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UDK 514.7BLACK HOLES AND QUASIBLACK HOLES:SOME HISTORY AND REMARKSJ.P.S. LemosAbstra
tWe give a short referen
e to the two S
hwarzs
hild solutions and to what Petrov had to sayabout them. We 
omment on how the S
hwarzs
hild va
uum solution des
ribes a bla
k hole.Then we 
ompare the properties, di�eren
es and similarities between bla
k holes and quasibla
kholes. Bla
k holes are well known. Quasibla
k hole is a new 
on
ept. A quasibla
k hole, eithernonextremal or extremal, 
an be broadly de�ned as the limiting 
on�guration of a body whenits boundary approa
hes the body's own gravitational radius (the quasihorizon). Quasibla
kholes are obje
ts that are on the verge of being bla
k holes but a
tually are distin
t from themin many ways. We display some of their properties: there are in�nite redshift whole regions; the
urvature invariants remain perfe
tly regular everywhere, in the quasibla
k hole limit; a free-falling observer �nds in his own frame in�nitely large tidal for
es in the whole inner region,showing some form of degenera
y; outer and inner regions be
ome mutually impenetrableand disjoint, although, in 
ontrast to the usual bla
k holes, this separation is of a dynami
alnature, rather than purely 
ausal; for external far away observers the spa
etime is virtuallyindistinguishable from that of extremal bla
k holes. We also dis
uss other important properties,su
h as the mass formula and the entropy, as 
ompared to the 
orresponding properties of bla
kholes.Key words: S
hwarzs
hild solution, Petrov, bla
k holes, quasibla
k holes.1. Introdu
tion1.1. The S
hwarzs
hild solution. Finding va
uum solutions of Einstein's equa-tion

Gab = 0, (1)where Gab is the Einstein tensor, is an important bran
h of General Relativity andknown to be a non-trivial task. On the other hand, �nding solutions of the �eld equationswith matter is a somewhat di�erent setup. Given any metri
, there is always one stress-energy tensor Tab for whi
h Einstein's equations (G = 1, c = 1)

Gab = 8π Tab, (2)are trivially satis�ed. Now, arbitrarily 
hosen metri
s usually give rise to unphysi
alstress-tensors, 
orresponding to matter whi
h is of no interest. Therefore, the task of�nding non-va
uum solutions to the �eld equations is, in a 
ertain way, twi
e as hard in
omparison to solutions in va
uum, one has to 
hoose physi
ally relevant sour
es, andthen solve for the gravitational �eld in the equations.S
hwarzs
hild, in 1916, in two strokes, initiated the �eld of exa
t solutions in Gen-eral Relativity, both in va
uum [1℄ and in matter for an in
ompressible �uid [2℄. Thesesolutions are 
alled the S
hwarzs
hild solution and the interior S
hwarzs
hild solution,
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tively. The S
hwarzs
hild solution [1℄ is perhaps the most well-known exa
t solu-tion in General Relativity, and its line element 
an be written in appropriate spheri
al
oordinates (t, r, θ, φ) as
ds2 = −

(

1 − 2m

r

)

dt2 +
dr2

(

1 − 2m

r

) + r2
(

dθ2 + sin2 θ dφ2
)

. (3)Here m is the mass of the obje
t, outside whi
h there is va
uum. To interpret thesolution as a whole va
uum solution, and the emergen
e of the notion of a bla
k hole ittook some time.1.2. Petrov on the S
hwarzs
hild solution. In a Petrov Symposium it is worthto spend some lines on what Petrov had to say on both S
hwarzs
hild solutions. For thiswe refer to his book Einstein Spa
es, published in Russian in 1961 and then translatedinto English in 1969 [3℄.On page 141 of the book [3℄ one 
an read a rather remarkable phrase: �It is 
learthat Einstein, Hilbert, and their 
ontemporaries had a rather primitive idea of what ismeant by `spa
etime metri
' and of its s
ope. They possessed only a few of the simplestexamples (for example S
hwarzs
hild's solution, the solution of Weyl and Levi �Civitawith axial symmetry, and 
osmologi
al metri
s). They did not realize what a powerfulinstrument they were forging.�Then there are several mentions, in passing, of the S
hwarzs
hild solution.On page 179, it is stated that the S
hwarzs
hild solution is a parti
ular 
ase of so-lutions in
luded in T1 , i.e., solutions with Segre 
hara
teristi
 (111) , referring to hisalgebrai
 
