Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Казанский (Приволжский) Федеральный Университет» Институт фундаментальной медицины и биологии Кафедра микробиологии

Направление подготовки: 06.03.01 – Биология

Профиль подготовки: Микробиология и вирусология

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА **ИЗУЧЕНИЕ СВОЙСТВ МЕТАБОЛИТОВ ШТАММА** *NOCARDIA MANGYAENSIS* H1

Студент 4 курса группы 01-802 " <u>30</u> " <u>ucael</u> 2022 г.	Ch	(Беркутова Е. С.)
Научный руководитель к.б.н., доцент "30" меся 2022 г.	Duf	(Хиляс И.В.)
Заведующий кафедрой микробиологии д.б.н., профессор " <u>30" </u>	Muz	(Ильинская О.Н.)

СОДЕРЖАНИЕ

	Стр
СПИСОК СОКРАЩЕНИЙ	4
ВВЕДЕНИЕ	5
1 ОБЗОР ЛИТЕРАТУРЫ	7
1.1 Общая характеристика рода Nocardia.	7
1.2 Таксономия рода <i>Nocardia</i> .	9
1.2.1 История таксономии рода Nocardia.	10
1.3. Идентификация представителей рода Nocardia.	11
1.3.1. Идентификация нокардий с помощью секвенирования последовательности гена 16S pPHK.	12
1.3.2. Идентификация нокардий с помощью мультилокусного анализа	1 /
(MLSA) последовательностей консервативных генов.	14
1.3.3. Идентификация <i>Nocardia</i> spp при помощи метода MALDI-TOF	
масс-спектрометрии (MS).	16
1.4 Продукция биологических веществ	18
1.4.1. Сидерофоры	18
1.4.2. Пути биосинтеза сидерофоров.	
1.5 Свойства бактериальных сидерофоров.	
1.5.1 Антиоксидантная активность сидерофоров	
1.5.2 Антибиотическая активность сидерофоров	
1.5.3 Сидеромицины	27
1.6 Применение сидерофоров в медицине	
1.7 Применение сидерофоров в биоремедиации окружающей среды	
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	32
2 МАТЕРИАЛЫ И МЕТОДЫ	32
2.1 Выделение бактериального штамма и условия культивирования	32
2.2 Выделение бактериальной геномной ДНК	32
2.3 Амплификация генов 16S рРНК и генов домашнего хозяйства	

2.4 Идентификация и филогенетический анализ штамма Н1		
2.5 Калориметрическое определение сидерофоров, продуцируемых	34	
Nocardia mangyaensis H1		
2.6 Экстракция метаболитов N. mangyaensis H1 из жидкой среды для		
проведения ВЭЖХ анализа		
2.7 Исследование различных свойств метаболитов штамма <i>N</i> .	35	
yaensis H1		
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ		
3.1 Таксономическая принадлежность N. mangyaensis H1		
3.2 Продукция сидерофоров штаммом <i>N. mangyaensis</i> H1.		
3.3 Свойства метаболитов штамма <i>N. mangyaensis</i> H1		
ЗАКЛЮЧЕНИЕ	44	
ВЫВОДЫ		
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ		

ВВЕДЕНИЕ

Одними из наиболее интересных представителей филума Actinobacteria бактерии Nocardia, которые обладают являются рода различными морфологическими особенностями, включая формирование фрагментирующих гиф и короткоцепочечных спор, четкое распределение арабинозы и галактозы и наличие циклических менахинонов в клеточной стенке. Нокардии встречаются в различных экологических нишах благодаря высокой метаболической активности и адаптации к стрессовым факторам.

Многочисленные исследования различных видов нокардий в основном сосредоточены на их характеристике и таксономической классификации. Нокардии способны вызывать широкий спектр инфекционных заболеваний, как у людей, так и у животных [Luo et al., 2014]. В тоже время, многие виды нокардий нашли широкое применение в процессе биоремедиации территорий, загрязненных алифатическими и ароматическими углеводородами, природными и синтетическими полимерами, а также другими широко распространенными токсикантами [Luo et al., 2014].

Последние десятилетия, представители рода *Nocardia* все чаще характеризуются как продуценты биологически активных метаболитов, обладающих антимикробными, противоопухолевыми и антиоксидантными свойствами [Luo *et al.*, 2014]. Синтез широкого спектра вторичных метаболитов обусловлен наличием в геноме бактерий нерибосомальных пептидных и поликетидных синтетаз. Среди вторичных метаболитов особое положение занимают сидерофоры — низкомолекулярные соединения, способные связывать ионы трехвалентного железа. Сидерофоры выполняют не только функцию доставки железа в клетку из окружающей среды, а также обеспечивают защиту бактериальных клеток от окислительного стресса и токсичных металлов, обладают антимикробными свойствами и выполняют функции сигнальных молекул.

Целью настоящей работы явилось изучение свойств метаболитов штамма *Nocardia mangyaensis* H1 - продуцента сидерофоров.

В ходе данной работы решались следующие задачи:

- 1) Установить таксономическую принадлежность штамма Н1, выделенного из минерала гидромагнезита (Халиловский массив, Оренбургская область), с помощью мультилокусного анализа нуклеотидных последовательностей консервативных генов (MLSA).
- 2) Исследовать продукцию сидерофоров штамма *Nocardia mangyaensis* H1 калориметрическим методом анализа.
 - 3) Изучить свойства сидерофоров штамма *N. mangyaensis* H1.

ВЫВОДЫ

- 1) Штамм H1, выделенный из минерала гидромагнезита (Халиловский массив, Оренбургская область), был идентифицирован как *Nocardia mangyaensis*.
- 2) Исследование продукции сидерофоров штаммом *N. mangyaensis* Н1 показало, что максимальное количество сидерофоров катехолового типа (16 µM) образуется на 72ч, а гидроксаматового типа (88 µM) на 96ч роста в жидкой минимальной среде в железодефицитных условиях.
- 3) В ходе исследования активностей метаболитов, полученных после 72ч роста штамма *N. mangyaensis* Н1 в отсутствие железа, антимикробная активность не была выявлена, однако достоверно была показана антиоксидантная и металл связывающая активности ВЭЖХ-очищенных фракций.