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Abstract

The main goal of this paper is to address the numerical solution of the problem of fluid-
structure interaction between blood and arterial walls. We use one-dimensional effective model
derived asymptotically from the Navier — Stokes equations describing blood flow and the linear
elastic membrane equation for arterial walls. In this study we consider case with bifurcated
compliant arteries with inserted prosthesis. We use the derived model to estimate the influence
of a shear stress on the developing of atherogenesis.

1. Introduction

1.1. Background of the problem. The dynamic interaction between a fluid and
a structure is a mechanism that is seen in many different physical phenomena. One of
the fluid structure interaction problems receiving a lot of attention in recent years is
the problem arising in hemodynamics applications. In this paper we consider numerical
simulation of the blood flow through branching arteries with an inserted prostheses
called stents and stent-grafts [1]. Both the arteries and the stents are assumed to be
elastic. The Young’s modulus of elasticity for arteries was obtained from [2]. The Young’s
modulus of elasticity of stents was obtained from the measurements by K. Ravi-Chandar
and R. Wang [3, 4]. The underlying problem consists of modeling the flow through
the human aorta branching into iliac arteries, that suffers from an aortic abdominal
aneurysm (AAA).

Non-surgical treatment of AAA consists of inserting a prosthesis inside the diseased
aorta to redirect the flow of blood and lower the pressure to the aneurysmal walls.
There are various complications associated with this procedure, they include stent-
graft migration, occlusion of the graft limbs and formation of new aneurysms near the
anchoring sites [5]. The purpose of the study presented here is to use mathematical
modeling and numerical simulations to understand some of the hemodynamic factors
that might be responsible for the complications listed above, and suggest an improved
prosthesis design that might minimize some of the problems.

1.2. Mathematical model. We use a reduced, one dimensional model, together
with the special conditions derived via Riemann invariants, to simulate the flow through
the branching arteries. The model is derived using an asymptotic reduction of the
Navier — Stokes equations modeling blood with the linear elastic membrane equation for
the wall.

The resulting set of equations is used to study the optimal prostheses design by
investigating the impact of shear stress rates on the initiation of focal atherogenesis.
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Fig. 1. Computational domain

2. Effective model derivation

We consider the unsteady axisymmetric flow of a Newtonian incompressible fluid in
a thin elastic cylinder whose radius is small with respect to its length. We define the
ratio e = R/L, where R is the radius and L is the length of the cylinder. Now, for
every fixed € > 0 we introduce the computational domain (Figure 1)

Q.(t) ={r €R®* z=(rcos®,rsin®,z), r<R+n°(z,t), 0<z <L},

where 7°(x,t) is the radial wall displacement.

This domain is filled with fluid modeled by the incompressible Navier —Stokes
equations. We assume that the flow is axially symmetric, so the fluid velocity is
ve(r,x,t) = (vi(r,z,t),v5(r, x,t)); the pressure defined by p®(r,z,t) — pret With pref
being constant reference pressure.

Now the problem in an Eulerian framework in cylindrical coordinates in () x Ry
reads as follows

ove . . Ovs . O] 0?08 . 1 0v; 0?08 v op® 0 (1)
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where g is the fluid dynamic viscosity, and p is the fluid density.

Further we assume that the lateral wall of the cylinder X.(¢t) = {r = R+ n°(z,t)} x
x(0, L) is elastic and allows only radial displacement. We can describe its motion (in
Lagrangian coordinates) using the linear elastic membrane equation.

The radial contact force is given by [6]

h(e)E(e) n° 0%nF
FT:*%%fpref%fpwh(s)a—tza (4)
where F,. is the radial component of external forces (coming from the stresses induced
by the fluid), h = h(e) is the membrane thickness, p,, is the wall volumetric mass,
E = E(¢e) is the Young’s modulus, 0 < ¢ < 0.5 is the Poisson ratio. Typical values of
the parameters are given in Table 1.

The fluid equations are coupled with the membrane equation through the lateral
boundary conditions requiring the continuity of velocity and balance of forces. Now we
consider the balance of forces, namely we set the radial contact force equal to the radial
component of the force exerted by the fluid.

