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UDK 514.7BLACK HOLES AND QUASIBLACK HOLES:SOME HISTORY AND REMARKSJ.P.S. LemosAbstratWe give a short referene to the two Shwarzshild solutions and to what Petrov had to sayabout them. We omment on how the Shwarzshild vauum solution desribes a blak hole.Then we ompare the properties, di�erenes and similarities between blak holes and quasiblakholes. Blak holes are well known. Quasiblak hole is a new onept. A quasiblak hole, eithernonextremal or extremal, an be broadly de�ned as the limiting on�guration of a body whenits boundary approahes the body's own gravitational radius (the quasihorizon). Quasiblakholes are objets that are on the verge of being blak holes but atually are distint from themin many ways. We display some of their properties: there are in�nite redshift whole regions; theurvature invariants remain perfetly regular everywhere, in the quasiblak hole limit; a free-falling observer �nds in his own frame in�nitely large tidal fores in the whole inner region,showing some form of degeneray; outer and inner regions beome mutually impenetrableand disjoint, although, in ontrast to the usual blak holes, this separation is of a dynamialnature, rather than purely ausal; for external far away observers the spaetime is virtuallyindistinguishable from that of extremal blak holes. We also disuss other important properties,suh as the mass formula and the entropy, as ompared to the orresponding properties of blakholes.Key words: Shwarzshild solution, Petrov, blak holes, quasiblak holes.1. Introdution1.1. The Shwarzshild solution. Finding vauum solutions of Einstein's equa-tion

Gab = 0, (1)where Gab is the Einstein tensor, is an important branh of General Relativity andknown to be a non-trivial task. On the other hand, �nding solutions of the �eld equationswith matter is a somewhat di�erent setup. Given any metri, there is always one stress-energy tensor Tab for whih Einstein's equations (G = 1, c = 1)

Gab = 8π Tab, (2)are trivially satis�ed. Now, arbitrarily hosen metris usually give rise to unphysialstress-tensors, orresponding to matter whih is of no interest. Therefore, the task of�nding non-vauum solutions to the �eld equations is, in a ertain way, twie as hard inomparison to solutions in vauum, one has to hoose physially relevant soures, andthen solve for the gravitational �eld in the equations.Shwarzshild, in 1916, in two strokes, initiated the �eld of exat solutions in Gen-eral Relativity, both in vauum [1℄ and in matter for an inompressible �uid [2℄. Thesesolutions are alled the Shwarzshild solution and the interior Shwarzshild solution,



216 J.P.S. LEMOSrespetively. The Shwarzshild solution [1℄ is perhaps the most well-known exat solu-tion in General Relativity, and its line element an be written in appropriate spherialoordinates (t, r, θ, φ) as
ds2 = −

(
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r

)

dt2 +
dr2

(

1 − 2m

r

) + r2
(

dθ2 + sin2 θ dφ2
)

. (3)Here m is the mass of the objet, outside whih there is vauum. To interpret thesolution as a whole vauum solution, and the emergene of the notion of a blak hole ittook some time.1.2. Petrov on the Shwarzshild solution. In a Petrov Symposium it is worthto spend some lines on what Petrov had to say on both Shwarzshild solutions. For thiswe refer to his book Einstein Spaes, published in Russian in 1961 and then translatedinto English in 1969 [3℄.On page 141 of the book [3℄ one an read a rather remarkable phrase: �It is learthat Einstein, Hilbert, and their ontemporaries had a rather primitive idea of what ismeant by `spaetime metri' and of its sope. They possessed only a few of the simplestexamples (for example Shwarzshild's solution, the solution of Weyl and Levi �Civitawith axial symmetry, and osmologial metris). They did not realize what a powerfulinstrument they were forging.�Then there are several mentions, in passing, of the Shwarzshild solution.On page 179, it is stated that the Shwarzshild solution is a partiular ase of so-lutions inluded in T1 , i.e., solutions with Segre harateristi (111) , referring to hisalgebrai lassi�ation of 1954 of the Riemann and Weyl tensors [4℄, repeated in thebook on page 99. On page 196, Kotler's solution is mentioned, stating it is a general-ization of the Shwarzshild solution by inluding a osmologial term Λ . On page 360,in Chapter 9, Einstein's equations for a spherially symmetri vauum are solved, andthe Shwarzshild solution is �nally displayed. On page 362, exerises on Shwarzshildand interior Shwarzshild are given, and the Landau and Lifshitz 1948 book The Clas-sial Theory of Fields (and the English translation of 1959) is ited [5℄. On page 386,the two Shwarzshild's papers of 1916 on the vauum and the interior solutions arequoted in itations 37 and 37a, respetively.There is an interesting ontribution of Petrov to the �eld of exat solutions.In the paper Gravitational �eld geometry as the geometry of automorphisms [6℄,among many other solutions, Petrov �nds a Type I (111) solution with metri
ds2 = er cos

