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Abstract
This survey paper reviews some recent results related to various derived lattices connected
with various types of classes of algebraic structures which were obtained by the authors.
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Introduction

This survey paper presents recent results obtained for lattices of subclasses of certain
types. Mainly, we focus on representing lattices by lattices of relatively axiomatizable
classes and those of (finitary) prevarieties, also mentioning some general algebraic and
computational properties of those lattices.

Study of such lattices has a long history and goes back to G. Birkhoff and A.I. Malt-
sev. In [1] and [2], they have independently asked about which lattices can be repre-
sented as lattices of (quasi)varieties, that is, classes defined by (quasi-)identities. It is
one of the oldest and hardest problems in lattice theory. A number of remarkable re-
sults was obtained concerning this question of Birkhoff and Maltsev. An advance in the
Birkhoff-Maltsev problem was made by K.V. Adaricheva, W. Dziobiak and V.A. Gor-
bunov by describing algebraic atomistic lattices isomorphic to quasivariety lattices in [3],
see also [4, Theorem 5.3.17]. Tt is also known (V.A. Gorbunov [4]) that all atomistic
algebraic quasivariety lattices are isomorphic to the so-called lattices of algebraic sub-
sets of algebraic lattices. We also note that those lattices are dual to lattices of suitable
first-order theories (cf. results of K. Adaricheva, J.B. Nation [5-7] and also the talk of
G.F. McNulty on lattices of equational theories [8]). For other results concerning this
topic, we refer to the book [4, Chapter 5], see also the survey paper [9], as well as to
the bibliography lists in those two. In addition to these, lattices of pseudovarieties of
finite algebras were investigated in a number of papers, see, for example, [10].

A.M. Nurakunov proved in [11] that there are quasivarieties of algebras (structures
with no relation in the signature) such that the set of finite sublattices of their quasi-
variety lattices is not computable, see Section 6. This result shows in particular that
finding a complete description of quasivariety lattices should be very hard. But there are
some restricted versions of the Birkhoff— Maltsev problem which are still of big interest.

While sub(quasi)variety lattices were studied in a considerable extent, lat-
tices of other first-order axiomatizable classes remain almost untouched. In [12],
D.E. Pal’chunov has proved that any at most countable complete lattice is isomorphic
to a lattice of relatively axiomatizable classes. In [12, Problem 1], he asked whether the
same result holds for an arbitrary complete lattice. We answer the latter question in
the positive in Theorem 4, which is based on the result of V.A. Gorbunov [13].

All classes are abstract; that is, they are closed under isomorphic copies. For example,
when writing {A; | i € I} for a set I, we always mean the class of isomorphic copies of
structures from the set {A; | i € I}.

For all the concepts which are not defined here, we refer to [4].
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1. Basic concepts

For an arbitrary signature o, let K(o) denote the class of all structures of sig-
nature o. Let also T(o) denote the variety of o-structures defined by the identity
Vey x =y.

Following [4], for a class K C K(o), let V(K) [Q(K), respectively| denote the
least [quasi-]variety containing K. Let H(K) denote the class of structures from K(o)
which are homomorphic images of structures from K; let P(K) [P“(K), respectively]
denote the class of structures from K(o) which are isomorphic to Cartesian products
of [finitely many] structures from K; let P4(K) [P¥(K), respectively] denote the class
of structures from K(o) which are isomorphic to subdirect products of [finitely many]
structures from K; let Ly(K) denote the class of structures from K(o) which are
isomorphic to superdirect limits of structures from K; and let S(K) denote the class
of structures from K(o) which are isomorphic to substructures of structures from K.
Finally, let Ky;, denote the class of finite members of K.

According to Birkhoff’s Theorem (see [4, Section 2.3]),

V(K) = HSP(K) = HP,S(K) = HP, (K),
while according to [14, Theorem 5.2] (see also [4, Theorem 2.3.6]),
Q(K) = L,P,S(K) = L,P,(K).