lassi�
ation of 1954 of the Riemann and Weyl tensors [4℄, repeated in thebook on page 99. On page 196, Kotler's solution is mentioned, stating it is a general-ization of the S
hwarzs
hild solution by in
luding a 
osmologi
al term Λ . On page 360,in Chapter 9, Einstein's equations for a spheri
ally symmetri
 va
uum are solved, andthe S
hwarzs
hild solution is �nally displayed. On page 362, exer
ises on S
hwarzs
hildand interior S
hwarzs
hild are given, and the Landau and Lifshitz 1948 book The Clas-si
al Theory of Fields (and the English translation of 1959) is 
ited [5℄. On page 386,the two S
hwarzs
hild's papers of 1916 on the va
uum and the interior solutions arequoted in 
itations 37 and 37a, respe
tively.There is an interesting 
ontribution of Petrov to the �eld of exa
t solutions.In the paper Gravitational �eld geometry as the geometry of automorphisms [6℄,among many other solutions, Petrov �nds a Type I (111) solution with metri

ds2 = er cos

√
3r(−dt2 + dφ2) − 2 sin

√
3r dφ dt + dr2 + e−2rdz2 . It is the only va
uumsolution admitting a simply-transitive four-dimensional maximal group of motions.Bonnor [7℄ showed that it is the va
uum solution exterior to an in�nite rotating dust,a parti
ular 
ase of the Lan
zos � van Sto
kum solution. This is not a bla
k hole, buthas relations to the hoop 
onje
ture, 
losed timelike 
urves, and so on.1.3. Bla
k holes. It is 
lear that the S
hwarzs
hild solution (3) presents a prob-lem, in the 
oordinates used, at r = 2m . For a long time r = 2m was a mysteriouspla
e. Only in the 1960s the ultimate interpretation was given and the problem wassolved. The radius rh = 2m de�nes the event horizon, a lightlike surfa
e, of the so-lution. In its full form it represents a wormhole, with its two phases (the white holeand the bla
k hole) 
onne
ting two asympoti
ally �at universes [8℄ (a work done underthe supervision of Wheeler [9℄). If, besides a mass m as in the S
hwarzs
hild solution,one in
ludes ele
tri
al 
harge q , the Reissner �Norstr�om solution is obtained [10, 11℄(for the interpretation of its full form see [12℄). The in
lusion of angular momentum
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J gives the Kerr solution [13℄, and the in
lusion of the three parameters (m, J, q ) isthe Kerr �Newman family [14℄. For a full a

ount of the Kerr �Newman family withinGeneral Relativity see [15℄.As predi
ted earlier by Oppenheimer and Snyder [16℄ bla
k holes 
an form throughgravitational 
ollapse of a lump of matter. As the matter falls in, an event horizon de-velops from the 
enter of the matter, and stays put, as a null surfa
e, in the spheri
alsymmetri
 
ase at rh = 2m , while the matter falls in towards a singularity. A posteriorimportant result is that if the matter is made of perfe
t �uid (su
h as the S
hwarzs
hildinterior solution [2℄) there is the Bu
hdahl limit [17℄ whi
h states that when the bound-ary of the �uid matter approa
hes quasistati
ally the value 9

