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1. Введение

Следуя В.К.Иванову [1], под обратной задачей логарифмического потенциала будем пони-

мать задачу нахождения плоской односвязной области D ⊂ Cz (z = x + iy). Эта область при

заполнении её веществом плотности µ = 1 возбуждает внешний потенциал в виде гармониче-

ской функции

v(x, y) = α0 ln
1

r
+

∞
k=1

αk cos kϕ+ βk sin kϕ

rk
, z = reiϕ.

Задание v(x, y) эквивалентно заданию аналитической функции

u(z) = − 2

π

∂v

∂z
= − 1

π


∂v

∂x
− i

∂v

∂y


.

Удобно использовать разложение функции u(z) в окрестности ∞

u(z) =
∞
k=0

ck
zk+1

. (1)

Если граница искомой области определяется конечным числом параметров, удовлетворяю-

щих конечной системе уравнений (составленной по заданной функции u(z)), то такая задача

называется разрешимой в конечном виде.

Обозначим через z(ζ) функцию, конформно отображающую круг |ζ| < 1 плоскости ζ на

область D плоскости z и через z∗(ζ) – функцию, определенную при |ζ| ≥ 1 условием z∗(ζ) =

= z(1/ζ̄).

В.К.Ивановым доказана

Теорема 1 ([1]). Пусть u(z) – рациональная функция, имеющая полюсы порядков k1, k2, . . . , ks

с суммой k1 + k2 + · · ·+ ks = n, и для неё существует решение обратной задачи. Тогда

z∗(ζ) =
p(ζ)

(ζ − ζ1)k1 . . . (ζ − ζs)ks
,

где p(ζ) – полином степени n − 1, а ζ1, . . . , ζs – прообразы точек z1, . . . , zs при конформном

отображении z(ζ).

В данной выпускной работе будут исследованы этапы решения обратной задачи логарифми-

ческого потенциала в конечном виде, который связан с полиномами. Для этого в развернутой

форме представлена статья И.М. Рапопорта [2] и получены решения новых частных случаев

задачи Рапопорта.
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2. Получение отображающей функции в виде полинома

И.М.Рапопорт [2] и В.К.Иванов [3] получили задачи, разрешимые в конечном виде, для

которых ряд (1) обрывается и является полиномом от 1/z

u(z) =
n

k=0

ck
zk+1

. (2)

Соответствующая функция v(x, y) с z = x+ iy = reiϕ представлена в [2], [3] в виде

v = α0 ln r +
n

k=1

αk cos kϕ+ βk sin kϕ

rk
,

причем эта функция должна подчиняться условию
D

lnR(τ, z) dσ = v(x, y), (3)

где R(τ, z) =| τ − z |, τ ∈ D, z ∈ C\D, dσ - дифференциальный элемент площади, τ = r1e
iϕ1 .

Представим подынтегральную функцию рядом по степеням r = |z| с учетом того, что

ln
R

|z|
= ln

1− τ

z

 = Re ln

1 − τ

z


,

τ

z
=

r1

r
ei(ϕ1−ϕ)

и

ln(1− w) = −
w

0

dw

1− w
= −

w
0

∞
k=0

wkdw = −
∞

k′=0

wk′+1

k′ + 1
=

= {k′ + 1 = k, k′ = 0 ↔ k = 1} = −
∞
k=1

wk

k
.

Следовательно,

ln
R

|z|
= −

∞
k=1

1

k

τ
z

k cos[k(ϕ1 − ϕ)] = −
∞
k=1

1

k

rk1
rk
(cos kϕ1 cos kϕ+ sin kϕ1 sin kϕ). (4)

Это разложение сходится во внешности круга r ≤ max r1, т.е при

r > max
|ζ|≤1

|f(ζ)|,

целиком содержащего область D.

Подставим (4) в (3) и почленно проинтегрируем сумму в левой части. Будем иметь
D

dσ ln r −
n

k=1


1

k

cos kϕ

rk


D

rk1 cos kϕ1dσ +
1

k

sin kϕ

rk


D

rk1 sin kϕ1dσ


=
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= α0 ln r +
n

k=1

(αk cos kϕ+ βk sin kϕ)r
−k.

Сравнивая коэффициенты при ln r и при одинаковых степенях r−k в двух частях записанного

равенства, получим


D

dσ = α0,


D

rk1 cos kϕ1dσ =

−kαk, k = 1, n;

0, k > n,


D

r1 sin kϕ1dσ =

−kβk, k = 1, n;

0, k > n.

