Том 150, кн. 3

Физико-математические науки

2008

УДК 550.388.2

ПОВЫШЕНИЕ ВЫСОТНОГО РАЗРЕШЕНИЯ ИМПУЛЬСНОГО ИОНОЗОНДА ПРИ ЗОНДИРОВАНИИ КОГЕРЕНТНЫМИ ИМПУЛЬСНЫМИ СИГНАЛАМИ

А.Д. Акчурин, В.В. Бочкарев

Аннотация

Предложена методика оценки групповой задержки методом наибольшего правдоподобия при многочастотном зондировании, позволяющая повысить высотное разрешение (вплоть до 200 м) с помощью аппаратуры обычного ионозонда, регистрирующего фазу. Важно, что при этом не требуется сколько-нибудь значительно изменять приеморегистрирующую аппаратуру.

Ключевые слова: импульсное вертикальное зондирование ионосферы, действующая высота отражения, точность определения высоты, метод максимального правдоподобия.

Введение

Являясь наиболее распространенным методом диагностики ионосферы, вертикальное импульсное зондирование ионосферы нуждается в повышении информативности. Это в первую очередь касается повышения высотного разрешения. В определении высоты на настоящий момент можно выделить два основных подхода: на основе фазовых измерений и по времени задержки импульсного сигнала.

Фазовые измерения действующей высоты по формуле $h' = \frac{c}{2} \frac{d\varphi}{d\omega}$, вытекающей из принципа стационарной фазы [1, 2], позволяют получать высокую точность ($\sim \lambda/10$ и менее). Однако в реальных экспериментах диапазон измеряемой разности фаз $\Delta \phi$ находится в пределах $0 \div 2\pi$. Это отводит высокоточным фазовым измерениям роль «нониусной шкалы», произвольно стыкующейся с «основной шкалой» в интервале > 10λ (типовая точность подхода по времени задержки импульсного сигнала). К неудобствам метода можно также отнести работу на двух зондирующих частотах.

Точность измерения действующей высоты по времени задержки импульсного сигнала (по формуле $h' = \frac{c}{2} \tau_{\rm rp}$) определяется точностью определения групповой задержки $\tau_{\rm rp}$. В ходе усовершенствований аппаратуры импульсного вертикального зондирования за последние 30 лет точность определения приближается к своему теоретическому пределу

$$\Delta h' = \frac{c}{2} \frac{1}{\alpha \Delta f \sqrt{\mu}},$$

где α – коэффициент, определяемый формой огибающей радиоимпульса ($\alpha \leq 2\pi$), μ – энергетическое отношение сигнал/шум $E_{\rm сигн}/(N_0/2)$ [3–6]. Видно, что точность определяется эффективной полушириной спектра Δf , занимаемой зондирующим радиоимпульсом, и отношением сигнал/шум μ . В целом указанная формула отражает соотношение неопределенностей: произвольное увеличение Δf ведет к неограниченному уменьшению погрешности $\Delta h'$. Произвольному увеличению Δf препятствуют наличие частотно-временной дисперсии и шумов в эфире, что привело к компромиссному значению ~ 15 кГц [7]. При типовом отношении сигнал/шум $\mu = 6 \div 8$ получаем максимально достижимую точность ±0.4 км. Однако из-за особенностей регистрирующей аппаратуры, когда амплитуда принятого сигнала влияет на задержку, получаемая точность равна ±1.4 км [3]. Дальнейший рост точности (при фиксированной полосе) возможен только с ростом μ , что ведет к ухудшению электромагнитной обстановки. По этой причине высотное разрешение большинства цифровых ионозондов $\Delta h' \approx 2.5$ км [8]. При коррекции амплитудной зависимости регистрируемой задержки, определяемой по точке наибольшего роста сигнала на переднем фронте огибающей отраженного импульса, и при использовании высоких промежуточной частоты и частоты дискретизации ($\gg 1$ МГц) на цифровых ионозондах удается достичь точности порядка ±0.2 км [9].