A class K C K(0) is a (finitary) prevariety if K = SP(K) = P,S(K) (K = SP¥(K) =
P¥S(K), respectively). The notion of a finitary prevariety (in case of signature con-
taining no relation symbols) was introduced by A. Vernitski in [15]. According to [16],
a class is a prevariety if and only if it can be defined by infinite implications.

Definition 1 [4, Section 2.5]. Let K’ C K C K(o). Then K’ is K-(quasi-)
equational if K’ = K N Mod(X) for some set ¥ of (quasi-)identities of signature o.

For the following concept, see [4] and also [17].

Definition 2. Let K’ C K C K(o). Then K’ is a (finitary) K-prevariety if
K’ = KN A for some (finitary) prevariety A C K(o); K’ is a K-(quasi)variety
it KY=KnA for some (quasi)variety A C K(0).

Equivalently, K’ is a (finitary) K-prevariety if and only if K’ = K n SP(K’)
(K’ = KN SP¥(K'), respectively). Similarly, K’ is a K-(quasi)variety if and only if
K'=KnV(K’) (K'=KnNQ(K'), respectively).

Definition 3. A class K C K(0)yin is a pseudo-quasivariety if it is a finitary
prevariety.

Note that K C K(0)si, is a pseudo-quasivariety if and only if it is a (finitary)
K fin-prevariety, and if and only if it is a K4, -quasivariety.

Let Lv(K) denote the set of all K-equational subclasses of K, while Lq(K) de-
notes the set of all K-quasi-equational subclasses of K. Let also Lp(K) (Lp*(K),
respectively) denote the set of all (finitary) K-prevarieties. Ordered with respect to
set inclusion, all the three form complete lattices. Note that in the case of (finitary)
prevarieties, we also allow the case when the ground of a lattice is a proper class.

Definition 4. Let L be a complete lattice. A subset A C L is a complete meet
subsemilattice of L,if A\ X € A for any X C A. A complete meet subsemilattice A C L
is an algebraic subset of L if \/ X € A for any non-empty up-directed subset X of A.
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A binary relation R on a meet semilattice (S, A) is distributive if for any a,b,c € S
relation (c¢,a Ab) € R implies that ¢ = a’ AV for some o',V € S such that (a’,a) € R
and (V',b) € R. The equality relation = is obviously distributive.

For a meet semilattice (S,A,1) with unit and for any binary relation R C 52, let
Sub(S, R) denote the set of all R-closed subsemilattices of S; that is, X € Sub(S, R)
if and only if the following conditions hold:

e ANF € X for all finite FF C X ;

e be X and (a,b) € R imply a € X.

For a complete lattice L, let Sub.(L, R) denote the set of all complete R-closed meet
subsemilattices of L, while Sp(L, R) denotes the set of all algebraic subsets of L which
are R-closed. Let also F(L, R) denote the set of R-closed filters of L. We write Sub(L),
Sub.(L), Sp(L), and F(L) instead of Sub(L,=), Sub.(L,=), Sp(L,=), and F(L,=),
respectively. Ordered by inclusion, Sub(L, R), Sub.(L, R), and Sp(L, R) form complete
lattices, while ordered by reverse inclusion, F(L, R) also forms a complete lattice.

2. Representing by congruence lattices

For a structure A € K(o) and for a class K C K(o), let Conk A denote the set of
congruences 6§ on A such that A/0 € K. If K = K(0), then we write Con A instead
of Conk A. For 0,0 € Con A, we write ¢ E if A/¢ embeds into A/0. Then E is
called the embedding relation. Obviously, this relation is distributive.

The next theorem combines the characterization theorem proved for quasivarieties
by V.A. Gorbunov and V.I. Tumanov [14, 19], see also [4, Corollaries 5.2.2, 5.2.6] with
its analogue for (finitary) prevarieties obtained in [17].