√
3r(−dt2 + dφ2) − 2 sin

√
3r dφ dt + dr2 + e−2rdz2 . It is the only vauumsolution admitting a simply-transitive four-dimensional maximal group of motions.Bonnor [7℄ showed that it is the vauum solution exterior to an in�nite rotating dust,a partiular ase of the Lanzos � van Stokum solution. This is not a blak hole, buthas relations to the hoop onjeture, losed timelike urves, and so on.1.3. Blak holes. It is lear that the Shwarzshild solution (3) presents a prob-lem, in the oordinates used, at r = 2m . For a long time r = 2m was a mysteriousplae. Only in the 1960s the ultimate interpretation was given and the problem wassolved. The radius rh = 2m de�nes the event horizon, a lightlike surfae, of the so-lution. In its full form it represents a wormhole, with its two phases (the white holeand the blak hole) onneting two asympotially �at universes [8℄ (a work done underthe supervision of Wheeler [9℄). If, besides a mass m as in the Shwarzshild solution,one inludes eletrial harge q , the Reissner �Norstr�om solution is obtained [10, 11℄(for the interpretation of its full form see [12℄). The inlusion of angular momentum
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J gives the Kerr solution [13℄, and the inlusion of the three parameters (m, J, q ) isthe Kerr �Newman family [14℄. For a full aount of the Kerr �Newman family withinGeneral Relativity see [15℄.As predited earlier by Oppenheimer and Snyder [16℄ blak holes an form throughgravitational ollapse of a lump of matter. As the matter falls in, an event horizon de-velops from the enter of the matter, and stays put, as a null surfae, in the spherialsymmetri ase at rh = 2m , while the matter falls in towards a singularity. A posteriorimportant result is that if the matter is made of perfet �uid (suh as the Shwarzshildinterior solution [2℄) there is the Buhdahl limit [17℄ whih states that when the bound-ary of the �uid matter approahes quasistatially the value 9

8
rh , then the system ensuesin an Oppenheimer � Snyder ollapse, presumably into a blak hole.The possibility of existene of blak holes ame with Quasars in 1963. Salpeter [18℄and Zel'dovih [19℄ were the �rst to advoate that a massive entral blak hole should bepresent in these objets in order to explain the huge amount of energy liberated by them.Lynden �Bell in 1969 then took a step forward and proposed that a entral massive blakhole should inhabit every galaxy [20℄, a predition that has been essentially on�rmed,almost every galaxy has a entral blak hole. Then with the disovery of pulsars in 1968and the reality of neutron stars the possibility of small stellar mass blak holes beameobvious, on�rmed in 1973 with the X-ray binary Cygnus X1 and then with other X-raybinary soures (see, e.g., [21℄).It is supposed that blak holes an form in many ways. The traditional manner is theOppenheimer � Snyder type ollapse [16℄. Nowadays, one also admits that blak holes anform from the ollision of partiles, or have a osmologial primordial inbuilt origin (see,e.g., [21℄). The Reissner �Nordstr�om blak hole may not be very useful astrophysially,although all blak holes should have a tiny, �utuating, harge. Notwithstanding, itmight be important in partile physis, perhaps it is an elementary soliton of gravitation,as proposed by some supergravity ideas. Nowadays there is a profusion of theoretialblak holes of all types, in all theories, with all harges, in all dimensions (see, e.g., [22℄).Classially, blak holes are well understood from the outside: there is astrophysialevidene and theoretial onsisteny. Perhaps there will be phenomenologial evidenein the near future from the ollision of partiles.Quantially, blak holes still pose problems. For the outside, these problems arerelated to the Hawking radiation and the Bekenstein �Hawking entropy. For the inside,the understanding of the inside of a blak hole is one of the outstanding problems ingravitational theory, and it ertainly is a quantum phenomenon. The horizon harborsa singularity. What is a singularity? The two quantum problems, the outside and theinside, are perhaps related. There are many approahes, some try to solve part of theproblems, others all of them (see, e.g., [23℄). These approahes are the quantum gravityapproah, mass in�ation, wormhole, regular blak hole, holographi reasoning (see, e.g.,[24℄), and so on. Here, we advoate the quasiblak hole approah to better understanda blak hole, both the outside and the inside stories. We do not laim to solve theproblems, we look at it through a di�erent angle and see where it leads us to.1.4. Quasiblak holes. Following [17℄, for matter made of perfet �uid there isthe Buhdahl limit. However, putting harge into the matter to bypass the limit opensup a new world. The harge an be eletrial, or angular momentum, or many otherharges. The simplest ase is to have matter with eletri harge alone, nothing else.In Newtonian gravitation, i.e., for a Newton �Coulomb system, the solution is easy.Suppose one has two massive harged partiles. Then, the gravitational fore exertedon eah partile is Fg =