8
rh , then the system ensuesin an Oppenheimer � Snyder 
ollapse, presumably into a bla
k hole.The possibility of existen
e of bla
k holes 
ame with Quasars in 1963. Salpeter [18℄and Zel'dovi
h [19℄ were the �rst to advo
ate that a massive 
entral bla
k hole should bepresent in these obje
ts in order to explain the huge amount of energy liberated by them.Lynden �Bell in 1969 then took a step forward and proposed that a 
entral massive bla
khole should inhabit every galaxy [20℄, a predi
tion that has been essentially 
on�rmed,almost every galaxy has a 
entral bla
k hole. Then with the dis
overy of pulsars in 1968and the reality of neutron stars the possibility of small stellar mass bla
k holes be
ameobvious, 
on�rmed in 1973 with the X-ray binary Cygnus X1 and then with other X-raybinary sour
es (see, e.g., [21℄).It is supposed that bla
k holes 
an form in many ways. The traditional manner is theOppenheimer � Snyder type 
ollapse [16℄. Nowadays, one also admits that bla
k holes 
anform from the 
ollision of parti
les, or have a 
osmologi
al primordial inbuilt origin (see,e.g., [21℄). The Reissner �Nordstr�om bla
k hole may not be very useful astrophysi
ally,although all bla
k holes should have a tiny, �u
tuating, 
harge. Notwithstanding, itmight be important in parti
le physi
s, perhaps it is an elementary soliton of gravitation,as proposed by some supergravity ideas. Nowadays there is a profusion of theoreti
albla
k holes of all types, in all theories, with all 
harges, in all dimensions (see, e.g., [22℄).Classi
ally, bla
k holes are well understood from the outside: there is astrophysi
aleviden
e and theoreti
al 
onsisten
y. Perhaps there will be phenomenologi
al eviden
ein the near future from the 
ollision of parti
les.Quanti
ally, bla
k holes still pose problems. For the outside, these problems arerelated to the Hawking radiation and the Bekenstein �Hawking entropy. For the inside,the understanding of the inside of a bla
k hole is one of the outstanding problems ingravitational theory, and it 
ertainly is a quantum phenomenon. The horizon harborsa singularity. What is a singularity? The two quantum problems, the outside and theinside, are perhaps related. There are many approa
hes, some try to solve part of theproblems, others all of them (see, e.g., [23℄). These approa
hes are the quantum gravityapproa
h, mass in�ation, wormhole, regular bla
k hole, holographi
 reasoning (see, e.g.,[24℄), and so on. Here, we advo
ate the quasibla
k hole approa
h to better understanda bla
k hole, both the outside and the inside stories. We do not 
laim to solve theproblems, we look at it through a di�erent angle and see where it leads us to.1.4. Quasibla
k holes. Following [17℄, for matter made of perfe
t �uid there isthe Bu
hdahl limit. However, putting 
harge into the matter to bypass the limit opensup a new world. The 
harge 
an be ele
tri
al, or angular momentum, or many other
harges. The simplest 
ase is to have matter with ele
tri
 
harge alone, nothing else.In Newtonian gravitation, i.e., for a Newton �Coulomb system, the solution is easy.Suppose one has two massive 
harged parti
les. Then, the gravitational for
e exertedon ea
h parti
le is Fg =

Gm2

r2
, where for a moment we have restored G , and the
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Fig. 1. A star of 
louds as an example of a Bonnor star: Majumdar �Papapetrou (extremal
harged dust) matter inside, extremal Reissner �Nordstr�om outside, and a boundary surfa
ejoining the inside and outside at the radius Rele
tri
 for
e is Fe =
e2

r2
. Thus, when √

Gm = e it implies Fg = Fe . The systemis in equilibrium. Of 
ourse, if we put another su
h parti
le, any number of parti
les,a 
ontinuous distribution of matter, any symmetry, any 
on�guration, the result stillholds. For a 
ontinuous distribution the relation √
Gρm = ρe must hold, where ρmand ρe are the mass-energy density and the ele
tri
 
harge density, respe
tively.In General Relativity, i.e., for an Einstein-Maxwell system, the history is long.In 1917 [25℄, Weyl started with a stati
 solution in the form:

ds2 = −W 2(xi) dt2 + gij(x
k) dxi dxj . (4)Then he sought W su
h that W 2 = W 2(φ) , in va
uum with axial symmetry, where φ isthe ele
tri
 potential. He found W 2 =

(
√

Gφ+b
)2

+c , with b and c 
onstants. In 1947,Majumdar [26℄ showed that Weyl's quadrati
 fun
tion works for any symmetry, not onlyaxial symmetry. It was also shown that the (va
uum) extremal Reissner �Nordstr�omsolution obeyed this quadrati
 relation, and that many su
h solutions 
ould be put to-gether sin
e, remarkably, equilibrium would be maintained, as in the Newton �Coulomb
ase. Papapetrou [27℄ also worked along the same lines. Hartle �Hawking in 1973 [28℄worked out the maximal extension and other properties of a number of extremal bla
kholes dispersed in spa
etime. Furthermore, for a perfe
t square, W 2(φ) =
(√