Обозначим через f(ζ) = z(ζ) (с нормировкой f(0) = 0, f ′(0) > 0) функцию, которая

отображает круг |ζ| < 1 на область D. Воспользуемся разложением

f(ζ) = a1ζ + a2ζ
2 + · · ·+ an+1ζ

n+1, a1 > 0.

Подсчитаем интегралы с учетом того, что dσ = |f ′(ζ)|2ρdθdρ при ζ = ρeiθ,
D

rk1e
ikϕ1dσ =


|ζ|<1

fk(ζ)|f ′(ζ)|2ρdθdρ =

=


|ζ|<1

(a1ζ + · · ·+ an+1ζ
n+1)k(a1 + · · ·+ (n+ 1)an+1ζ

n)(a1 + · · ·+ (n+ 1)an+1ζ
n
)ρdθdρ =

= Fk(a1, . . . , an+1).

Чтобы записать развернутое выражение для Fk(a1, . . . , an+1), нужно учесть значения


|ζ|<1

ζkζ
n
ρdθdρ =

2π
0

ei(k−n)θdθ

1
0

ρk+n+1dρ =


0, k ̸= n;

2π ρ2n+2

2(n+1)

1
0
= π

n+1
, k = n.

При k = 0 получим
D

dσ =

2π
0

1
0

(a1 + 2a2ζ + · · ·+ (n+ 1)an+1ζ
n)(a1 + 2a2ζ + · · ·+ (n+ 1)an+1ζ

n
)ρdθdρ =

= 2π

1
0

(a21ρ+ 4|a2|2ρ3 + · · ·+ (n+ 1)2|an+1|2ρ2n+1)dρ = π(a21 + 2|a2|2 + · · ·+ (n+ 1)|an+1|2).

Система уравнений для определения {ak}n+1
k=1 получится такой:

a21 + 2|a2|2 + · · ·+ (n+ 1)|an+1|2 =
α0

π
, Fk(a1 + · · ·+ an+1) = −k(αk + iβk), k = 1, . . . , n. (5)

Если система (5) будет решена, то можно представить f(ζ) в виде вполне определенного

полинома. В случае однолистности f(ζ) в круге |ζ| < 1 искомая область представится как f(E),

где E = {ζ : |ζ| < 1}.
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3. Исследование вариантов с полиномом третьей степени

Составим систему (5) при n = 2 для определения коэффициентов функции f(ζ) = a1ζ+

+a2ζ
2 + a3ζ

3 при известной функции

u(z) =
c0
z
+

c1
z2

+
c2
z3
.

Для этого подсчитаем интегралы, которые нужны для составления системы (5). Будем иметь


|ζ|<1

f ′(ζ)f ′(ζ)ρdρdθ =

2π
0

1
0

(a1 + 2a2ζ + 3a3ζ
2)(a1 + 2a2ζ̄ + 3a3ζ̄

2)ρdρdθ =

= 2π

1
0

(a21ρ+ 4|a2|2ρ3 + 9|a3|2ρ5)dρ = π(a21 + 2|a2|2 + 3|a3|2),


|ζ|<1

f(ζ)f ′(ζ)f ′(ζ)ρdρdθ =

=

2π
0

1
0

(a1ζ + a2ζ
2 + a3ζ

3)(a1 + 2a2ζ + 3a3ζ
2)(a1 + 2a2ζ + 3a3ζ

2
)ρdρdθ =

= 2π

1
0

[a212a2ρ
3 + (a12a2 + a2a1)3a3ρ

5]dρ = π(a21a2 + 3a1a2a3),


|ζ|<1

f 2(ζ)f ′(ζ)f ′(ζ)ρdρdθ =

=

2π
0

1
0

(a1ζ + a2ζ
2 + a3ζ

3)2(a1 + 2a2ζ + 3a3ζ
2)(a1 + 2a2ζ + 3a3ζ

2
)ρdρdθ =

= 2π

1
0

a313a3ρ
5dρ = πa31a3.