Gm2

r2
, where for a moment we have restored G , and the
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Fig. 1. A star of louds as an example of a Bonnor star: Majumdar �Papapetrou (extremalharged dust) matter inside, extremal Reissner �Nordstr�om outside, and a boundary surfaejoining the inside and outside at the radius Reletri fore is Fe =
e2

r2
. Thus, when √

Gm = e it implies Fg = Fe . The systemis in equilibrium. Of ourse, if we put another suh partile, any number of partiles,a ontinuous distribution of matter, any symmetry, any on�guration, the result stillholds. For a ontinuous distribution the relation √
Gρm = ρe must hold, where ρmand ρe are the mass-energy density and the eletri harge density, respetively.In General Relativity, i.e., for an Einstein-Maxwell system, the history is long.In 1917 [25℄, Weyl started with a stati solution in the form:

ds2 = −W 2(xi) dt2 + gij(x
k) dxi dxj . (4)Then he sought W suh that W 2 = W 2(φ) , in vauum with axial symmetry, where φ isthe eletri potential. He found W 2 =

(
√

Gφ+b
)2

+c , with b and c onstants. In 1947,Majumdar [26℄ showed that Weyl's quadrati funtion works for any symmetry, not onlyaxial symmetry. It was also shown that the (vauum) extremal Reissner �Nordstr�omsolution obeyed this quadrati relation, and that many suh solutions ould be put to-gether sine, remarkably, equilibrium would be maintained, as in the Newton �Coulombase. Papapetrou [27℄ also worked along the same lines. Hartle �Hawking in 1973 [28℄worked out the maximal extension and other properties of a number of extremal blakholes dispersed in spaetime. Furthermore, for a perfet square, W 2(φ) =
(√

Gφ + b
)2 ,if now there is matter, Majumdar and Papapetrou found that √

Gρm = ρe [26, 27℄, andthe matter is in an equilibrium state, bringing into General Relativity the Newtonianresult. This type of matter we all extremal harged dust matter. The solutions, vauumor matter solutions, are generially alled Majumdar �Papapetrou solutions.Now, if one wants to make a star one has to put some boundary on the matter. Theinterior solution is then Majumdar �Papapetrou and the exterior is extremal Reissner �Nordstr�om. This analysis was started by Bonnor who sine 1953 has alled attention tothem, see, e.g., [29℄. Examples of Bonnor stars are:(i) A star of louds, in whih eah loud has 1 proton and 1018 neutrons, so tomaintain the relation ρm = ρe (G = 1). For a spherially symmetri star with radius
R , the star as a whole has m = q , and the exterior is extremal Reissner �Nordstr�om,see Fig. 1.(ii) A star made of supersymmetri stable partiles with ms = es . Again, the starhas total mass m and total harge q related by m = q .Now omes the important point. For any star with radius R the star is in equilibrium.It is also in equilibrium for R = rh , where rh = m is the gravitational, or horizon,
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r/rh r/rhFig. 2. Comparison of the generi form of the metri potentials B and A for blak holes andquasiblak holesradius of the extremal Reissner �Nordstr�om metri. What happens when R shrinks to
rh ? Something new: a quasiblak hole forms.2. Blak hole and quasiblak hole solutions2.1. Generi features of the solutions. The di�erene between an extremalspherially symmetri blak hole and an (extremal) spherially symmetri quasiblakhole spaetime is best displayed if we write the metri as

ds2 = −B(r) dt2 + A(r) dr2 + r2
(

dθ2 + sin2 θ dφ2
)