Прогресс в современной цифровой сигналосинтезирующей микросхемотехнике привел к появлению компактных ионозондов, использующих сложные широкополосные сигналы, с пиковой излучаемой мощностью < 300 Вт [8]. Временная задержка в них определяется по сдвигу корреляционной функции, а не по максимуму отраженного сигнала. Однако высотное разрешение осталось прежним.

В случае небольших значений μ при однократном зондировании повышение отношения сигнал/шум возможно на основе многоимпульсного зондирования. Однако проводить когерентное накопление отраженных импульсов более 1 с для фазовых ионозондов невозможно из-за доплеровского сдвига частоты (ДСЧ) (типовой интервал 0.1 ÷ 1 Гц в спокойных ионосферных условиях и 1 ÷ 10 Гц в неспокойных). Поэтому при длительных зондированиях (> 1 с) применяют когерентное спектральное накопление. В результате такой обработки получают также значение ДСЧ [8].

Более значительный прогресс в повышении высотного разрешения был достигнут в фазовых ионозондах двухчастотного типа [8, 9], сочетающих в себе методики фазового и импульсного зондирования. В данной методике (называемой часто $d\phi/df$ -техникой, или определением временной задержки на основе принципа стационарной фазы) используется та же формула, что и при фазовых измерениях на двух фиксированных частотах:

$$\tau_{\rm rp} = \frac{d\varphi(\omega)}{d\omega} \approx \frac{\Delta\varphi(\omega)}{\Delta\omega} = \frac{\varphi(\omega_1) - \varphi(\omega_2)}{\omega_1 - \omega_2},\tag{1}$$

где $\Delta \varphi(\omega)$ – приведенная разность фаз между частотами ω_1 и ω_2 . Однако, если в чисто фазовых измерениях речь идет о частотах гармонических составляющих сигнала, то в данном случае под ω_1 и ω_2 имеются в виду частоты заполнения зондирующих импульсов.

Некоторые сложности при работе с двухчастотной $d\phi/df$ -техникой связаны с тем, что формула (1) сопровождается ограничениями на разнос частот $\Delta \omega_{\text{max}} = |\omega_1 - \omega_2|$, обеспечивающими однозначность фазы:

$$|\varphi(\omega_1) - \varphi(\omega_2)| \le 2\pi. \tag{2}$$

Зная примерные значения для $au_{\rm rp}$, можно определить максимальную частотную полосу однозначности фазы: $\Delta f_{\rm max} = 1/\tau_{\rm rp}$. Так, для высот h' < 150 км (слой Е) максимальная полоса составляет ~ 1.0 кГц, а для высот h' < 500 км (слой F) – 300 Гц. Поэтому при частотном разносе 1 кГц высота слоя F будет определяться с точностью до диапазона неоднозначности, равного 150 км (расстояние между точками, где разность фаз будет иметь одно и то же значение). Указанную неоднозначность разрешают либо с помощью грубого приближения, получаемого по расположению максимума отраженного сигнала, либо на основе

зондирования на нескольких частотах [8]. Сообщается, что при типичном разносе частот ~ 10 кГц и точности измерения приведенной разности фаз $\sim 8^{\circ}$ удается достичь точности измерения h' порядка 0.1 км [9].

Альтернативным путем повышения высотного разрешения является применение $d\phi/df$ -техники к спектральным компонентам когерентной последовательности радиоимпульсов [10]. Такой режим зондирования позволяет считать, что зондирование производится не непрерывным спектром частот с занимаемой полосой $\Delta f =$ = 15 кГц (как в случае одиночного импульса), а на дискретных частотах из той же полосы, отстоящих друг от друга на величину частоты повторения импульсов $f_{\rm rep}$. Отметим, что работа с гребенкой дискретных частот широко применяется сейчас и в оптическом диапазоне (см., например, [11]). Выбрав определенные гармоники из спектра принятого сигнала, групповую задержку $t_{\rm rp}$ можно определить по сдвигу фаз между ними по формуле, схожей с (1) [10]. Отличия связаны лишь с тем, что все спектральные гармоники будут кратны частоте $f_{\rm rep}$:

$$\tau_{\rm rp} \approx \frac{\Delta \varphi(\omega_1)}{\Delta \omega} = \frac{\varphi(\omega_1 + 2\pi n f_{\rm rep}) - \varphi(\omega_1)}{2\pi n f_{\rm rep}},\tag{3}$$

где n – разность между номерами гармоник.

