Lemma 5.
Since [b,a] C o', the subspace V) is stable under b. Hence the abelian Lie algebra b/a’
operates in V). It follows that V) contains a one-dimensional b-submodule, say kv.
The equality xv = p(z)v defines a linear function p € b* which extends A. We have
v € V, by the construction. Lemma 5 provides a triple (q,b, 1) € P’ which belongs to

Pi{,. The intersection P{, NP/, .. is therefore nonvoid, similarly as in case (i). O

Proposition 2. Suppose that & € g* and (p,a,\) € Pl with X\ = &|,. If &
vanishes on 3(¢), then &(pPl) = 0. In this case the one-dimensional p-module ky on

which p operates via X\ has p-character X\, and so Us(g) ®u, (p) kx is an irreducible
g-module of dimension p2(dime—dim;(©)

Proof. For each subspace h C g denote by h* C g its orthogonal complement with
respect to B¢. One has then (h1)+ = h+3(¢). Consider a (p, a, \)-admissible chain (3).
Put p =p, and p’ = a,. Note that a,_; Ca} forall i =1,...,n. It follows then from
(5) by induction on i that p; = a/*t for each i. For i = n we obtain p’* = p. Hence
pt =p' +3(&). Note that 3(£) C p since p is a maximal totally isotropic subspace of g
with respect to (¢. Under the hypotheses of Proposition 2 3(¢) C p Nker{ = p’. Thus

PJ‘:]J/-
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Observe that [p, pPl] C [p,p] since p is an ideal of p by Lemma 2. Hence ¢ vanishes
on [p,p], and so pPl ¢ pt = p’. This shows that £(pPl) = 0. The claim about
irreducibility follows from Lemma 1, and the dimension formula follows from the equality
dimg — dimp = (dim g — dim3()). O

Proposition 3. Suppose that £ € g* and (p,a,\) € Pmax with A =¢|,. Then every
mazimal torus of 3(§) is a mazimal torus of p.

Proof. Consider a chain (1) satisfying (2). We have a;* = p;, and therefore p;- =
=3(&) +a;. As a; is an ideal of p;,_1, we get [pifl,a[m] C [a4,a;] for ¢ > 0, which is

contained in the kernel of £. This shows that agp] Cpitq =306 +a 1.
Denote by b; the [p]-closure of a;. Then b; is an ideal of p since so is a;. Hence

3(€) + b; is a p-subalgebra for each i, and it follows that bgp] C3&)+b—1.

Suppose that t is a maximal torus of 3({) and s € p is a [p]-semisimple element
which centralizes t. We will prove that s € t + b; by the downward induction on
1=0,...,n. For i =n the assertion is clear since t+ b,, = p. Suppose that s € t+ b;
for some ¢ > 0. Then s = ¢t + x, where t € t, x € b; and [t,z] = 0. By the above
slPl = Pl 2Pl € 5(€)+b;_; . Since s is a linear combination of elements sP"! with > 0,
we get s € 3(€) + bi—1. The p-Lie algebra b; = (3(€) + bi—1)/bi—1 is a homomorphic
image of 3(¢), and therefore the image of t in §; is a maximal torus of h; by [7, Theorem
2.16]. It follows that s € t+ b;_1, providing the induction step. We can now conclude
that s € t+ by = t, and the proof is complete. O

Corollary 1. If 3(§) is [p]-nilpotent, then so too is p.
We come to the main result of this section:

Theorem 1. Let g be a solvable finite dimensional p-Lie algebra over an alge-
braically closed field of characteristic p > 2, and let £ € g*.

(i) The algebra Ue(g) is simple if and only if B¢ is nondegenerate.

(ii) If Be is nondegenerate, then & admits a [p]-nilpotent polarization p such that
E(p!)) = 0, and the single irreducible Ue(g) -module is induced from the one-dimensional
Ue(p)-module on which p operates via &.