. (5)When one approahes the gravitational radius of the objet one �nds that the solutionshave the features shown in Fig. 2.For the extremal Reissner �Nordstr�om blak hole one has B(r) = 1/A(r) =
= (1 − m/r)2 , so that at r = rh = m there is the usual event horizon, and at
r = 0 the potentials are singular and indeed yield a singular spaetime where theurvature invariants diverge. For the extremal quasiblak hole the funtion 1/A(r) iswell behaved, touhes zero at r = rh , when a quasihorizon (not an event horizon) forms,and tends to 1 at r = 0 , so that there are no onial singularities. The funtion B(r)is well-behaved up to the quasiblak hole limit. At the quasiblak hole limit, R = rh ,the funtion is zero in the whole interior region. This brings new features.2.2. Blak holes and quasiblak holes made of Majumdar �Papapetroustu�. The Majumdar �Papapetrou vauum blak hole is the extremal Reissner �Nordstr�om blak hole, a solution with well-known properties.For quasiblak holes, Majumdar �Papapetrou matter provides perhaps the simplestase, as shown by Lemos and Weinberg in 2004 [30℄. In [30℄ a solution was found inwhih there is no need for a juntion. In the solution, the Majumdar �Papapetrou mat-ter deays su�iently rapidly to yield at in�nity, in a ontinuous way, the extremalReissner �Nordstr�om metri. In this way the existene of simple quasiblak hole solu-tions were shown beyond doubt. The potentials and all their derivatives are ontinuous.Thus, one avoids the possible problems aused by Bonnor stars where the potentialsare only one-time di�erentiable. To �nd the solutions, we insist on putting the metrias in Eq. (5). Then Einstein �Maxwell equations give
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Fig. 3. Plots of the potentials and matter funtions as a funtion of r for q = 1 and forfour di�erent stars, eah with ompat parameter c given by c = 0.5, 0.3, 0.1, 0.001 . Theemergene of the quasihorizon is quite evident in the c = 0.001 urve, see [30℄ for details
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= −4πρe. (7)where primes denote di�erentiation with respet to r . One an then work out the varioustypes of solutions [30℄.These stars have no well-de�ned radius R sine there is no boundary. The solutionstend smoothly into the extremal Reissner �Nordstr�om vauum. Instead, there is a om-pat parameter c whih haraterizes the solution. As this parameter tends to zero,
c → 0 , the star gets denser at the enter and more ompat. At c = 0 a quasiblakhole appears. This is shown in Fig. 3, where plots for four di�erent stars (i.e., with starswith di�erent cs) are displayed. The one in whih c → 0 shows learly a quasiblakhole behavior, with the emergene of a quasihorizon.2.3. Other ways: Blak holes and quasiblak holes made of various sortsof matter. There are blak hole solutions in General Relativity other than the onesprovided by the Kerr �Newman family. Those are regular blak holes in whih thevauum inside the horizon with its singularity is replaed by a de Sitter ore, whih anbe magnetially harged [31℄ or have non-isotropi pressures [32℄, or have some otherform (see, e.g., [33℄). There are also regular blak holes eletrially harged in a speialway [34℄. Blak holes are generi.What about quasiblak holes? Can they be built from other on�gurations and formsof matter other than Majumdar �Papapetrou? Yes, there are several di�erent quasiblakhole solutions found up to now.First, there are the simple quasiblak holes of Lemos and Weinberg, already men-tioned [30℄.Seond, spherial Bonnor stars (harged stars with a spherial boundary surfae) alsoyield quasiblak holes. This was shown preliminary by Bonnor himself (see, e.g., [29℄)and by subsequent works [35, 36℄. Moreover, reently Bonnor has shown that spheroidalstars made of extremal harged dust tend in the appropriate limit to quasiblak holes[37℄. Generi properties of the Majumdar �Papapetrou matter in d-dimensions weredisplayed in [38℄.Third, harged matter with pressure (with a generalized Shwarzshild interioransatz to inlude eletrial harge) also yields harged stars that when su�ientlyompat tend to quasiblak holes. These are the relativisti harged spheres whih