Gφ + b
)2 ,if now there is matter, Majumdar and Papapetrou found that √

Gρm = ρe [26, 27℄, andthe matter is in an equilibrium state, bringing into General Relativity the Newtonianresult. This type of matter we 
all extremal 
harged dust matter. The solutions, va
uumor matter solutions, are generi
ally 
alled Majumdar �Papapetrou solutions.Now, if one wants to make a star one has to put some boundary on the matter. Theinterior solution is then Majumdar �Papapetrou and the exterior is extremal Reissner �Nordstr�om. This analysis was started by Bonnor who sin
e 1953 has 
alled attention tothem, see, e.g., [29℄. Examples of Bonnor stars are:(i) A star of 
louds, in whi
h ea
h 
loud has 1 proton and 1018 neutrons, so tomaintain the relation ρm = ρe (G = 1). For a spheri
ally symmetri
 star with radius
R , the star as a whole has m = q , and the exterior is extremal Reissner �Nordstr�om,see Fig. 1.(ii) A star made of supersymmetri
 stable parti
les with ms = es . Again, the starhas total mass m and total 
harge q related by m = q .Now 
omes the important point. For any star with radius R the star is in equilibrium.It is also in equilibrium for R = rh , where rh = m is the gravitational, or horizon,
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r/rh r/rhFig. 2. Comparison of the generi
 form of the metri
 potentials B and A for bla
k holes andquasibla
k holesradius of the extremal Reissner �Nordstr�om metri
. What happens when R shrinks to
rh ? Something new: a quasibla
k hole forms.2. Bla
k hole and quasibla
k hole solutions2.1. Generi
 features of the solutions. The di�eren
e between an extremalspheri
ally symmetri
 bla
k hole and an (extremal) spheri
ally symmetri
 quasibla
khole spa
etime is best displayed if we write the metri
 as

ds2 = −B(r) dt2 + A(r) dr2 + r2
(

dθ2 + sin2 θ dφ2
)

. (5)When one approa
hes the gravitational radius of the obje
t one �nds that the solutionshave the features shown in Fig. 2.For the extremal Reissner �Nordstr�om bla
k hole one has B(r) = 1/A(r) =
= (1 − m/r)2 , so that at r = rh = m there is the usual event horizon, and at
r = 0 the potentials are singular and indeed yield a singular spa
etime where the
urvature invariants diverge. For the extremal quasibla
k hole the fun
tion 1/A(r) iswell behaved, tou
hes zero at r = rh , when a quasihorizon (not an event horizon) forms,and tends to 1 at r = 0 , so that there are no 
oni
al singularities. The fun
tion B(r)is well-behaved up to the quasibla
k hole limit. At the quasibla
k hole limit, R = rh ,the fun
tion is zero in the whole interior region. This brings new features.2.2. Bla
k holes and quasibla
k holes made of Majumdar �Papapetroustu�. The Majumdar �Papapetrou va
uum bla
k hole is the extremal Reissner �Nordstr�om bla
k hole, a solution with well-known properties.For quasibla
k holes, Majumdar �Papapetrou matter provides perhaps the simplest
ase, as shown by Lemos and Weinberg in 2004 [30℄. In [30℄ a solution was found inwhi
h there is no need for a jun
tion. In the solution, the Majumdar �Papapetrou mat-ter de
ays su�
iently rapidly to yield at in�nity, in a 
ontinuous way, the extremalReissner �Nordstr�om metri
. In this way the existen
e of simple quasibla
k hole solu-tions were shown beyond doubt. The potentials and all their derivatives are 
ontinuous.Thus, one avoids the possible problems 
aused by Bonnor stars where the potentialsare only one-time di�erentiable. To �nd the solutions, we insist on putting the metri
as in Eq. (5). Then Einstein �Maxwell equations give

(AB)′

AB
= 8πrρA,

[

r

(

1 − 1

A

)]

′

= 8πr2ρ +
r2

AB
ϕ′2, (6)
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Fig. 3. Plots of the potentials and matter fun
tions as a fun
tion of r for q = 1 and forfour di�erent stars, ea
h with 
ompa
t parameter c given by c = 0.5, 0.3, 0.1, 0.001 . Theemergen
e of the quasihorizon is quite evident in the c = 0.001 
urve, see [30℄ for details
√