Theorem 1. Let A C K(o) be a prevariety, and let A € A. The following holds:
Lp(H(A) N A) = Sub.(Cona A, E);
Lp”(H(A) N A) = Sub(Cona A, E).
If A is [l]-projective in A, then
Lq(H(A) N A) 2 Sp(Cona A, E);
Lv(H(A) N A) 2 F(Cona A,E).
In particular, one gets the following

Corollary 1 [4, Corollaries 5.2.2, 5.2.5]. Let A C K(o) be a prevariety, and
let Fx(w) € A be a K-free structure of countable rank. The following holds:

Lq(A) = Sp(ConK Fx(w), E);
Lv(A) = F(Conk Fk (w),E).

For any class K C K(o) and any cardinal x, let K,, denote the class of x-generated
structures from K. The following statement is an analogue of Corollary 1 for prevari-
eties.

Corollary 2 [17]. For any prevariety K C K(o) and for any cardinal k,
Lp(K,) = Sub.(Conk Fk(k), E).

We note that if K is a prevariety, then for any structure A, the congruence lattice
Congk A is a complete lattice, which is algebraic if and only if K is a quasivariety.
In the next section, we will state a partial converse of Corollary 1. More precisely, any
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complete lattice is isomorphic to the lattice of relative varieties of a prevariety, any
lattice of algebraic subsets of an algebraic lattice is isomorphic to a quasivariety lattice,
any lattice of complete subsemilattices of a complete lattice is isomorphic to a prevariety
lattice, and any subsemilattice lattice is isomorphic to a finitary prevariety lattice, see
Propositions 1, 2 and 3.

A well-known and long-standing problem in lattice theory asks whether any finite
lattice is isomorphic to the congruence lattice of a finite algebra of finite signature. The
next result proved by A.M. Nurakunov [20] shows that any finite lattice is isomorphic
to a relative congruence lattice of a finite algebra of finite signature.

Theorem 2 [20]. For any finite lattice L, there is a quasivariety K of unars [poin-
ted Abelian groups, respectively] and a finite algebra A € K such that L = Conk(A).

The following result obtained by A.M. Nurakunov [21] gives a description of lattices
of subvarieties in terms of congruence lattices.

Theorem 3 [21]. A lattice is isomorphic to a variety lattice if and only if it is dually
isomorphic to the congruence lattice of a monoid with two additional unary operations
possessing certain properties.

Based on ideas from [21], K. Adaricheva and J.B. Nation proved in [5] an analogue
of Theorem 3 for quasivariety lattices: quasivariety lattices are exactly lattices dually
isomorphic to congruence lattices of semilattices endowed with unary operations pos-
sessing certain properties. In addition to that, J.B. Nation proved in [7, Corollary 16]
that the congruence lattice of any semilattice with operators is dually isomorphic to the
lattice of subprevarieties of a prevariety.

3. Representation by lattices of subclasses

3.1. Relation symbols. Let ¢ = {p; | i € I} be a signature consisting of unary
relation symbols only. Furthermore, for any set X C I, let Ax denote a structure from
T(o) such that Ax | Vo p;(x) if and only if ¢ € X. Obviously, T(o) consists of
isomorphic copies of structures Ay, X C I.

Let (X,C) be a closure space and L(X,C) be the closure lattice on X . We put

o(X)={p. |z € X}.
Let (X, C) consist of (in general infinite) implications of the form

Va /\ pa(z) = pp(z), ACX, be C(A).
acA

Of course, if the set X is finite, then the signature o(X) is finite, while X(X,C)
becomes a finite set of quasi-identities.

The class Mod(X(X,C)) is obviously closed under substructures and Cartesian
products, whence it is a prevariety. Therefore, the class K(X,C) = Mod(2(X,C)) N
NT(o(X)) is also a prevariety.

Lemma 1 [17]. For any closure space (X,C), the class K(X,C) consists of iso-
morphic copies of structures Ap, where B € L(X,C).