По заданной функции u(z) найдем потенциал v(x, y) из равенства

u(z) = − 2

π

∂v

∂z
⇒ v(x, y) = −π

2


c0 ln z −

c1
z
− c2

2z2
+ c0 ln z −

c1
z
− c2

2z2


=

=(слагаемые с сопряженными величинами дополняются для того, чтобы функция v(x, y) была

вещественной) =

= −π


c0 ln r −

c1e
−iϕ + c1e

iϕ

2r
− c2e

−i2ϕ + c2e
i2ϕ

4r2


=

= −πc0 ln r + π
α1 cosϕ+ β1 sinϕ

r
+ π

α2 cos 2ϕ+ β2 sin 2ϕ

2r2
.

5



Теперь систему (5) при n = 2 можно записать в виде
a21 + 2|a2|2 + 3|a3|2 = −c0,

a21a2 + 3a1a2a3 = −(α1 + iβ1) = −c1,

a31a3 = −(α2 + iβ2) = −c2.

(6)

Если при составлении системы (6) учитывать представление

v(x, y) = α0 ln r +
α̌1 cosϕ+ β̌1 sinϕ

r
+

α̌2 cos 2ϕ+ β̌2 sin 2ϕ

r2
,

то эта система примет вид 
a21 + 2|a2|2 + 3|a3|2 = α0

π
,

a21a2 + 3a1a2a3 = − α̌1+iβ̌1

π
,

a31a3 = − 2
π
(α̌2 + iβ̌2).

(7)
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3.1.

При c1 = c2 = 0 получим полином первой степени. Это следует из второго и третьего урав-

нений системы (6), именно, a2 = a3 = 0. Коэффициент a1 определится из первого уравнения.

Будем иметь функцию f(ζ) = a1ζ, поэтому в качестве искомой области получится круг.

3.2.

При c2 = 0 получится полином второй степени. Проведем подробный анализ этого случая.

Система (6) перепишется в виде (для простоты (−c0) полагаем равным 1)

a21 + 2|a2|2 = −c0 = 1, a21a2 = −(α1 + iβ1), a3 = 0.

В общем случае c0 = −α0

π
.

При a2 = x2 + iy2 и при a21 = t получим из второго уравнения

x2 = −α1

t
y2 =

β1

t
.

Тогда первое уравнение перепишется в форме t+
2(α2

1+β2
1)

t2
= 1 и примет вид

t3 − t2 + c = 0, где c = 2(α2
1 + β2

1).

График функции y = ϕ(t) = t3 − t2 + c можно начертить при различных значениях c. Так

как ϕ′(t) = 3t2−2t = t(3t−2), то при t = 0 и t = 2/3 получатся локальные максимум и минимум

соответственно, а при t = 1/3 возникнет точка перегиба, потому что ϕ′′(t) = 6t− 2.

Если c = 4
27

, то t = 2
3

является корнем уравнения ϕ(t) = 0. Поэтому a1 =


2
3

7



и |a2|2 = c
2a41

= 4
27

· 1
2
· 9
4
= 1

6
. Отображающая функция запишется в виде

f(ζ) =


2

3
ζ + eiα

1√
6
ζ2.

Получится внутренность кардиоиды с угловой точкой, так как нуль производной (f ′(ζ0) = 0)

ζ0 = −


2
3

√
6

2eiα
= −e−iα лежит на окружности |ζ| = 1.

Если c > 4
27

, то уравнение ϕ(t) = 0 не будет иметь положительных корней.

Если c < 4
27

, то уравнение ϕ(t) = 0 будет иметь два корня, один из которых будет > 2/3, а

второй < 2/3.

Если a1 >


2
3
, то |a2|2 = c

2a41
< 4

27
· 1
2
· 9
4
= 1

6
. Тогда f(ζ) = a1ζ + a2ζ

2 и нуль производной

ζ0 = − a1
2a2

имеет оценку модуля |ζ0| > 1
2
·
√
6 ·


2
3
= 1. Поэтому образом круга |ζ| < 1 будет

внутренность однолистной кардиоиды без угловой точки.

Если a1 <


2
3
, то надежной оценки не получается и возможны оба случая.

Если |a1| ≥ 2|a2|, то искомая область будет однолистной.

Если |a1| < 2|a2|, то искомая область окажется неоднолистной, и задача будет неразрешимой

в классе полиномов.

3.3.

И.М.Рапопортом [2] получен полином третьей степени в качестве решения обратной задачи

с условием 
D

lnRdσ = π ln r +
πλ cos 2ϕ

2r2
.