The fluid contact force is given in Eulerian coordinates as

Fp = ((p° = pret)] — 2uD(v%))ney,
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Table 1. Parameter values

Parameters Values

€ 0.002 — 0.06
Characteristic radius: Ro 0.0025 — 0.012 m
Characteristic length: L 0.065 — 0.2 m
Young’s modulus: E 10° — 10° Pa [2]
Wall thickness: h 1-2x103m
Blood density: p 1050 kg/m®
Reference pressure: pres 13000 Pa = 97.5 mmHg

where D(v®) is the symmetrized gradient of velocity defined by,
1
D(v®) = E(V’UE + (Voo)h).

Using the Jacobian of the transformation from Eulerian to Lagrangian coordinates
we have (pointwise):

£ a £
—Fr = (0 — peet)] = 20D (0 )ne, (L4 T 14 (G2 on S2xRee (3)
The initial data are given by,
e_ O :
"= =0 and v* =0 on X.(0) x {0}. (6)

We assume that the end-points of the tube are fixed and that the problem is driven
by a time-dependent pressure drop between the inlet and outlet boundary. Therefore,
we have the following inlet-outlet boundary conditions:

v =0, p°+p()?/2=Pi(t)+pet on (9Q.(t)N{z=0}) xRy, (7)
v =0, p°+p(:)?/2=Py(t) +pet on (0Q:(t)N{z=L}) xRy, ()
n°=0 for =0, 7°=0 for =L and VteR,. 9)
We will assume that the pressure drop, A(t) = Py(t) — Py(t) € C§°(0, +00).
2.1. Asymptotic reduction of the model. Now, using the asymptotic tech-
niques described in detail in [7, 8] we will obtain the reduced, two-dimensional equa-
tions.

In order to represent the equations (1)—(3) in nondimensional form we introduce the
independent variables 7, = and ¢

o r=Rr,

e r =11,

R R 122
o t = —t, where v = — /| ———.
w LY Rp(1—0?)

Further, we introduce the following asymptotic expansions

R(1—0?)

S y g 971 ol ... ith V =
v {0 +ev" +---}, wi i

P, (10)
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R*(1 —o?)
hE
b= VP e ) (12)

Here P denotes a norm that measures the magnitude of inlet and outlet pressure,
the pressure drop, and the averaged pressure in one cardiac cycle [7].

After ignoring the terms of order £2 and smaller the momentum equations and the
incompressibility condition become

778:3{770+5771+"'}7 with = = P, (11)

ove | Lobs | Lovs 1 [19 [ ov\]
b T8 YU T Re [faf (r af)] =0 (13)
op
i 0, (14)
0, _. o .
%(rvr) + %(rvz) =0, (15)

where Sh = (Lw®)/V and Re = (pV R?)/(uL).
The leading order linear elastic membrane equation read

—F, = Pij+ O(e%). (16)

)

Therefore, we obtain the following leading order relationship between the pressure
and the radial displacement

The asymptotic form of the contact force derived from (5) becomes

= [

(0 — pre)] — 2uD( ey = pV2(F — pros + O(2) (1 n

P 7 P Eo(1_Esis )=
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We assume that =Z/R is of order ¢ so the last term on right-hand side of (17) can
be ignored and we obtain

(ﬁe - ﬁref) =

U PR
P° — Dret = Wna (18)
which in dimensional variables gives us the Law of Laplace,
Eh n
S — Pret = ———— —. 19

Having the above results in hand, we proceed by introducing the reduced two-
dimensional model written in non-dimensional variables.
We define the scaled domain

—_

Qt) = {(i,f) ERYF <1+

—
—

Rn(i-,f), 0<z< 1},

and the lateral boundary %(f) = {7 =1+ En(z,t)} x (0,1).
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Now we formulate the two-dimensional problem in the following way,
Find a triple (0, 0,,7) satisfying

v, __0v; 00 Op 1 [10 [.0v
h—= e eYx i z )
b T8 T T e T Re {mf@“af)]’ (20)
g ,_. 0, .
%(rv,«) + %(rvx) =0, (21)
PR
p° — Dret) = —51s 22
(P° — Pret) ek (22)
B (81 + S t),0) = 21 5, =0 (23)
T ) Rn Y K - a{) xr Y
with the initial and boundary conditions given by
. 0n _
=—=0 t £=0, 24
=7 a (24)
U =0, p=(Pi(d)+prer)/(pV?) on (99:(t) N{Z = 0}) x Ry, (25)
U =0, p=(P(f)+pret)/(pV?) on (99:(t) N{Z =1}) x Ry, (26)
7=0 for =0, 7=0 for =1 and Vi € R,. (27)

The model defined above is a free-boundary degenerate hyperbolic system with
parabolic regularization. This system, though already simplified, is still quite complex.
The theoretical analysis and numerical simulation of (20)—(27) is a difficult task; that
is why we will proceed further in order to obtain a simplified one-dimensional reduced
model.