Proof. Suppose that (3¢ is nondegenerate so that 3(£) = 0. By Proposition 1 there
exists (p,p,\) € Pl such that A = ¢£|,. Then p is [p]-nilpotent by Corollary 1.
By Proposition 2 Ug(g) ®u, ) kr is an irreducible g-module of dimension p?
Since Ug(g) is of dimension pd™@ it has to be simple. This proves (ii) and also one
implication in (i).

Suppose now that Ug(g) is simple, and let V' be its irreducible module. In view
of Proposition 1, there exists (p,p,A) € P} such that Vy # 0. Let 0 # v € V),
so that kv C Vj is a one-dimensional irreducible Ug(p)-submodule. By Lemma 1 the
g-module Ug(g) ®y, (p) kv is irreducible, hence of dimension p2 dim8  Therefore dimp =
= %dimg. Let n € g* be any linear function such that 7|, = A. By Proposition 1 p is
a maximal totally isotropic subspace of g with respect to 3,. The well-known formula
dim g + dim 3(n) = 2dimp now yields 3(n) = 0. By Proposition 2 applied to the linear
function n in place of { the p-character of the p-module kv equals A. Hence A = ¢|,.
We may thus use 7 = £ in the argument above to conclude that 3(£) = 0. The proof is

complete. 0

dim g
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2. Frobenius Lie algebras with exponentiable adjoint derivations

Let g be an arbitrary finite dimensional p-Lie algebra over the ground algebraically
closed field k. We want to compare two sets

X ={¢€g”| Ueg) is simple}, Y ={& € g"| B¢ is nondegenerate}.

Lemma 6. There exists a homogeneous polynomial function f on the vector space
V =g" @k such that

X={¢eg" | (1) #0}, Y={eg"|[(£0)# 0}

Proof. Let n = dimg. We will exploit the algebraic family of p™-dimensional
associative algebras Ug x = Ug x(g) parameterized by points (§,A) € V' (see [4]). The
algebra Ug \ contains g as a generating subspace and has defining relations

zy —yx = Nz,yl, 2P =X "2l pg@)P 1 (2,9 € g).

In particular, two special cases of these algebras are U1 = Ue(g) and Ugo = Se(g),
the factor algebra of the symmetric algebra S(g) by its ideal generated by all elements
aP —E(x)P -1 with z € g.

There is a p-representation adg ) : g — Der Ug » such that ade x(z)(y) = [z, y] for
z,y € g. In this way U x may be regarded as a module algebra over the restricted
universal enveloping algebra Up(g) and as a module over the smash product algebra

ng)\ = UE,,\#U()(Q). Let
905,)\ : ng)\ — TE,/\ = Endk UE,/\

denote the corresponding representation. Note that dim R ) = dim T ) = p?". Hence
the map ¢ » is bijective if and only if Ug ) is a simple R¢ y-module. Now the Rg y-
submodules of Ug » are precisely those left ideals that are stable under the action adg » .
When X # 0 such left ideals are precisely the two-sided ideals, and the simplicity of
Ue,x as a Re¢ x-module is equivalent to the simplicity as an algebra. In particular,

X ={&€g"| pe1 is bijective}.

On the other hand, according to [4, Proposition 3.4] the algebra S¢(g) has a unique
maximal g-invariant ideal I, and the codimension of this ideal is pc°dime (&) In order
that Se(g) be a simple R¢o-module, it is necessary and sufficient that I = 0, which
amounts to 3(§) =0, that is, to £ € Y. Tt follows that

Y ={&€g"| peo is bijective}.

It remains to show that the bijectivity of ¢¢  can be expressed by means of the
condition f(&,\) # 0 for a suitable homogeneous polynomial function f on V. We may
view Rex and Ty as fibers of two algebraic vector bundles R and T over V. Let
e1,...,e, be any basis for g. The monomials ef*---e%" with 0 < a; < p form a basis
for each Ug . These monomials give rise to a basis for each R¢ y and a basis for each
T¢ x, yielding trivializations of R and 7. The entries of the matrix of ¢¢  in the above
bases are polynomial functions in (£, \). Taking f(£,A) to be the determinant of this
matrix, we see that ¢ » is bijective if and only if f(&,\) # 0.