The following proposition shows, in particular, that any complete lattice is isomor-
phic to the lattice of relative equational classes of a prevariety. Originally, it was proved
by V.A. Gorbunov [13, Example 4.9]. In [17], M. Semenova and A. Zamojska-Dzienio
gave a short direct proof; a sketch of it is presented below.
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Proposition 1. For any complete lattice L, there is a signature o consisting only
of unary relation symbols, and a prevariety K C T(o) such that L% = LV(K) and

Sub.(L) = Lp(K).

Sketch of proof. Since the lattice L is complete there is a closure space (X,C)
such that L =2 L(X,C). Let 0 = 0(X) and K = K(X, (). Then K is a prevariety and
amap ¢: L(X,C) — Lv(K) defined by the rule

p: B—{Ap € T(o)| FeL(X,C)and BC F}, BeclL(X,C),
establishes a dual lattice isomorphism. O
The following proposition is a finitary analogue of Proposition 1 for prevarieties.

Proposition 2 [17]. For any meet semilattice (S, A, 1) with unit, there is a signa-
ture o consisting only of unary relation symbols, and a finitary prevariety K C T(o)
such that Sub(S) = Lp“(K).

Combining Propositions 1, 2, one gets the following proposition. A part of this
result concerning relative (quasi)variety lattices was proved by V.A. Gorbunov and
V.I. Tumanov [14, 19], see also [4, Theorem 5.2.8]. In the present form, it was proved
in [17].

Proposition 3. For any complete algebraic lattice L, there is a signature o
consisting only of unary relation symbols, and a quasivariety K C T(o) such that
L9~ Lyv(K), Sp(L) =2 Lq(K), Sub.(L) = Lp(K), and Sub(L) = Lp*(K).

From Proposition 3, we get also the following statement which appeared in [17].

Corollary 3. The class of complete dually algebraic lattices coincides with the class
of lattices of relative equational classes of quasivarieties.

Proposition 4. For any complete upper continuous lattice L, there is a signature o
consisting only of unary relation symbols, and a prevariety K C T(o) such that Sp(L)
embeds into Lq(K).

In general, for a complete upper continuous lattice L, the lattice Sp(L) is not
necessarily isomorphic to Lq(K), see [17]. However, it is the case when L is algebraic,
as Proposition 3 above shows.

Remark 1. It is well-known that quasivariety lattices are completely join-semidist-
ributive and dually algebraic (cf. [4, Theorem 5.1.12 and Proposition 5.1.1]). In contrast,
examples given in [17] show that, in general, lattices of the form Lq(K) and Lp(K),
where K is a prevariety, are neither join-semidistributive nor even lower continuous.

Corollary 4 [17]. There are prevarieties K such that neither Lq(K) nor Lp(K)
embed into a quasivariety lattice.

Using similar methods one can also prove that any complete lattice is isomorphic to
the lattice of relative equational classes of a class of signature with one unary relation
symbol and constant symbols as well as of signature containing only constant symbols.

3.2. A relation symbol and constants. Let (X,C) be a fixed closure space.
We consider the signature 0,(X) = {p} U {c,; |z € X}, where p is a unary relation
symbol and ¢, is a constant symbol for any = € X.
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Let K' C K(0,(X)) be the class of structures A = (A4;0,(X)) such that for any

a € A, thereis x € X with a = ¢!, and satisfying the following first-order sentences:

Yoy ¢y = ¢y — T =1y, u # vin X;
Va ¢, = ¢y, — p(x), u#vin X;
Vay N\ ple) = x=y.

zeX

Furthermore, for any set U C X, let Py denote a structure from K’ such that
Pu E plc,) if and only if x € U. Obviously, K’ consists of isomorphic copies of
structures Py, U C X . Moreover, Px is the trivial structure.

Lemma 2. The following statements hold for any set X .
(1) If A,B C X, then P4 € H(Pp) if and only if B C A.
(19) Let {A;|ielI} C X and A C X. Then the structure A = Py € K’ is
isomorphic to a substructure in B = [] Pa, if and only if A =(,c; A;.
icl

Let 3,(X,C) consist of the following (in general infinite) implications of the form

/\p(cu) Hp(cv)a UCX,ve C(U)
uelU

Of course, if the set X is finite, then the signature ¢,(X) is finite, while £,(X,C)
becomes a finite set of quasi-identities. Let K,(X,C) = K' N Mod(Z,(X,C)).