2.2. Derivation of the one-dimensional reduced model. In order to derive
a simplified one-dimensional model we express the two-dimensional equations in terms
of the averaged quantities across the cross-sectional area.

Let us introduce A = (1 + £7)? and m = AU where

1+£47
o2 / vy rdF, (28)
A
0
+E7
a = ~2., / 20, 27 dF (29)
AU? J

Now we integrate the equations (20)-(21) from 7 = 0 to 7 = 1+ =4} and then
express them in terms of the averaged quantities. Using the no-slip condition at the
lateral boundary we obtain

04 = om
ot ROz

om 8 (am\  0p 2 /<[00
Shﬁ+%<—~ >+ %@&{WL'

(30)
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Fig. 2. Blood flow through abdominal aorta (A.A) and iliac arteries (I.A.(1) and 1.A.(2))

The next step is to specify the axial velocity profile v, in terms of the averaged
quantities. The typical approximation (corresponding to Poiseuille flow [9]) is

- v
1— r:~
<1+§n>

We assume that v =9, which corresponds to the non-Newtonian flow of blood [10,
11].
After plugging (31) into (27) the right hand side becomes

9 .
5, =1 27
v

(31)

a2 m
Re A

Using Ap to denote the non-stressed area R? we obtain a one-dimensional system
written in dimensional variables

0A Om

o T Y (82)
om 9 [am? A dp 2u m

8t+6x< A > por - L0 TAY (33)

pz:p—pref:<(1E‘70th< A£O—1>>. (34)

We use o = 0.5, so equation (34) reduces to

p=Go <\/AZO—1>, (35)
with Gy = (4Eh)/(3R).

3. Conditions at the bifurcation point

We use the system of equations (32)—-(33) and (35) to model blood flow through the
abdominal aorta branching into the iliac arteries (Fig. 2).

One of the important questions here is how to model the flow at the branching
point. We use the continuity of pressure and conservation of mass condition to couple
the flow exiting the abdominal aorta with the flow entering the iliac arteries [12]. It was
shown in [13] that the 1-D approximation to the flow at the branching point for the
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2

fixed geometry provides £'/2 accuracy to the 3-D flow for small to moderate Reynolds

numbers.

We calculate the continuity of pressure and conservation of mass condition at the
branching point using the concept of Riemann invariants for a hyperbolic system. More
precisely, let us write the system (32)—(33) and (35) in quasilinear form:

0 1 0
m )| o (n)
+ m2 o1 om - a . 36
(mt —ﬁ—i—;Ap’(A) T My 7204—11/7 (36)

The eigenvalues of (36) are

LGy (AN m LG (AN 57
2 p \A) P A 2 p \Ay)

Let us further use the following notation:

1Gy
E= =224,
2p

One can show that the right eigenvectors corresponding to A; and Ay are given by

7«1:(;1), 7«2:(;2). (38)

Consider Riemann invariants w and z corresponding to the eigenvalues A; and A,
respectively. Then w and z satisfy the following equations [14]:

Vw-ry =0, Vz-ry, =0, (39)

Direct calculations give us

7777, ].GO A 1/2

m 1Gy [ AN
= =220 = ) 41
T 2 p (Ao) )

Now, we assume that the bifurcation occurs at a point and that there is no leakage
at the bifurcation. Then the outflow from the abdominal aorta (“parent” vessel) should
be balanced by the inflow into the iliac arteries (“daughter” vessels) [12]:

my = mq1 + Mga, (42)
which describes conservation of mass. We also assume the continuity of pressure