Оценка групповой задержки методом наибольшего правдоподобия

Для получения оценки группового времени задержки воспользуемся методом наибольшего правдоподобия. В нашем случае более целесообразным является использование выражения для функционала в спектральной области. Зондирующий сигнал является импульсным, а помеху на протяжении времени зондирования, как правило, можно считать стационарным случайным процессом. В этом случае погрешности в определении спектральных составляющих будут δ коррелированными, что позволяет упростить выражение для функционала правдоподобия. Дискретная структура спектра зондирующей импульсной последовательности позволяет при переходе в спектральную область понизить размерность, а также применить пороговую предобработку сигнала. Предположив, что помеха распределена по нормальному закону, запишем выражение для логарифма функционала правдоподобия в виде

$$L(\alpha_1, \alpha_2, \dots, \alpha_n) = -\int_{-\infty}^{\infty} |S_{\rm ref}(\omega) - S_{\rm inc}(\omega) \cdot R(\omega, \alpha_1, \alpha_2, \dots, \alpha_n)|^2 d\omega,$$

где $\alpha_1, \alpha_2, \ldots, \alpha_n$ – неизвестные параметры, характеризующие свойства ионосферы в данной частотной области, $R(\omega, \alpha_1, \alpha_2, \ldots, \alpha_n)$ – комплексный коэффициент отражения от ионосферы, $S_{inc}(\omega)$ и $S_{ref}(\omega)$ – спектры излученного и принятого сигналов. Задача получения оценок исходных параметров $\alpha_1, \alpha_2, \ldots, \alpha_n$ сводится к максимизации функционала L.

В случае многоимпульсного зондирования, когда спектр становится дискретным, интеграл сводится к сумме. Таким образом, функционал правдоподобия будет пропорционален векторной норме l^2 для погрешности модельной аппроксимации комплексных амплитуд гармоник принятого сигнала. Для дальнейшего упрощения формулы необходимо выбрать вид излученного спектра $S_{inc}(\omega_m)$ (или излученного сигнала с его последующим Фурье-преобразованием), так как из-за большой амплитуды приемник регистрирует его искаженно. Необходимо также определиться с классом функции $R(\omega)$. В нашем случае определения групповой задержки $R(\omega_m, \tau_{rp}, A) = A \cdot \exp(i \omega_m \tau_{rp})$, где A – комплексный масштабирующий множитель, выполняющий роль амплитуды отраженного сигнала. На множитель $\exp(i\omega_m \tau_{\rm rp})$ (но с другим знаком у фазы) отличаются спектры сигналов, сдвинутых друг относительно друга на время $\tau_{\rm rp}$ (теорема о сдвиге). Более сложный вид функция $R(\omega)$ должна приобрести для участков с сильной частотно-временной дисперсией для учета расплывания импульса. Принимая во внимание, что $\omega_m = m 2\pi f_{\rm rep}$ приходим к соотношению

$$L(\tau_{\rm rp}, A) = -\sum_{m=1}^{M} \left| S_{\rm ref}(\omega_m) - S_{\rm inc}(\omega_m) \cdot A \cdot \exp(i \, 2\pi \, m \, f_{\rm rep} \, \tau_{\rm rp}) \right|^2, \tag{4}$$

где M – число гармоник в спектре принятого сигнала (или число отсчетов с частотой дискретизации $f_{\rm samp}$). В качестве $S_{\rm inc}(\omega_m)$ использовался спектр цепочки импульсов гауссовой формы. В качестве $S_{\rm ref}(\omega_m)$ использовался спектр на основе быстрого преобразования Фурье (БПФ), рассчитанный по экспериментальным данным. В силу линейности вхождения параметра A в L, его можно исключить из (4), получив его теоретическую оценку $A(\tau_{\rm rp})$ для любого фиксированного $\tau_{\rm rp}$. Это несложно сделать, продифференцировав (4) по A и приравняв производную нулю:

$$A(\tau_{\rm rp}) = \frac{\sum_{m=1}^{M} S_{\rm ref}(\omega_m) \cdot S_{\rm inc}^*(\omega_m) \cdot \exp\left(-i\omega_m \tau_{\rm rp}\right)}{\sum_{m=1}^{M} \left|S_{\rm inc}(\omega_m)\right|^2},$$