As explained in [4], for each 0 # ¢t € k there is a g-equivariant algebra isomorphism
0 : Ue x — Upe 1n(g) . Hence the algebra U » has no nontrivial g-invariant ideals if and
only if so does Uye 2 (g). In other words, bijectivity of ¢ » is equivalent to bijectivity
of @ie¢n. It follows that the zero locus of the polynomial function f is a conical subset
of V', whence f is homogeneous. O
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Remark. It is possible to compute the degree of the polynomial function f in
Lemma 6 proceeding as follows. The isomorphisms 6; induce actions of the one-
dimensional torus G,, on R and 7. Taking quotients modulo these actions we pass
to a morphism of vector bundles R — T over the projective space P(V) associated
with V. Let also U = U/G,,,, where U is the vector bundle over V ~ {0} with fibers
Ue,». Each line bundle over P(V') is isomorphic to some L(s), defined as the quotient
of (V ~{0}) x k by the action of G,, such that ¢- (v,c) = (tv,t°c), where s € Z. The
scalar multiples of any monomial e{* - - - e%" produce a G,,-stable line subbundle of U'.
This leads to a decomposition

U

112

@ L(—a1 — -+ —an).

{(a17~~~1an)‘0§am<p}

The bundle R is isomorphic to a direct sum of p" copies of U, while T 2 U ® U .
2n

As aresult, A” R = L(—d), where

np*(p — 1)

S S T

{(a1,...,an)|0<a; <p}

=%
|
i

while /\p% T = L(0) is trivial. Now f can be identified with a section of the line bundle
Hom(L(—d), L(0)) = L(d). This means that deg f = d.

Corollary 2. If g is Frobenius, that is, Y # &, then f # 0, and therefore X + .

Whether X # @ implies ) # @ is a special case of the still open Kac—Weisfeiler
conjecture from [8].

Proposition 4. If g is Frobenius and ) C X, then X = ).

Proof. By Lemma 6 the complements X°¢ = g* X and Y¢ = g* \ ) are hy-
persurfaces in g*. The inclusion ) C X entails X“ C Y. Therefore each irreducible
component of X¢ is an irreducible component of Y. Since )¢ is a conical subset of
g*, so too is each irreducible component of Y¢. It follows that X¢ is a conical subset as
well. Hence the polynomial function & — f(£,1) defining X'¢ is homogeneous. We can
write

d
FEN) =" FON,
=0

where each f; is a homogeneous polynomial function of degree d —i on g*. Since g
is Frobenius, we have ) # @, whence fy # 0. But then we must have f; = 0 for all
i >0, that is, f(£, ) does not depend on . O

Theorem 2. Let g be a Frobenius p-Lie algebra with the automorphism group G.
Suppose that adg C LieG. Then X = ).

Proof. Both X and ) are stable under the coadjoint action of G. For any £ € Y
the nondegeneracy of 3¢ yields g-£ = g*. Hence the tangent space at £ to the G-orbit
G¢ coincides with g*, and therefore G¢ is open in g*. Since any two nonempty open
subsets of g* have nonempty intersection, we conclude that ) is a single G-orbit. As X
is also nonempty and open in g*, we get X (Y # &, whence Y C X'. Now Proposition
4 applies. |
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3. The semisimple locus: an example

Let us now look at a different pair of subsets of g*:
X ={¢eg"| Uecg) is semisimple}, Y ={ e g*| 3(&) is toral}.

It was proved in [4, Section 4] that both of them are open in g* and that ) # @
implies X # @. Moreover, the stabilizers 3(£) of all linear functions £ € ) have equal
dimensions. If s denotes their common dimension, then for each £ € X' the semisimple
algebra Ug(g) has precisely p® nonisomorphic simple modules, all of equal dimension.