Dp = Pd1 = Pd2, (43)

here subscript p corresponds to the “parent”vessel and d1, d2 correspond to the “daugh-
ter” vessels.
The Riemann invariants for the “parent” and the two “daughter” vessels read as

follows:
_ My

~ 1/4
1, + A A, (44)

Wp
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m ~

Zd1 = A—;lll — Cd14A(li{4, (45)
m ~

zZd2 = A—;lj — Cd24A(11é4. (46)

From the equations (35) and (42)—(46) it is straightforward to obtain

w Aopar ; Aoaz ;
p dl — d2
1/4 _ Aop Aop

P 5/4 5/4\
ale va Aot \* [ Aoa Y
Cp+Ca1 | —/—— + Ca2

App Aop
Thus, using Riemann invariants and conditions (42) and (43) we can calculate A,
Aai, mp, ma1 and mgz in terms of the Riemann invariants w,, 241 and zg2. The
“forward” Riemann invariant w, and the “backward” Riemann invariants z4; and zg2

are known from the initial conditions and the inlet and outlet boundary data.

4. Numerical method

In order to solve equations (32)—(33) and (35) we rewrite them first in conservation
form. We take into account that Ay can depend on z and write the equations in
conservation form as follows

0 0
el —_F = 4
8tU+ 9 S, (48)
where
A m
U= . FU) =] am® Gy (AN, (49)
m +— Ap
A 3p AQ
and
0
SU)=| , «a m . Go (A 3/2A, : (50)
a—14  3p \ A 0

For the numerical solution of the problem stated above we apply the two-step Lax—
Wendroff method [15]. We assume here that the grid is uniform, with Az denoting the
mesh step size and At the time step, then we define U], to be the approximation of
the solution at (mAax,nAt). The method takes the following form

n o At nt1/2 nt1/2 At nt1/2 nt1/2
Ut =Un = Az (F(Um+1/2) - F(Um—1/2)> + 2 (S(Um+1/2) + S(Um—1/2)> ’
where
U;L+1/2 _ U;l+1/2 ;r UJn—l/2Jr

n At _F(U?H/z) - F(U;LA/Q) n S(U;LH/Q) + S(anfl/2)
2 Az 2

for j=m+1/2 and j =m —1/2.
The method is stable if the CFL condition

2 1/2
maX|)\1,)\2|§—fC:max %i\/a(a1)<ﬂ) +@<£) £<1’

is satisfied.



NUMERICAL MODELING OF THE DESIGN... 145

p
—_— SIS
%ESSSSSSSS
e
—= e

Fig. 3. Aneurysmal abdominal aorta and iliac arteries with inserted bifurcated stent

5. Numerical experiments

We use the numerical method described above to study blood flow through the
aneurysmal prostheses (see Fig. 3). We considered two kinds of prostheses:

e Fabric covered “rigid” stent-grafts, such as AneuRx ™.

e Highly compliant bare stents, such as Wallstent.

The goal of this study was to understand the influence of the elastic properties of the
prosthesis on the stresses exerted by the prostheses to the walls of the native aorta. In
particular we were interested in understanding what hemodynamic factors are related
to the occlusion of graft limbs, observed in patients and reported in [5, 16].

Many researchers have shown that the wall shear stress has a significant influence
on blood coagulation and thrombosis, endothelial cell structure and function.

C.K. Zarins et al.( [17, 18]) proposed a method called Oscillatory Shear Index (OSI)
to quantify the degree of oscillation in shear direction. OSI can be calculated using the
following formula:

|[Ancg|
Apos] + | Ancg]

where A, and Ay are the areas under the shear stress vs. time when the shear stress
is negative and positive respectively.

M. Haidekker, C. White and J.A. Frangos suggested that the spatial and temporal
gradients of the shear stress must be separated in order to identify which one is the
primary cause of atherosclerotic plaque. In their paper [19], they presented a study
implicating high shear stress rate (or the temporal gradient of shear stress) as the main
hemodynamic factor responsible for the initiation of focal atherogenesis.

We studied the Oscillatory Shear Index and the shear stress rate to detect possible
causes for graft limb occlusion.