BLACK HOLES AND QUASIBLACK HOLES. . . 221an then be onsidered as the frozen stars [39�41℄. For the properties of the solutionsand the onnetion with the Weyl �Guilfoyle ansatz [42℄ see [43℄. These solutions haveadditional interest sine the pressure stabilizes the �uid against kineti perturbations.Fourth, the Einstein �Yang-Mills �Higgs equation yields gravitationally magnetimonopoles that when su�iently ompat form, in ertain instanes, quasiblak holes,as shown by Lue and Weinberg [44, 45℄. In these works the name quasiblak hole wasoined for the �rst time. A omparison between gravitationally magneti monopole andBonnor star behavior was done in [46℄.Fifth, the Einstein �Cartan system with spin and torsion, in whih the spinningmatter, put in a spherially symmetri on�guration, is joined into the Shwarzshildsolution, also yields quasiblak holes [47℄.Sixth, disk matter systems, when su�iently ompat and rotating at the extremallimit, have, as exterior metri, the extremal Kerr spaetime. These solutions were foundby Bardeen and Wagoner bak in 1971 [48℄. In the new language they are quasiblakholes and their properties have been explored by Meinel and ollaborators [49, 50℄.Finally, it is a simple exerise to show that a shell of matter, for whih the inside isa Minkowski spaetime and the outside is Shwarzshild, yields solutions with quasiblakhole properties if the shell is allowed to hover on the quasihorizon. A drawbak here,that does not appear in the six ases mentioned above, is that in the quasihorizon limitthe tangential pressures grow unbound. We will omment on this when we work out themass formula for quasiblak holes.There are ertainly many other examples in whih quasiblak holes may form.3. Blak holes and quasiblak holes: de�nition and properties3.1. Blak holes. De�nition of a blak hole an be seen in [51�53℄. Some of theblak hole properties were developed in, e.g., [54�59℄.3.2. Quasiblak holes. Sine it appears that quasiblak hole solutions are moreubiquitous than one ould have thought, one should onsider the ore properties ofthose solutions as independently as possible from the matter they are made of, in muhthe same way as one does for blak holes [60�66℄.3.2.1. De�nition. Write the metri as in Eq. (5), for an interior metri with anasymptoti �at exterior region. Consider if the solution satis�es the following requisites:(a) The funtion 1/A(r) attains a minimum at some r∗ 6= 0 , suh that 1/a(r∗) = ε ,with ε ≪ 1 .(b) For suh a small but nonzero ε the on�guration is regular everywhere witha nonvanishing metri funtion B .() In the limit ε → 0 the metri oe�ient B → 0 for all r ≤ r∗ .See Fig. 2. These three features de�ne a quasiblak hole [60℄. The quasiblak holeis on the verge of forming an event horizon, but instead, a quasihorizon appears with
r∗ = rh . The metri is well de�ned everywhere and the spaetime should be regulareverywhere. One an try to give an invariant de�nition of a quasiblak hole instead. Forinstane, in (a) one an replae 1/A by (∇r)2 . Note that this de�nition shows that thequasihorizon is related to an apparent horizon [52℄ rather than to an event horizon.3.2.2. Generi properties. A study of the several properties that an be de-dued from the above de�nition was initiated by Lemos and Zaslavskii [60℄. Somegeneri properties are: (i) The quasiblak hole is on the verge of forming an eventhorizon; instead, a quasihorizon appears. (ii) The urvature invariants remain regular



222 J.P.S. LEMOSeverywhere. (iii) A free-falling observer �nds in his frame in�nite tidal fores at the in-terfae showing some form of degeneray. The inner region is, in a sense, a mimiker ofa singularity. (iv) Outer and inner regions beome somehow mutually impenetrable anddisjoint. For example, in the Lemos �Weinberg solution [30℄, the interior is Bertotti �Robinson, the quasihorizon region is extremal Bertotti �Robinson, and the exterior isextremal Reissner-Nordstro"m [60℄. (v) There are in�nite redshift whole 3-regions. (vi)For far away observers the spaetime is indistinguishable from that of blak holes. (vii)Quasiblak holes with �nite stresses must be extremal to the outside.A omparison of quasiblak holes with other objets, suh as wormholes, that anmimik blak hole behavior was given in [61℄.3.2.3. Pressure properties. One an also work out what onditions the matterpressure should obey at the boundary when the on�guration approahes the quasiblakhole regime. For these interesting properties see [62℄.3.2.4. The mass formula. To �nd the mass of a quasiblak hole, one developsthe Tolman formula m =
∫