Lemma 3. For any closure space (X, C), the class K, (X, C) consists of isomorphic
copies of structures Pp, where B € L(X,C).

Proposition 5. For any complete lattice L, there is a signature o consisting of one
unary relation symbol and |L| many constant symbols, and there is a class K C K(o)
such that L = Lv(K) and Sub.(L?) = Lp(K).

Sketch of proof. Since the lattice L is complete, there is a closure space (X,C)
such that L? 2 L(X,C). Let 0 = 0,(X) and K = K, (X, C). It follows from Lemma 1
that the class K consists of isomorphic copies of structures Py ,), where a € L. Now,
the map ¢: L(X,C) — Lv(K) defined by the rule

0: B {PreK |BCFeL(X,C)}, BeL(X,O0),

establishes a dual isomorphism. Moreover, the map ¢': Sub.(L?) — Lp(K) defined
by the rule
@'t B— {Pya) € K'|be B}, B e Sub.(L?),

is a lattice isomorphism. O

Proposition 6. For any meet semilattice (S,A,1) with unit, there is a signature
o consisting of one unary relation symbol and |S| many constant symbols, and there is
a class K C K(o) such that Sub(S) = Lp“(K).

Sketch of proof. Let o = {p} U{c, | x € S} consist of a unary relation symbol p
and constant symbols ¢, € S, and let the class K consist of isomorphic copies of
structures P|,, where a € S. Define a map ¢: Sub(S) — Lp“(K) by the rule

p: B—{P;, e K|be B}, B e Sub(S).

It is a lattice isomorphism. O
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3.3. Only constants. Let (X,C) be a fixed closure space. We consider the sig-
nature o(X) = {c¢} U {c; | z € X}, where ¢, is a constant symbol for any z € X as
well as ¢ is a constant symbol. In fact, one can proceed without this additional constant
¢, but it is just more convenient to have it.

Let K' C K(co(X)) be the class of structures A = (4;5(X)) such that for any
a€ A, a=c* orthere is z € X with a = ¢! and satisfying the following first-order
sentences:

Yoy ¢y = ¢y — ¢y =¢, uFwvin X.

Furthermore, for any set U C X, let Fyy denote a structure from K’ such that Fy
¢z = c if and only if z € U. Obviously, K’ consists of isomorphic copies of structures
Fu, U C X. Moreover, Fx is the trivial structure.

Lemma 4. The following statements hold for any set X .

(i) If A,B C X, then Fa € H(Fg) if and only if B C A.

(ii) Let {A;|ic I} € X and A= (\,c; Ai. Then the structure A = F4 € K’ is
isomorphic to a substructure in B =[];,.; Fa,.

Let (X, C) consist of the following (in general infinite) implications of the form

/\Cu:CHCv:C, UCX, veC(U).
uelU

Of course, if the set X is finite, then the signature o(X) is finite, while (X, C)
becomes a finite set of quasi-identities. Let K(X,C) = K' N Mod(2(X, C)).

Proofs of all the results presented in this section are similar to ones of corresponding
results about the class K,(X,C) presented in Subsection 3.2.

Lemma 5. For any closure space (X,C), the class K(X,C) consists of isomorphic
copies of structures Fp, where B € L(X,(C).

Proposition 7. For any complete lattice L, there is a signature o consisting of
|L| + 1 many constant symbols, and a class K C K(o) such that L = Lv(K) and
Sube(L?) = Lp(K)

Proposition 8. For any meet semilattice (S,A,1) with unit, there is a signature
o consisting of |S| + 1 many constant symbols, and a class K C K(o) such that
Sub(S) = Lp*(K).