The following two parameters were varied in our study:

OSI =

e prostheses flexibility (Young’s modulus),
e prostheses diameter.
We have used the following data in our computations:

e Young’s modulus E. = 8700 Pa and E, = 217500 Pa for compliant and rigid
stents respectively

e Young’s modulus of a human aorta E, = 10° Pa
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Fig. 4. Oscillatory Shear Index for rigid stent-graft with limb diameter equal to 12 mm and
main body diameter 23 mm (left) and with limb diameter equal to 16 mm and main body
diameter 28.5 mm (right)

Oscillatory Shear Index (OSI)
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Fig. 5. Oscillatory Shear Index for compliant stent with limb diameter equal to 14.5 mm and
main body diameter 23 mm

First, we present the results of the numerically computed OSI for two different
prostheses flexibility parameters and different diameters of “parent” (main body) and
“daughter” (limb) components.

On each of the Fig. 4, 5 the solid curve shows the Oscillatory Shear Index for the
main body component from the anchoring site to the bifurcation point and the “solid-
star” curve presents the OSI corresponding to the limb component from the bifurcation
point downstream to the distal anchoring site.The Young’s modulus of the prostheses
shown in Fig. 4 corresponds to the one of rigid stent-graft, the main body diameters
are 23 mm and 28.5 mm and the limb diameters are 12 mm and 16 mm. We observed
that the smaller the diameter of the prosthesis the higher the OSI. We also tested a
flexible prosthesis with a Young’s modulus E. = 8700 Pa (Fig. 5). The diameter of the
main body for this case was taken to be 20 mm and the limb diameter is 14.5 mm. The
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Fig. 6. Shear Stress Rates for rigid stent-graft with limb diameter equal to 12 mm and main
body diameter 23 mm (left) and with limb diameter equal to 16 mm and main body diameter
28.5 mm (right)

Time derivative of Shear Stress (main body diameter=28.5mm, limbs diameters=14.5mm) Time derivative of Shear Stress (main body diameter=23mm, limbs diameters=14.5mm)
T T T T T T T T T T T T T T T T T T T T T

T
+ D, =28.5mm| + D, =23mm
70l D=145mm | 2ol D=14.5mm| |
60 4 60
50+ = 50+
4of B 40+
0 0
§ 3of 4 8 30—,_’_/_’_/_’_/_,_4"—/\/\/\//—
& &
" Mp—"] I |
P
101 T 101 *w*ww*w*wﬂ*u*ww*ﬂww** |
s
AR AR EARRER R AR AR AR AR KLk T
Olnnsnntanonnssrs i of
-10f 4 -10f
ool . . . . . . , , . . P . . . . . . , . . .
5 10 15 20 25 30 3 40 45 50 55 60 5 10 15 20 25 30 3 40 45 50 55 60
mesh points mesh points

Fig. 7. Shear Stress Rates for the rigid stent-graft with a limb diameter equal to 14.5 mm and
a main body diameter 28.5 mm (left) and with a limb diameter equal to 14.5 mm and a main
body diameter 23 mm (right)

amplitude of the Oscillatory Shear Index drastically increased for this case, indicating
a much higher probability for occlusion.

Although the OSI showed that the smaller the diameter of the limbs the higher the
OSI, it did not capture the patient-observed prosthesis characteristics that show higher
probability for thrombosis at the distal site and not typically at the proximal site of
the prosthesis. In contrast, the shear stress rate of the bifurcated prostheses did show
to be higher at the distal anchoring site thereby conforming better to the complications
observed in patients.

Fig. 6-9 present the temporal gradient of shear stress at the systolic peak for different
prostheses data. Again, each figure has two curves: solid curve corresponds to the shear
stress rate of the main body component and “star” curve shows shear stress rate along
the limb.

Fig. 6 shows the shear stress rates corresponding to the two extreme cases for com-
pliant prosthesis: the prosthesis with the smallest limb diameter (12 mm) and the pros-
thesis with the largest limb diameter (16 mm), respectively. We observe that the smaller
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80 Time derivative of Shear Stress (main body diameter=23mm, limbs diameters=14.5mm)
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Fig. 8. Shear Stress Rates for the compliant endoprosthesis with a limb diameter equal to 14.5
mm and a main body diameter of 23 mm
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Fig. 9. Shear Stress Rates (left) and Oscillatory Shear Index (right) for an “optimal” stent with
a limb diameter equal to 20 mm and a main body diameter of 28.5 mm

the diameter of the limbs the larger the shear stress rate, indicating a higher chance
for occlusion. The worst performance was obtained for the smallest prostheses (Fig. 6
(left)) and the best performance was for prostheses with a limb diameter equal to 16 mm
(Fig. 6 (right)).