One may ask what are those p-Lie algebras for which X = ). For instance, if g
is the Lie algebra of a simply connected semisimple algebraic group G and p is good
for the root system of G, then X consists precisely of the regular semisimple linear
functions [9, Corollary 3.6] so that the equality X = ) does hold. In this section, we
provide examples of nilpotent p-Lie algebras for which X # ).

Consider a p-Lie algebra g whose center t is a toral subalgebra of codimension 2
in g and [g,g] C t. Let u,v € g span a subspace complementary to t in g. There
is an element 0 # ¢ € t such that [u,v] = ¢t. Then [g,g] = kt is a one-dimensional
subspace.

Since g is nilpotent, it has a largest toral subalgebra. Clearly this subalgebra coin-
cides with t. Now t C 3(§) for all £ € g*. Hence 3(¢) is toral if and only if 3(§) = t.
If 3(¢) # t, then 3(£) = g, which occurs precisely when ¢ vanishes on [g, g]. It follows
that

Y=A{¢eg" &) #0}.

Denote by (1 the vector space of all p-semilinear maps t — k, that is, (D s
the Frobenius twist of the dual space t*. The map g : t* — () defined by the rule

o\ () = Ma)? — MaP!) for Aet* and z €t

is a finite surjective morphism of algebraic varieties. There is also a bijective morphism
t* — t* given by X\ — M, where \(z) = A(z)”.

With any simple g-module V' one can associate a linear function A € t* such
that each element x € t acts in V' as a scalar multiplication by A(z). If £ is the p-
character of V', then p()\) = &P|¢. Conversely, for any pair A € t* and £ € g* satisfying
the previous equality there is precisely one simple Ug(g)-module V' which has A as
the associated function. If A(¢) = 0, then [g,g] annihilates V', whence dimV = 1.
Otherwise V' isinduced from a one-dimensional representation of any abelian subalgebra
of codimension 1 in g so that dim V' = p. Since all fibers of the map p have cardinality
N = pdimt for each £ € g* there are precisely N nonisomorphic simple Ue(g)-modules.
In order that Ug(g) be semisimple, it is necessary and sufficient that its dimension pdim g
be equal to > (dim V)2, the sum over all those modules. This happens precisely when
all simple Ug(g)-modules have dimension p. We conclude that

X ={¢e€g"| At) #0 for each A € p~1(&P|) }.

Suppose now that ¢ is such that ¢! ¢ kt. Then neither X C )Y nor Y C X.
To see this let A and & be as above. If A(t) = 0, but A(t[’)) # 0, then the equality
AE)P — A(tPl) = £(t)P yields £(t) # 0. In this case € € Y, but £ ¢ X'. Now the subspace

S={Aet | At)=A1tP) =0}

has codimension 2 in t*. Hence (S) is a closed subvariety of codimension 2 in t*(!)
and it follows that there exists £ € g* such that £(¢) = 0, but &?|y ¢ ©(S). In this case
¢y, but £€X.
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Pesiome
C.M. Crpabun. O JIOKyce p-XapaKTepOB, OMPEIeSIONINX MTPOCThIE PeayIInpOBAHHBIE 06ep-
THIBAIOIIKE AJIreOPbI.

B nByx ciayuasix moaTBepKieHa THUIIOTE3a, yTBEPKAAIONas, 9TO PeAylupoBaHHas 00Ep-
TeBatomas anrebpa Ug(g) orpanmtaennoii anre6pot Jlu g fBiseTcs TPOCTON TOT/IA W TOIBKO
TOra, KOTJa aJbTepHUpYIOMas OnanHeitnas GpopMa, acCOIMMUPOBAHHAS C 33JaHHBIM p-XapakK-
Tepom & € g, HEBBIPOXK/IEHA.

KoroueBblie cyioBa: orpannuenusie anaredpst Jlu, paspemmnmbie aarebpsr Jln, dpobenry-
coBbl anrebpsl Jlu, pexynupoBannbie 00ePTHIBAIONINE AITeOPHI.
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