4. Relatively axiomatizable classes of structures

In [12, Theorem 8], D.E. Pal’chunov has proved that any at most countable complete
lattice is isomorphic to a lattice of relatively axiomatizable classes. In [12, Problem 1], he
asked whether the same result holds for an arbitrary complete lattice. M. Semenova and
A. Zamojska-Dzienio answered the latter question in the positive in [17] for a signature
consisting of unary relation symbols and a prevariety of trivial structures, see Theorem
4 below. We emphasize that this positive answer follows essentially by the results of
V.A. Gorbunov [13], see also [4] and Proposition 1.

Exposition here follows [17]. We also note that Theorem 4 can be inferred from the
results of Subsections 3.2, 3.3 for a signature containing one unary relation symbol and
constants as well as for a signature containing only constants.

Definition 5 [12, Definition 26] . Let K be a class of structures of signature
o, and let A be a set of first-order sentences of the same signature. A class K’ is
aziomatizable in K relative to A if K’ = KN Mod(X) for some set ¥ C A.
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It follows from Definition 5 that a class K C K(o) is axiomatizable if and only if it
is axiomatizable in K (o) relative to the set of all first-order sentences. Furthermore, for
any set A of sentences and any class K C K(o), the set of all classes, axiomatizable in
K relative to A, forms a complete lattice. Following D.E. Pal’chunov [12], we denote
this lattice by A(K,A). The following corollary shows that any complete lattice is
a lattice of relatively axiomatizable classes.

Theorem 4. For any complete lattice L, there is a signature o, a prevariety K C
C K(o), and a set A such that L = A(K,A), where A is a set of all identities of
signature o .

Now, we get from Corollary 3 and [4, Proposition 5.1.1]:

Corollary 5. The class of complete dually algebraic lattices coincides with the class
of lattices of the form A(K, A), where K is a quasivariety and A is a set of first-order
sentences.

Corollary 6 [12, Theorem 9], [17]. For any finite lattice L, there is a finite
signature o and a set A of first-order sentences of o such that L = A(K(0),A).

5. A reduction theorem

In [23] (see also his monograph [4]), V.A. Gorbunov has proved the so-called re-
duction theorems for lattices of quasivarieties and lattices of varieties. For a class
K C K(o), and for a positive n < w, let Fk(n) denote the K-free structure of
rank n.

Theorem 5 [4, Corollaries 5.5.2, 5.5.12]. Let K C K(o) be a prevariety. Then
the following holds:

Lq(K) = lim Lq(H(Fk(n)) N K) = lim Sp(Conk Fk(n),E);
Lv(K) = lim Lv(H(Fk(n)) N K) 2 lim F*(Conk Fx(n)).
In particular, the following statements are true.

Corollary 7 [4, Corollaries 5.5.4, 5.5.13]. Let o contain finitely many relation
symbols, and let K C K(o) be a locally finite prevariety. Then

(1) La(K) =lm L, for a set {L, | n <w} of finite lower bounded lattices;

(i) Lv(K) = lim L,, for a set {L,, | n <w} of finite lattices.

In particular, both Lq(K) and Lv(K) are residually finite lattices.

In [23], V.A. Gorbunov has also proved the following version of the reduction theorem
for lattices of pseudo-quasivarieties.

Theorem 6 [4, Theorem 5.5.16]. Let o contain only finitely many relation sym-
bols, and let K C K(o) be a pseudo-quasivariety. Then there is a family {L, | n < w}
of finite lower bounded lattices such that Lp(K) = lim L, .

In [17], M. Semenova and A. Zamojska-Dzienio proved a (finitary) prevariety ana-
logue of Theorem 5. More precisely, the lattice of subprevarieties of a prevariety is
isomorphic to an inverse limit of complete subsemilattice lattices of semilattices en-
dowed with a distributive binary relation (see Theorem 7), while the lattice of finitary
subprevarieties of a finitary prevariety is isomorphic to an inverse limit of subsemilat-
tice lattices of semilattices endowed with a distributive binary relation (see Theorem 8).
These results generalize Theorem 6.