We also observed that the size of the diameter of the main body influences the
magnitude of the shear stress rate. Fig. 7 shows the comparison between two prostheses
with the same limb diameters, but with different sizes for the main body: one with
a main body diameter of 23 mm and the second one with a main body diameter of
28.5 mm. We can see an improvement in the shear stress rates for the larger main body
prosthesis.

We calculated the shear stress rates for a bifurcated prosthesis with a compliancy
E. = 8700 Pa. As in the previous experiments for the “stiff” stent, we assumed that the
diameter of the main modular component ranged from 23 mm to 28.5 mm, and that
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the limbs diameter is between 12 mm and 16 mm. Fig. 8 presents the results of the
numerical computations which indicate that the shear stress rates are drastically higher
then for the case of stiff prosthesis.

The results presented above indicate that the magnitude of the shear stress rate is
affected mainly by the size of the limbs and by the prostheses elasticity. In an attempt
to obtain an optimal design minimizing shear stress rates we tested different prosthesis
structures varying the limb diameter and elasticity parameters. We have found that the
shear stress rate is minimized for the prosthesis with the following two characteristic:

e The diameter of the prosthesis limbs should be around \/5/2 of the diameter of the
main body component: if D,,; denotes the diameter of the main body component
and D; denotes the diameter of the limb component, then we obtained numerically
that the lowest shear stress rates in the limbs are observed when D; = @Dmb.
This relationship is a consequence of the conservation of mass principle.

e Variable elasticity: The prosthesis which is stiffer in the central section, where
there is no support to the prosthesis walls by the walls of native aorta, and softer
at the overlap with the iliac arteries, showed best performance. In this test we
used the fact that the stiffness of the composit prosthesis/vessel structure is equal
to the combined stiffness of each structure, [20]. Hence, the smaller the stiffness of
the prosthesis in the overlap anchoring region, the smaller the difference between
the stiffness of the native vessel and prosthesis.

Fig. 9 (left) shows the behavior of the shear stress rates for the “optimal” prosthesis
with characteristics obtained from the suggestions above:

e Young’s modulus in the overlap region Foyeriap = 8700 Pa,

e Young’s modulus of the prosthesis in the aneurysm sac region is equal to
100000 Pa,

e diameter of the main body component is D,,,;, = 28.5 mm,
e diameter of the limbs is D; = 20 mm (which is about @Dmb).

We observed a drastic improvement in the limb shear stress rates with respect to
the previous prosthesis structures.

We also calculated the Oscillatory Shear Index for the “optimal prosthesis” described
above (see Fig. 9 (right)). The results also showed a much smaller amplitude of OSI
compared to the cases given in Fig. (4), (5).

Pesome

C.A. Jlanun, C. Yanuy. Yucnennoe MojiesiupoBanue qu3aiina pa3aBauBaioOInXCs IPOTE30B
WCTOTb3YEMBIX B JIEU€HUN aHEBPU3MbI OPIOMIHON A0PTHI.

B craTbe paccmarpuBaercs IHCIEHHOE PelleHne 3aJadi B3anMOIeICTBUS KPOBH CO CTEHKA-
M aprepmii. Mcnons3yercs oanomeprast 3ddekTrBHAsS MOIEb MOy YeHHAS ACUMITOTUIECKHT
n3 ypasuennii HaBbe — CTOKCA 17151 T€UeHMST KPOBU M YPABHEHUS JIMHEHHON SIaCTUTHON MeM-
OpaHbl OMUCHIBAIOIIETO TOBE/IEHNE CTEHOK aprepuil. B 3T0i1 pabore paccmarpuBaercs ciaydait
Pa3IBAMBAIOIIUXCS JACTUIHBIX APTEPUIL CO BCTABJIEHHBIM IIpoTe30M. IlocTpoennasa Momesnb uc-
HO/Ib3yeTcd /i OIIpe/eeHns BINAHUA KacaTe/IbHOIO HallPAXKeHUd Ha MogBJeHrue U Pa3BUTHE
aTeporeHesa.
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