(−T 0
0 + T i

i )
√−g d3x , where i stands for spaelike indies

1, 2, 3 . Sine one uses the energy-momentum tensor Tab of the matter, this formula isnot appliable for vauum blak holes; for blak holes one has to use other methods [55,56℄. Nevertheless, in the general stationary ase, we obtain in the horizon limit [63, 64℄
m =

κA

4π
+ 2ωhJ + ϕhq, (8)where κ is the surfae gravity, A is the horizon area, ωh is the horizon angular veloity,

J is the quasiblak hole angular momentum, ϕh is the eletri potential, and q is thequasiblak hole eletrial harge. This is preisely Smarr's formula [56℄, but now forquasiblak holes. The ontribution of the term κA

4π
omes from the tangential pressuresthat grow unbound at the quasiblak hole limit but are at the same time redshiftedaway to give preisely κA

4π
. For the extremal ase, the term κA

4π
goes to zero, sine κ iszero. See also Meinel [49, 50℄ for the pure stationary solution of the Bardeen �Wagonertype disks [48℄.3.2.5. The entropy. To �nd the entropy one uses the �rst law of thermodynamistogether with the Brown-York formalism [59℄. The approah developed here is model-independent; it solely explores the fat that the boundary of the matter almost oinideswith quasihorizon [65, 66℄.For nonextremal quasiblak holes, when one arefully takes the horizon limit, one�nds that the entropy S is [65℄

S =
1

4
A, (9)where A is the quasihorizon area and is onsistent with the blak hole entropy [57,58℄. The ontribution to this value omes again from the tangential stresses that growunbound in the nonextremal ase. Sine these divergent stresses are at the boundary,the result suggests that the degrees of freedom are on the horizon. It is preisely whena quasihorizon is ahieved and the system has to settle to the Hawking temperature,that the entropy has the value A/4 . The result, together with the approah, suggestsfurther that the degrees of freedom are ultimately gravitational modes. Sine the tangen-tial pressures grow unbound here, all modes, presumably quantum modes, are exited.In pure vauum, as for a simple blak hole, they should be gravitational modes.



BLACK HOLES AND QUASIBLACK HOLES. . . 223For extremal quasiblak holes the stresses are �nite at the quasihorizon. So oneshould dedue that not all possible modes are exited. This means that the entropy ofan extremal quasiblak hole, and by ontinuity of an extremal blak hole, should be
S ≤ A/4 . Indeed, in [66℄ we �nd for extremal quasiblak holes:

0 < S ≤ 1

4
A. (10)The problem of entropy for extremal blak holes is a partiularly interesting one. Ar-guments based on periodiity of the Eulidean setion of the blak hole lead one toassign zero entropy in the extremal ase. However, extremal blak hole solutions instring theory typially have the onventional value given by the Bekenstein �Hawkingarea formula S = A/4 . We �nd an interesting ompromise.ConlusionsBlak holes are generi and stable. Quasiblak holes perhaps are not. Any perturba-tion would lead them into a blak hole, although the inlusion of pressure may stabilizethe system.However, stable or not, the quasiblak hole approah an eluidate many featuresof blak holes suh as the mass formula and the entropy. The quasiblak hole approahto the understanding of blak hole physis seems somehow similar to the membraneparadigm [67℄. Indeed, by taking a time-like matter surfae into a null horizon, ina limiting proess, we are reovering the membrane paradigm. One big di�erene isthat our membrane is not �titious like the membrane of the membrane paradigm, it isa real matter membrane.I would like to thank Vilson Zanhin (S�ao Paulo) and Oleg Zaslavskii (Kharkov) forthe work in ollaboration related to quasiblak holes. I thank Alexander Balakin andAsya Aminova for inviting me to the Petrov Anniversary Symposium in Kazan heldin November 2010. I appreiate the interest in my talk shown by Gennady Bisnovatyi-Kogan who raised an important point onneted with the stability of quasiblak holesand suggested a way of approahing the problem. I also appreiate the interest in mytalk shown by Mikhail Katanaev and Dieter Brill who raised an important point on-neted with the Penrose diagrams of quasiblak holes. One of my motivations to ometo the Petrov Anniversary Symposium was a work on the Petrov lassi�ation of ten-sors with four indies, suh as the Levi �Civita tensor, with my student Andr�e Moita.For personal reasons, he was not able to partiipate in the Symposium, so our on-tribution has not appeared in it. Nevertheless, we will publish the results elsewhere.I also thank the Funda��ao para a Ci�enia e Tenologia (FCT) for �nanial supportthrough projets CERN/FP/109276/2009 and PTDC/FIS/098962/2008 and the grantSFRH/BSAB/987/2010, and the Reitoria da Universidade T�enia de Lisboa for spei�support of the presentation of my talk at the Petrov Symposium.�åçþìåÕ.Ï.Ñ. Ëåìîñ. ×åðíûå äûðû è êâàçè÷åðíûå äûðû: èñòîðèÿ è êîììåíòàðèè.Ïðèâåäåíà êðàòêàÿ ñïðàâêà î äâóõ øâàðöøèëüäîâñêèõ ðåøåíèÿõ è î òîì, êàê îõàðàê-òåðèçîâàë èõ À.Ç. Ïåòðîâ. Îáñóæäàåòñÿ âîïðîñ î òîì, êàê âàêóóìíîå ðåøåíèå Øâàðö-øèëüäà îïèñûâàåò ÷åðíóþ äûðó. Ïðîâåäåíî ñðàâíåíèå ñâîéñòâ, ðàçëè÷èé è ñõîäñòâ ÷åð-íûõ è êâàçè÷åðíûõ äûð. ×åðíûå äûðû õîðîøî èçâåñòíû. ¾Êâàçè÷åðíàÿ äûðà¿ � ýòîíîâîå ïîíÿòèå. Êâàçè÷åðíàÿ äûðà, êàê ýêñòðåìàëüíàÿ, òàê è íåýêñòðåìàëüíàÿ, ìîæåòáûòü ãðóáî îïðåäåëåíà êàê ïðåäåëüíàÿ êîí�èãóðàöèÿ íåêîåãî òåëà, ïðè êîòîðîé ãðàíèöà