B

r2
√

AB

[

r2

√
AB

ϕ′

]′

= −4πρe. (7)where primes denote di�erentiation with respe
t to r . One 
an then work out the varioustypes of solutions [30℄.These stars have no well-de�ned radius R sin
e there is no boundary. The solutionstend smoothly into the extremal Reissner �Nordstr�om va
uum. Instead, there is a 
om-pa
t parameter c whi
h 
hara
terizes the solution. As this parameter tends to zero,
c → 0 , the star gets denser at the 
enter and more 
ompa
t. At c = 0 a quasibla
khole appears. This is shown in Fig. 3, where plots for four di�erent stars (i.e., with starswith di�erent cs) are displayed. The one in whi
h c → 0 shows 
learly a quasibla
khole behavior, with the emergen
e of a quasihorizon.2.3. Other ways: Bla
k holes and quasibla
k holes made of various sortsof matter. There are bla
k hole solutions in General Relativity other than the onesprovided by the Kerr �Newman family. Those are regular bla
k holes in whi
h theva
uum inside the horizon with its singularity is repla
ed by a de Sitter 
ore, whi
h 
anbe magneti
ally 
harged [31℄ or have non-isotropi
 pressures [32℄, or have some otherform (see, e.g., [33℄). There are also regular bla
k holes ele
tri
ally 
harged in a spe
ialway [34℄. Bla
k holes are generi
.What about quasibla
k holes? Can they be built from other 
on�gurations and formsof matter other than Majumdar �Papapetrou? Yes, there are several di�erent quasibla
khole solutions found up to now.First, there are the simple quasibla
k holes of Lemos and Weinberg, already men-tioned [30℄.Se
ond, spheri
al Bonnor stars (
harged stars with a spheri
al boundary surfa
e) alsoyield quasibla
k holes. This was shown preliminary by Bonnor himself (see, e.g., [29℄)and by subsequent works [35, 36℄. Moreover, re
ently Bonnor has shown that spheroidalstars made of extremal 
harged dust tend in the appropriate limit to quasibla
k holes[37℄. Generi
 properties of the Majumdar �Papapetrou matter in d-dimensions weredisplayed in [38℄.Third, 
harged matter with pressure (with a generalized S
hwarzs
hild interioransatz to in
lude ele
tri
al 
harge) also yields 
harged stars that when su�
iently
ompa
t tend to quasibla
k holes. These are the relativisti
 
harged spheres whi
h
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an then be 
onsidered as the frozen stars [39�41℄. For the properties of the solutionsand the 
onne
tion with the Weyl �Guilfoyle ansatz [42℄ see [43℄. These solutions haveadditional interest sin
e the pressure stabilizes the �uid against kineti
 perturbations.Fourth, the Einstein �Yang-Mills �Higgs equation yields gravitationally magneti
monopoles that when su�
iently 
ompa
t form, in 
ertain instan
es, quasibla
k holes,as shown by Lue and Weinberg [44, 45℄. In these works the name quasibla
k hole was
oined for the �rst time. A 
omparison between gravitationally magneti
 monopole andBonnor star behavior was done in [46℄.Fifth, the Einstein �Cartan system with spin and torsion, in whi
h the spinningmatter, put in a spheri
ally symmetri
 
on�guration, is joined into the S
hwarzs
hildsolution, also yields quasibla
k holes [47℄.Sixth, disk matter systems, when su�
iently 
ompa
t and rotating at the extremallimit, have, as exterior metri
, the extremal Kerr spa
etime. These solutions were foundby Bardeen and Wagoner ba
k in 1971 [48℄. In the new language they are quasibla
kholes and their properties have been explored by Meinel and 
ollaborators [49, 50℄.Finally, it is a simple exer
ise to show that a shell of matter, for whi
h the inside isa Minkowski spa
etime and the outside is S
hwarzs
hild, yields solutions with quasibla
khole properties if the shell is allowed to hover on the quasihorizon. A drawba
k here,that does not appear in the six 
ases mentioned above, is that in the quasihorizon limitthe tangential pressures grow unbound. We will 
omment on this when we work out themass formula for quasibla
k holes.There are 
ertainly many other examples in whi
h quasibla
k holes may form.3. Bla
k holes and quasibla
k holes: de�nition and properties3.1. Bla
k holes. De�nition of a bla
k hole 
an be seen in [51�53℄. Some of thebla
k hole properties were developed in, e.g., [54�59℄.3.2. Quasibla
k holes. Sin
e it appears that quasibla
k hole solutions are moreubiquitous than one 
ould have thought, one should 
onsider the 
ore properties ofthose solutions as independently as possible from the matter they are made of, in mu
hthe same way as one does for bla
k holes [60�66℄.3.2.1. De�nition. Write the metri
 as in Eq. (5), for an interior metri
 with anasymptoti
 �at exterior region. Consider if the solution satis�es the following requisites:(a) The fun
tion 1/A(r) attains a minimum at some r∗ 6= 0 , su
h that 1/a(r∗) = ε ,with ε ≪ 1 .(b) For su
h a small but nonzero ε the 
on�guration is regular everywhere witha nonvanishing metri
 fun
tion B .(
) In the limit ε → 0 the metri
 