To prove Theorems 7 and 8, one should assume the following class form of the Axiom
of Choice, see (CAC 1) in [24, Section II.2]:
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If S is a class of non-empty sets,
there is a function F such that F(x) € x for each = € S.

Theorem 7 [17]. For any prevariety K C K(o), the lattice Lp(K) is isomorphic
to an inverse limit of lattices of the form Sub.(S,R), where S is a complete meet
semilattice with unit, and R is a distributive relation on S.

Sketch of proof. Let I be the class of all subsets of K ordered by inclusion, let
A; =[[{A] A€ i}, and let K; = H(A;) N K for all ¢ € I. Moreover, as K; C K;,
the map
is a complete lattice homomorphism for all 4 C j in [. In addition, ¢rjpj = ¢r: and
@i; 1s just the identity map for all  C j C k in I. Therefore, the triple A = (I, K;, ¢ji)
is an inverse spectrum.

Now, the map ¢: Lp(K) — lim A defined as

p: X— (XNK;|iel),
is a complete lattice isomorphism, and one obtains Lp(K) = liLnA-

Finally, for any i € I, we have Lp(K;) = Lp(H(4;) N K) = Sub.(Conk 4;,E)
according to Theorem 1, whence the statement of the theorem follows. O

The next statement is an analogue of Theorem 7 for finitary prevarieties.

Theorem 8 [17]. For any finitary prevariety K C K(o), the lattice Lp*(K) is
isomorphic to an inverse limit of lattices of the form Sub(S,R), where S is a meet
semilattice with unit and R is a distributive relation on S.

Now, Theorem 6 becomes an easy corollary of any of Theorems 7 and 8 according
to the definition of a pseudo-quasivariety. We also note that to prove Theorem 8 for
pseudo-quasivarieties, ordinary Axiom of Choice is sufficient.

It is not hard to check (see [4, Lemma 5.5.17 and Corollary 5.5.18]) that if K is
a locally finite quasivariety, then the map

¢: Lq(K) — Lp(Kyin); 0 X — Xpin

defines an isomorphism. Therefore, Theorem 7 implies Corollary 7(i).
For a pseudo-quasivariety K C K(o), let I be the set of all finite subsets of K, let
K; =H([[{A| A€i})NK forall i € I, and let

L, = {La(Q(K))) | i € I}.
The following corollary generalizes V.A. Gorbunov [4, Corollary 5.5.22].

Corollary 8. Let o contain finitely many relation symbols, and let K C K(0)gin
be a pseudo-quasivariety. Then Lp(K) € SP,H(L,) N SP, (Lq(Q(K))) . In particular,
any universal sentence which holds in Lq(Q(K)) also holds in Lp(K).

The next theorem shows that a similar result for lattices of pseudo-varieties also
holds. It was proved by P. Agliano and J.B. Nation [10] for pseudo-varieties of algebras,
but their proof remains valid for structures with finitely many relation symbols.

Theorem 9 [10, Theorem 2.1]. Let o contain finitely many relation symbols,
and let K C K(0)an be a pseudo-variety. Then the lattice Lpv(K) of pseudo-varieties
contained in K belongs to the class

HSP,, (Lv(V(A)) | 4 € K).

In particular, any positive universal sentence which holds in LV(V(K)) also holds in
the lattice Lpv(K) of all pseudo-varieties contained in K.
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6. Non-computability properties of relative subclass lattices

The following problem is due to [8]. Is the set of all finite lattices of varieties com-
putable? This problem is also mentioned in [25].
In [11, Theorem 1], A.M. Nurakunov has proved the following statement.

Theorem 10. Let a signature o contain at least one non-constant operation. Then
there is a quasivariety K C K(o) such that the set of all finite sublattices of the quasi-
variety lattice Lq(K) is not computable.

The latter result means that there is no algorithm to decide whether a given finite
lattice embeds into such a quasivariety lattice. Therefore, it looks hopeless to find
a complete structural description of lattices isomorphic to (quasi)variety lattices (cf.
the Birkhoff-Maltsev problem).