При решении системы

a31a3 = −λ, a21a2 + 3a1a2a3 = 0, a21 + 2|a2|2 + 3|a3|2 = 1, (8)

получена функция f(ζ) = a1ζ− λ
a31
ζ3, где a1 – наибольший из действительных корней уравнения

a81 − a61 + 3λ2 = 0. Область f(E), E = ζ : |ζ| < 1, является звездообразной, так как выполняется

условие ([4], c.45; [5], c.167.)

Reζ
f ′(ζ)
f(ζ)

= Re
1 − ζ23λ/a4

1

1 − ζ2λ/a4
1

> 0,

если |ζ23λa41| < 1 (в силу λ ≤ 3/16 и a1 >
√
3/2).

При решении системы (8) была учтена одна из двух возможностей. Именно, доведен до

конца случай a2 = 0.
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Проведем анализ пропущенного случая. Для этого рассмотрим систему (9).

a31a3 = −λ, a1 + 3
a2
a2

a3 = 0, a21 + 2|a2|2 + 3|a3|2 = 1, (9)

где a2
a2

= |a2|eiϕ
|a2|e−iϕ = e2iϕ. Если a3 = − λ

a31
, то из второго уравнения системы (9) найдем a1 =

=
4
√
3λe2iϕ. Так как a1 > 0, то eiϕ = 1 ⇒ ϕ = 0, π (исследуем случай ϕ = 0). В этом

случае a1 = 4
√
3λ, a3 = −

4√
3λ
3

. Подставив, найденные выражения, в третье уравнение системы

(9) найдем a2 =


3−4
√
3λ

6
. a2 вещественное число, следовательно 3− 4

√
3λ ≥ 0 ⇒ λ ≤ 3

16
.

Отображающая функция запишется в виде

f(ζ) =
4
√
3λζ +


3− 4

√
3λ

6
ζ2 −

4
√
3λ

3
ζ3, (10)

f ′(ζ) = − 4
√
3λζ2 + 2


3−4

√
3λ

6
ζ + 4

√
3λ. При f ′(ζ) = 0, D1 =

3−4
√
3λ

6
+
√
3λ.

По теореме Виета ζ1 · ζ2 = −1, и так как D1 > 0 имеем два случая:

1)ζ1 = 1, ζ2 = −1, нетрудно заметить, что эта ситуация возможна, когда a2 = 0. Откуда

следует 3 − 4
√
3λ = 0 ⇒ λ = 3

16
. Таким образом, при λ = 3

16
получаем функция f(ζ), (10)

однолистна,

2)ζ1 ∈ |ζ| < 1, ζ2 ̸∈ |ζ| < 1, λ < 3
16

, что приводит к неоднолистности функции (10).

3.4.

Рассуждениями и вычислениями в пункте 2 обосновано следующее утверждение.

Теорема 2. Если начальная потенциальная функция представлена полиномом третьей

степени по 1
z
u(z) = c0

z
+ c1

z2
+ c2

z3
(или v(x, y) = (


udz +


udz)(−π

2
)), то решением обратной

задачи логарифмического потенциала окажется функция f(ζ) = a1ζ+a2ζ
2+a3ζ

3 в круге |ζ| < 1

при соблюдении однолистности f(ζ) с такими частными вариантами искомых областей:

при c1 = c2 = 0 областью будет круг,

при c2 = 0 областью будет внутренность кардиоиды,

при c1 = 0 получится звездообразная область (в случае a2 = 0).
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4. Заключение

В предисловии к сборнику "Избранные научные труды" В.К.Иванова [6] отмечается следую-

щее замечание. "По мнению многих авторитетных ученых исследования В.К.Иванова в области

обратных задач потенциала имеют для геофизиков непреходящее значение"([6],с.9). В связи с

этим у меня возник интерес к возможности приложений математических задач теории потен-

циала. После консультации на геофаке КФУ по этому вопросу стало ясно, что геофизики КФУ

не нуждаются в простых математических моделях геофизических процессов. Осваивать слож-

ные и современные методики геофизических задач у меня не было времени и сил. Поэтому при

непосредственной помощи доцента Н.Р.Абубакирова и профессора Л.А.Аксентьева я ограничи-

лась лишь некоторыми добавлениями в традиционных задачах логарифмического потенциала.

Своим основным достижением считаю формулировку и доказательство теоремы 2.
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