oe�
ient B → 0 for all r ≤ r∗ .See Fig. 2. These three features de�ne a quasibla
k hole [60℄. The quasibla
k holeis on the verge of forming an event horizon, but instead, a quasihorizon appears with
r∗ = rh . The metri
 is well de�ned everywhere and the spa
etime should be regulareverywhere. One 
an try to give an invariant de�nition of a quasibla
k hole instead. Forinstan
e, in (a) one 
an repla
e 1/A by (∇r)2 . Note that this de�nition shows that thequasihorizon is related to an apparent horizon [52℄ rather than to an event horizon.3.2.2. Generi
 properties. A study of the several properties that 
an be de-du
ed from the above de�nition was initiated by Lemos and Zaslavskii [60℄. Somegeneri
 properties are: (i) The quasibla
k hole is on the verge of forming an eventhorizon; instead, a quasihorizon appears. (ii) The 
urvature invariants remain regular
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es at the in-terfa
e showing some form of degenera
y. The inner region is, in a sense, a mimi
ker ofa singularity. (iv) Outer and inner regions be
ome somehow mutually impenetrable anddisjoint. For example, in the Lemos �Weinberg solution [30℄, the interior is Bertotti �Robinson, the quasihorizon region is extremal Bertotti �Robinson, and the exterior isextremal Reissner-Nordstro"m [60℄. (v) There are in�nite redshift whole 3-regions. (vi)For far away observers the spa
etime is indistinguishable from that of bla
k holes. (vii)Quasibla
k holes with �nite stresses must be extremal to the outside.A 
omparison of quasibla
k holes with other obje
ts, su
h as wormholes, that 
anmimi
k bla
k hole behavior was given in [61℄.3.2.3. Pressure properties. One 
an also work out what 
onditions the matterpressure should obey at the boundary when the 
on�guration approa
hes the quasibla
khole regime. For these interesting properties see [62℄.3.2.4. The mass formula. To �nd the mass of a quasibla
k hole, one developsthe Tolman formula m =
∫

(−T 0
0 + T i

i )
√−g d3x , where i stands for spa
elike indi
es

1, 2, 3 . Sin
e one uses the energy-momentum tensor Tab of the matter, this formula isnot appli
able for va
uum bla
k holes; for bla
k holes one has to use other methods [55,56℄. Nevertheless, in the general stationary 
ase, we obtain in the horizon limit [63, 64℄
m =

κA

4π
+ 2ωhJ + ϕhq, (8)where κ is the surfa
e gravity, A is the horizon area, ωh is the horizon angular velo
ity,

J is the quasibla
k hole angular momentum, ϕh is the ele
tri
 potential, and q is thequasibla
k hole ele
tri
al 
harge. This is pre
isely Smarr's formula [56℄, but now forquasibla
k holes. The 
ontribution of the term κA

4π

omes from the tangential pressuresthat grow unbound at the quasibla
k hole limit but are at the same time redshiftedaway to give pre
isely κA

4π
. For the extremal 
ase, the term κA

4π
goes to zero, sin
e κ iszero. See also Meinel [49, 50℄ for the pure stationary solution of the Bardeen �Wagonertype disks [48℄.3.2.5. The entropy. To �nd the entropy one uses the �rst law of thermodynami
stogether with the Brown-York formalism [59℄. The approa
h developed here is model-independent; it solely explores the fa
t that the boundary of the matter almost 
oin
ideswith quasihorizon [65, 66℄.For nonextremal quasibla
k holes, when one 
arefully takes the horizon limit, one�nds that the entropy S is [65℄

S =
1

4
A, (9)where A is the quasihorizon area and is 
onsistent with the bla
k hole entropy [57,58℄. The 
ontribution to this value 
omes again from the tangential stresses that growunbound in the nonextremal 
ase. Sin
e these divergent stresses are at the boundary,the result suggests that the degrees of freedom are on the horizon. It is pre
isely whena quasihorizon is a
hieved and the system has to settle to the Hawking temperature,that the entropy has the value A/4 . The result, together with the approa
h, suggestsfurther that the degrees of freedom are ultimately gravitational modes. Sin
e the tangen-tial pressures grow unbound here, all modes, presumably quantum modes, are ex
ited.In pure va
uum, as for a simple bla
k hole, they should be gravitational modes.
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k holes the stresses are �nite at the quasihorizon. So oneshould dedu
e that not all possible modes are ex
ited. This means that the entropy ofan extremal quasibla
k hole, and by 
ontinuity of an extremal bla
k hole, should be
S ≤ A/4 . Indeed, in [66℄ we �nd for extremal quasibla
k holes:

0 < S ≤ 1

4
A. (10)The problem of entropy for extremal bla
k holes is a parti
ularly interesting one. Ar-guments based on periodi
ity of the Eu
lidean se
tion of the bla
k hole lead one toassign zero entropy in the extremal 
ase. However, extremal bla
k hole solutions instring theory typi
ally have the 
onventional value given by the Bekenstein �Hawkingarea formula S = A/4 . We �nd an interesting 
ompromise.Con
lusionsBla
k holes are generi
 and stable. Quasibla
k holes perhaps are not. Any perturba-tion would lead them into a bla
k hole, although the in
lusion of pressure may stabilizethe system.However, stable or not, the quasibla
k hole approa
h 
an elu
idate many featuresof bla
k holes su
h as the mass formula and the entropy. The quasibla
k hole approa
hto the understanding of bla
k hole physi
s seems somehow similar to the membraneparadigm [67℄. Indeed, by taking a time-like matter surfa
e into a null horizon, ina limiting pro
ess, we are re
overing the membrane paradigm. One big di�eren
e isthat our membrane is not �
titious like the membrane of the membrane paradigm, it isa real matter membrane.I would like to thank Vilson Zan
hin (S�ao Paulo) and Oleg Zaslavskii (Kharkov) forthe work in 
ollaboration related to quasibla
k holes. I thank Alexander Balakin andAsya Aminova for inviting me to the Petrov Anniversary Symposium in Kazan heldin November 2010. I appre
iate the interest in my talk shown by Gennady Bisnovatyi-Kogan who raised an important point 
onne
ted with the stability of quasibla
k holesand suggested a way of approa
hing the problem. I also appre
iate the interest in mytalk shown by Mikhail Katanaev and Dieter Brill who raised an important point 
on-ne
ted with the Penrose diagrams of quasibla
k holes. One of my motivations to 
ometo the Petrov Anniversary Symposium was a work on the Petrov 
lassi�
ation of ten-sors with four indi
es, su
h as the Levi �Civita tensor, with my student Andr�e Moita.For personal reasons, he was not able to parti
ipate in the Symposium, so our 
on-tribution has not appeared in it. Nevertheless, we will publish the results elsewhere.I also thank the Funda�
�ao para a Ci�en
ia e Te
nologia (FCT) for �nan
ial supportthrough proje
ts CERN/FP/109276/2009 and PTDC/FIS/098962/2008 and the grantSFRH/BSAB/987/2010, and the Reitoria da Universidade T�e
ni
a de Lisboa for spe
i�
support of the presentation of my talk at the Petrov Symposium.�åçþìåÕ.Ï.Ñ. Ëåìîñ. ×åðíûå äûðû è êâàçè÷åðíûå äûðû: èñòîðèÿ è êîììåíòàðèè.Ïðèâåäåíà êðàòêàÿ ñïðàâêà î äâóõ øâàðöøèëüäîâñêèõ ðåøåíèÿõ è î òîì, êàê îõàðàê-òåðèçîâàë èõ À.Ç. Ïåòðîâ. Îáñóæäàåòñÿ âîïðîñ î òîì, êàê âàêóóìíîå ðåøåíèå Øâàðö-øèëüäà îïèñûâàåò ÷åðíóþ äûðó. Ïðîâåäåíî ñðàâíåíèå ñâîéñòâ, ðàçëè÷èé è ñõîäñòâ ÷åð-íûõ è êâàçè÷åðíûõ äûð. ×åðíûå äûðû õîðîøî èçâåñòíû. ¾Êâàçè÷åðíàÿ äûðà¿ � ýòîíîâîå ïîíÿòèå. Êâàçè÷åðíàÿ äûðà, êàê ýêñòðåìàëüíàÿ, òàê è íåýêñòðåìàëüíàÿ, ìîæåòáûòü ãðóáî îïðåäåëåíà êàê ïðåäåëüíàÿ êîí�èãóðàöèÿ íåêîåãî òåëà, ïðè êîòîðîé ãðàíèöà