We also note that from the proof of Theorem 10, it is possible to get an estimation
of algorithmic complexity for certain quasivariety lattices as well as to compute the
number of non-isomorphic quasivariety lattices having a non-computable set of finite
sublattices.

Corollary 9. There is a locally finite quasivariety such that the set of all finite sub-
lattices of its quasivariety lattice is not computable, while it is computably enumerable.

Corollary 10. There are continuum many locally finite quasivarieties such that the
set of finite sublattices of their quasivariety lattices is not computable.

While Theorem 10 and Corollaries 9, 10 deal with purely functional signature, there
are their complete analogues for purely relational signature. In particular, it is proved
in [17] (based on ideas from [11]) that there are quasivarieties of one-element relation
structures such that their (quasi)variety lattices or (finitary) prevariety lattices have
a non-computable computably enumerable set of finite sublattices.

Theorem 11 [17]. The following statements hold.

(i) There is a countable relation signature T and a quasivariety K C T(7) such
that the set of all finite sublattices of the relative variety lattice Lv(K) is computably
enumerable but not computable.

(ii) There is a countable relation signature o and a quasivariety K C T(o) such
that Lq(K) = Lp(K) = Lp“(K) and the set of all finite sublattices of this lattice is
computably enumerable but not computable.

7. Open problems

As it has been already mentioned in Introduction, very little is known about lattices
of first-order axiomatizable classes different from (quasi)varieties. Thus the following
general problem arises:

Problem 1. Study lattices of (relatively) axiomatizable classes and lattices of (fini-
tary) prevariety lattices.

Remark 1 suggests the following problem.

Problem 2 [17]. Is there a nontrivial lattice property satisfied by all lattices of
(finitary) prevarieties? Which lattices are isomorphic to lattices of (finitary) prevari-
eties?

Problem 2 is an analogue of the Birkhoff — Maltsev problem. Tt is well-known (cf. [26,
Theorem 2.84]) that finite bounded lattices generate the variety of all lattices. According
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to [27], the lattice Sub.(L) is finite lower bounded for any finite lattice L. Therefore,
prevariety lattices of quasivarieties generate the variety of all lattices. Thus according to
Proposition 1, there is no nontrivial lattice identity which would hold on all prevariety
lattices.

Due to the results presented in Section 6, one can also pose the following problem.

Problem 3. For certain classes of structures, is the finite membership problem
decidable?

The second author was supported by the Presidential Grant Council of the Russian
Federation, the Program for Support of Leading Scientific Schools (Grant No. NSh-
3669.2010.1), by the Jézef Mianowski Fund, and by the Foundation for Polish Science.
The third author was supported by the Warsaw University of Technology (Statutory
Grant No. 504G /1120/0054000).

Pesome

A.M. Hypaxynos, M.B. Cemenosa, A. Bamoticka-ocenuo. O penierkax, CBA3aHHBIX C Pa3-
JINYHBIMA TUMTAMY KJIACCOB AJIr€0panvecKux CTPYKTYP.

B 0030pHOil cTaThe MPUBOAATCSA PE3yJIbTATHI, TIOIYYEeHHBIE aBTOPAMHA 3, IMOCJICIHEE BpeMsl,
0 Pa3JINYHBIX MPOU3BOIHBIX PENIETKAX, CBA3AHHBIX C PA3JIUIHBIMY TUTIAMH KJIACCOB ajredpan-
YeCKUX CTPYKTYP.

KoaroueBble cJioBa: akcumoMaTHU3UPyeMblil KJacc, MHOroobpasue, KBazuMHOroobGpasue,
npeaMmuoroobpasue, (puHUTAPHOE NIPEeAMHOrobpa3ue, TOXIACCTBO, KBA3UTOXKEIECTBO, PEIIeTKa,
TIOATIO/IY PelieTKa PENIeTKY.
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