224 J.P.S. LEMOSòåëà ïðèáëèæàåòñÿ ê åãî ñîáñòâåííîìó ãðàâèòàöèîííîìó ðàäèóñó (êâàçèãîðèçîíòó). Ýòèîáúåêòû ïî÷òè ÿâëÿþòñÿ ÷åðíûìè äûðàìè, îäíàêî â äåéñòâèòåëüíîñòè îòëè÷àþòñÿ îòíèõ âî ìíîãèõ îòíîøåíèÿõ. Â ñòàòüå ïðåäñòàâëåíû íåêîòîðûå èç ñâîéñòâ êâàçè÷åðíûõäûð: ñóùåñòâîâàíèå öåëûõ îáëàñòåé ñ áåñêîíå÷íûì êðàñíûì ñìåùåíèåì; ðåãóëÿðíîñòüèíâàðèàíòîâ êðèâèçíû ïîâñåìåñòíî â ïðåäåëàõ êâàçè÷åðíîé äûðû; íàëè÷èå âíóòðåííåéîáëàñòè, â êîòîðîé ñâîáîäíî ïàäàþùèé íàáëþäàòåëü �èêñèðóåò áåñêîíå÷íî áîëüøèå ïðè-ëèâíûå ñèëû êàê ïðèçíàê íåêîåãî âûðîæäåíèÿ; âçàèìíàÿ íåïðîíèöàåìîñòü è íåñâÿçàí-íîñòü âíóòðåííèõ è âíåøíèõ îáëàñòåé (îäíàêî â îòëè÷èå îò îáû÷íûõ ÷åðíûõ äûð ýòîðàçãðàíè÷åíèå èìååò ñêîðåå äèíàìè÷åñêèé, íåæåëè ïðè÷èííûé õàðàêòåð); íåðàçëè÷è-ìîñòü ïðîñòðàíñòâà-âðåìåíè êâàçè÷åðíîé äûðû äëÿ óäàëåííîãî âíåøíåãî íàáëþäàòåëÿîò ïðîñòðàíñòâà-âðåìåíè ýêñòðåìàëüíîé ÷åðíîé äûðû. �àññìàòðèâàþòñÿ òàêæå è äðóãèåâàæíûå ñâîéñòâà êâàçè÷åðíûõ äûð, òàêèå êàê �îðìóëà äëÿ ìàññû è ýíòðîïèÿ, â ñðàâíå-íèè ñ èõ àíàëîãàìè äëÿ ÷åðíûõ äûð.Êëþ÷åâûå ñëîâà: ðåøåíèå Øâàðöøèëüäà, ÷åðíûå äûðû, êâàçè÷åðíûå äûðû.
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