откуда окончательно получаем задачу одномерной оптимизации:

$$L(\tau_{\rm rp}) = -\sum_{m=1}^{M} \left| S_{\rm ref}(\omega_m) - S_{\rm inc}(\omega_m) \cdot \exp(i\omega_m \tau_{\rm rp}) \times \frac{\sum_{m=1}^{M} S_{\rm ref}(\omega_m) \cdot S_{\rm inc}^*(\omega_m) \cdot \exp(-i\omega_b \tau_{\rm rp})}{\sum_{m=1}^{M} \left| S_{\rm inc}(\omega_m) \right|^2} \right|^2, \quad (5)$$

где звездочка означает комплексное сопряжение.

К достоинствам нахождения τ_{rp} по формуле (5) можно отнести то, что мы освобождаемся от ограничения (2).

Структура и параметры зондирующей аппаратуры

Структурная схема текущего варианта ионосферного комплекса «Циклон» представлена на рис. 1. Назначение блоков пояснено комментариями, прилегающими к стрелкам. Кратко можно добавить следующее. Синтез синусоидального сигнала в возбудителе передатчика выполняет микросхема прямого цифрового синтеза AD9850 [12]. Выходная (импульсная) мощность передатчика с ламповым выходным каскадом с ростом частоты от 1 до 10 МГц убывает от 10 до 1 кВт. Оцифровка принятого сигнала производится с помощью платы E440 (производимой фирмой Lcard), содержащей 14-разрядный аналого-цифровой преобразователь (АЦП). В качестве входного сигнала платы сбора информации используется вторая промежуточная частота (ПЧ) (215 кГц) радиоприемника P-399.

Для уменьшения входного потока информации программа, проводящая зондирование, выполняет цифровое квадратурное преобразование с 6-кратной децимацией сигнала с второй ПЧ. После детектирования входной поток становится

Рис. 1. Структурная схема ионосферного комплекса «Циклон»

равным 60 тыс. комплексных отсчетов в секунду. На ионограмме вертикального зондирования данному временному интервалу между отсчетами соответствует расстояние 2.5 км. После излучения каждого радиоимпульса в компьютере записывается 256 отчетов (что соответствует 640 км). Период повторения импульсов составляет 20 Гц.

Специально для проверки методики повышенного разрешения программа, осуществляющая зондирование, не переписывалась. Данные получались и записывались как в случае обычной ионограммы, только без перестройки по частоте. Негативный момент этого заключается в том, что при длительности излученного импульса (70 мкс) на него приходилось только 5 отсчетов (правда, комплексных), а не 30, если бы сохранялись исходные данные АЦП.

Данные и их обработка

Основу расчетов составили результаты измерений 4 мая 2006 г. Они выполнялись днем с 10:30 до 20:55 местного времени с 5-минутной периодичностью на зондирующей частоте 4.5 МГц. Остальные режимы зондирования: частота повторения равна 20 Гц, число излучаемых импульсов K = 256 (то есть общая длительность одного зондирования составила 12.8 с). Таким образом, на протяжении 10 ч 25 мин состоялось 126 сеансов зондирований 256 импульсами. Число отсчетов, записываемых аппаратурой при зондировании одним импульсом, равно 256.

Временной интервал между излученными импульсами равен 50 мс, что соответствует N = 3000 отсчетам с частотой дискретизации 60 кГц. Из-за этого перед БПФ все отсчеты отраженного сигнала, относящиеся к зондированию одним импульсом, дополнялись нулями до N. В итоге число отсчетов, относящихся ко всему сеансу из 256 импульсов, равнялось KN = 768000. После выполнения БПФ получался периодический спектр $S_{ref}(\omega_m)$ из KN гармоник. Из этого спектра

Рис. 2. СКО определения действующей высоты в зависимости от времени суток 5 мая 2006 г.