224 J.P.S. LEMOSòåëà ïðèáëèæàåòñÿ ê åãî ñîáñòâåííîìó ãðàâèòàöèîííîìó ðàäèóñó (êâàçèãîðèçîíòó). Ýòèîáúåêòû ïî÷òè ÿâëÿþòñÿ ÷åðíûìè äûðàìè, îäíàêî â äåéñòâèòåëüíîñòè îòëè÷àþòñÿ îòíèõ âî ìíîãèõ îòíîøåíèÿõ. Â ñòàòüå ïðåäñòàâëåíû íåêîòîðûå èç ñâîéñòâ êâàçè÷åðíûõäûð: ñóùåñòâîâàíèå öåëûõ îáëàñòåé ñ áåñêîíå÷íûì êðàñíûì ñìåùåíèåì; ðåãóëÿðíîñòüèíâàðèàíòîâ êðèâèçíû ïîâñåìåñòíî â ïðåäåëàõ êâàçè÷åðíîé äûðû; íàëè÷èå âíóòðåííåéîáëàñòè, â êîòîðîé ñâîáîäíî ïàäàþùèé íàáëþäàòåëü �èêñèðóåò áåñêîíå÷íî áîëüøèå ïðè-ëèâíûå ñèëû êàê ïðèçíàê íåêîåãî âûðîæäåíèÿ; âçàèìíàÿ íåïðîíèöàåìîñòü è íåñâÿçàí-íîñòü âíóòðåííèõ è âíåøíèõ îáëàñòåé (îäíàêî â îòëè÷èå îò îáû÷íûõ ÷åðíûõ äûð ýòîðàçãðàíè÷åíèå èìååò ñêîðåå äèíàìè÷åñêèé, íåæåëè ïðè÷èííûé õàðàêòåð); íåðàçëè÷è-ìîñòü ïðîñòðàíñòâà-âðåìåíè êâàçè÷åðíîé äûðû äëÿ óäàëåííîãî âíåøíåãî íàáëþäàòåëÿîò ïðîñòðàíñòâà-âðåìåíè ýêñòðåìàëüíîé ÷åðíîé äûðû. �àññìàòðèâàþòñÿ òàêæå è äðóãèåâàæíûå ñâîéñòâà êâàçè÷åðíûõ äûð, òàêèå êàê �îðìóëà äëÿ ìàññû è ýíòðîïèÿ, â ñðàâíå-íèè ñ èõ àíàëîãàìè äëÿ ÷åðíûõ äûð.Êëþ÷åâûå ñëîâà: ðåøåíèå Øâàðöøèëüäà, ÷åðíûå äûðû, êâàçè÷åðíûå äûðû.
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10. Reissner H. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen

Theorie // Ann. Phys. (Berlin). – 1916. – H. 355. – S. 106–120.

11. Nordström G. On the Energy of the Gravitational Field in Einstein’s Theory // Proc.

Kon. Ned. Akad. Wet. – 1918. – V. 20. – P. 1238–1248.

12. Graves J.C., Brill D.R. Oscillatory Character of Reissner –Nordström Metric for an Ideal

Charged Wormhole // Phys. Rev. – 1960. – V. 120, No 4. – P. 1507–1513.

13. Kerr R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special

Metrics // Phys. Rev. Lett. – 1963. – V. 11, No 5. – P. 237–238.

14. Newman E.T., Couch E., Chinnapared K., Exton A., Prakash A., Torrence R. Metric of

a rotating charged mass // J. Math. Phys. – 1965. – V. 6, No 6. – P. 918–919.

15. Misner C.W., Thorne K.S., Wheeler J.A. Gravitation. – San Francisco: W.H. Freeman,

1973. – 1215 p.



BLACK HOLES AND QUASIBLACK HOLES. . . 225

16. Oppenheimer J.R., Snyder H. On Continued Gravitational Contraction // Phys. Rev. –

1939. – V. 56, No 5. – P. 455–459.

17. Buchdahl H.A. General Relativistic Fluid Spheres // Phys. Rev. – 1959. – V. 116, No 4. –

P. 1027–1034.

18. Salpeter E.E. Accretion of interstellar matter by massive objects // Astroph. J. – 1964. –

V. 140. – P. 796–800.

19. Zel’dovich Ya.B. The Fate of a Star and the Evolution of Gravitational Energy upon

Accretion // Soviet Physics Doklady. – 1964. – V. 9. – P. 195–197.

20. Lynden-Bell D. Galactic Nuclei as Collapsed Old Quasars // Nature. – 1969. – V. 223. –

P. 690–694.

21. Lemos J.P.S. Black holes: from galactic nuclei to elementary particles // Proc. 21th

Annual Meeting of the Brazilian Astronomical Society / Eds. F. Jablonski, F. Elizalde,
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