выделялись N наибольших гармоник (кратных 256): $S_{\text{ref}}^{\max}(\omega_m)$. Номер первой из выделенных гармоник соответствует доплеровскому смещению частоты, но оно в данной работе не рассматривается.

Спектр излученного сигнала (из N гармоник) рассчитывался по одному излученному импульсу. Форма его огибающей задавалась пятью точками, определенными по гауссовой кривой ~ $\exp(-t^2/D)$, где $t = \{-2, -1, 0, 1, 2\}$. Значение дисперсионного параметра D = 6.56 было определено по форме отраженного сигнала при большом отношении сигнал/шум методом наименьших квадратов. Для получения спектра $S_{\rm inc}(\omega_m)$ для сигнала из K копий необходимо откорректировать номера гармоник, так как остальные будут нулевыми. Все расчеты производились в среде MATLAB.

Временная задержка, определяемая по формуле (5), рассчитывалась по спектрам $S_{\text{ref}}^{\max}(\omega_m)$ и $S_{\text{inc}}(\omega_m)$, состоящих из N значимых гармоник. По найденным задержкам были вычислены действующие высоты отражения h' для всех 126 сеансов зондирования. Для определения погрешности получаемого отсчета высоты отражения в каждом сеансе зондирования вычислялись 256 значений высоты отражения h'*. Они рассчитывались по одному импульсу, что не совсем правомерно с точки зрения предлагаемой здесь методики, однако позволяет оценить погрешность метода для условий реального эксперимента. Это равносильно тому, что каждый из 256 отраженных импульсов, взятый в отдельности, дополнялся 255 собственными копиями. По полученным значениям h'* находилось среднее квадратическое отклонение (СКО) $\Delta h'$, представленное на рис. 2.

Как видим, СКО действующих высот для отдельных серий измерений имеет большой разброс (от 100 м до 2 км). Анализ показал, что наибольшее увеличение связано со снижением отношения сигнал/шум до ~1 (особенно в вечернее время), с наличием множественных отражений. Ошибки в диапазоне 0.3–1 км обусловлены главным образом слишком большим диапазоном обработки (12.8 с). Этого времени оказалось достаточно для перемещения точки отражения на расстояния порядка 1 км. И в те моменты времени, когда ионосфера была относительно неподвижной и отношение сигнал/шум было не ниже 5, ошибка снижалась до 100–200 м. Дальнейшее повышение точности в данном эксперименте оказалось невозможным, так как данный режим был экспериментальным. В ходе его реализации выяснилось, что импульсы передатчика сбивают с нормального ритма микросхему AD9850, нарушая непрерывность фазы (когерентность сигнала). Когерентность восстанавливалась внесением фазовых поправок в результаты зондирования для каждого импульса. Фазы отсчетов изменялись так, чтобы первый отсчет (относящийся к излученному импульсу) становился чисто вещественным (имел нулевой угол).

Обсуждение результатов

Таким образом, применение предложенного метода фазовых измерений групповой задержки на основе зондирования когерентными импульсами может повысить точность высотного разрешения в среднем до 500 м, а в случае правильного подбора времени наблюдения – до 100–200 м (за исключением случаев диффузных отражений и низких отношений сигнал/шум).

Ряд исследователей критически оценивает возможность достижения указанной точности в случае, когда зондирующая частота приближается к критической частоте слоя [13, 14]. В первой работе это связывается с размыванием отраженного импульса. Однако это можно учесть, изменив вид функции $R(\omega, \alpha_1, \alpha_2, \ldots, \alpha_n)$ в функционале правдоподобия, учитывающий расплывание. Во второй работе рост погрешности определения действующей высоты в области критических частот связывается с наличием трехмерного рассеяния. Данные соображения, безусловно, обоснованны, но необходимо отметить следующее. Во-первых, повышение технических возможностей аппаратуры в этом случае позволит получать дополнительную информацию о свойствах неоднородностей. Во-вторых, приводимые в [14] количественные оценки основаны на многих предположениях о вероятностном распределении неоднородностей электронной концентрации, их размерах и др. Имеющийся на сегодняшний день эмпирический материал не позволяет получить надежные количественные оценки, и данный вопрос требует новых экспериментальных исследований.

Предлагаемая нами методика оценки групповой задержки методом наибольшего правдоподобия при многочастотном зондировании позволяет повысить высотное разрешение (вплоть до 200 м) с помощью аппаратуры обычного ионозонда, регистрирующего фазу. Важно отметить, что при этом не требуется сколько-нибудь значительно изменять приемо-регистрирующую аппаратуру.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 06-05-65150 и 05-05-64651).

Summary

A.D. Akchurin, V.V. Bochkarev. Increase of the Height Resolution of Pulse Ionosonde at Sounding by Coherent Pulse Signals.

The technique of maximum likelihood estimator of a group delay is proposed at the multifrequency sounding, allowing to increase the height resolution (down to 200 m) with the help of equipment of a usual ionosonde recording a phase. It is important that thus there is no necessity for any significant change to receive-registering equipment.

Key words: pulse vertical ionospheric sounding, virtual height of reflection, height accuracy, maximum-likelihood method.

Литература

- Budden K.G. Radio waves in the ionosphere. Cambridge: Cambridge Univer. Press, 1961. - 542 p.
- 2. Федорюк М.В. Метод перевала. М.: Наука, 1977. 368 с.
- 3. Галкин А.И. О точности регистрации ионосферных параметров при вертикальном зондировании // Ионосферные исслед. 1968. № 16. С. 173–178.
- 4. Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. – М.: Радио и связь, 1981. – 416 с.
- Справочник по радиолокации. Т. 1. Основы радиолокации / Под ред. М. Сколника. М.: Сов. радио, 1976. – 456 с.
- 6. Бартон Д., Вард Г. Справочник по радиолокационным измерениям. М.: Сов. радио, 1976. 392 с.
- Руководство URSI по интерпретации и обработке ионограмм / Под. ред. В.Р. Пиггота, К. Равера. – М.: Наука, 1977. – 340 с.
- Reinisch B.W., Haines D.M., Kuklinski W.S. The New Portable Digisonde for Vertical and Oblique Sounding. – AGARD-CP-502, February 1992. – URL: http://ulcar.uml.edu/ DPS.htm.
- 9. Wright J.W., Paul A.K., Pitteway M.L.V. On the accuracy and interpretation of Dynasonde virtual height measurements // Radio Sci. 1980. V. 15, No 3. P. 617-626.
- Ким В.Ю., Панченко В.А., Полиматиди В.П. Аналого-цифровая обработка когерентных импульсных сигналов при фазовом измерении групповой задержки // Цифровые ионозонды и их применение. – М.: ИЗМИРАН, 1986. – С. 52–61.
- Ye J., Schnatz H., Hollberg L.W. Optical frequency combs: from frequency metrology to optical phase control // IEEE J. Sel. Top. Quantum Electron. - 2003. - V. 9, No 4. -P. 1041-1058.
- Березовский Е.В., Акчурин А.Д., Теплов В.Ю. Современный синтезатор передающего модуля станции вертикального зондирования ионосферы // Прием и обработка информации в сложных информационных системах. – Казань: Изд-во Казан. ун-та, 2003. – Вып. 21. – С. 142–148.
- 13. Терехов Л.С., Шапцев В.А. Повышение точности радиозондирования ионосферы. Новосибирск: Издательство СО РАН, 1997. – 131 с.
- Калинин Ю.К., Куницын В.Б., Рождественская Л.Л. О методической точности измерения задержек сигналов радиозондирования ионосферы // Изв. вузов. Радиофизика. – 1990. – Т. 33, № 2. – С. 150–154.

Поступила в редакцию 10.03.08

Акчурин Адель Джавидович – кандидат физико-математических наук, доцент кафедры радиоастрономии Казанского государственного университета. E-mail: Adel. Akchurin@ksu.ru

Бочкарев Владимир Владимирович – ассистент кафедры радиофизики Казанского государственного университета.