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Abstra
tThe main goal of this paper is to address the numeri
al solution of the problem of �uid-stru
ture intera
tion between blood and arterial walls. We use one-dimensional e�e
tive modelderived asymptoti
ally from the Navier � Stokes equations des
ribing blood �ow and the linearelasti
 membrane equation for arterial walls. In this study we 
onsider 
ase with bifur
ated
ompliant arteries with inserted prosthesis. We use the derived model to estimate the in�uen
eof a shear stress on the developing of atherogenesis.1. Introdu
tion1.1. Ba
kground of the problem. The dynami
 intera
tion between a �uid anda stru
ture is a me
hanism that is seen in many di�erent physi
al phenomena. One ofthe �uid stru
ture intera
tion problems re
eiving a lot of attention in re
ent years isthe problem arising in hemodynami
s appli
ations. In this paper we 
onsider numeri
alsimulation of the blood �ow through bran
hing arteries with an inserted prostheses
alled stents and stent-grafts [1℄. Both the arteries and the stents are assumed to beelasti
. The Young's modulus of elasti
ity for arteries was obtained from [2℄. The Young'smodulus of elasti
ity of stents was obtained from the measurements by K. Ravi-Chandarand R. Wang [3, 4℄. The underlying problem 
onsists of modeling the �ow throughthe human aorta bran
hing into ilia
 arteries, that su�ers from an aorti
 abdominalaneurysm (AAA).Non-surgi
al treatment of AAA 
onsists of inserting a prosthesis inside the diseasedaorta to redire
t the �ow of blood and lower the pressure to the aneurysmal walls.There are various 
ompli
ations asso
iated with this pro
edure, they in
lude stent-graft migration, o

lusion of the graft limbs and formation of new aneurysms near thean
horing sites [5℄. The purpose of the study presented here is to use mathemati
almodeling and numeri
al simulations to understand some of the hemodynami
 fa
torsthat might be responsible for the 
ompli
ations listed above, and suggest an improvedprosthesis design that might minimize some of the problems.1.2. Mathemati
al model. We use a redu
ed, one dimensional model, togetherwith the spe
ial 
onditions derived via Riemann invariants, to simulate the �ow throughthe bran
hing arteries. The model is derived using an asymptoti
 redu
tion of theNavier � Stokes equations modeling blood with the linear elasti
 membrane equation forthe wall.The resulting set of equations is used to study the optimal prostheses design byinvestigating the impa
t of shear stress rates on the initiation of fo
al atherogenesis.
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Fig. 1. Computational domain2. E�e
tive model derivationWe 
onsider the unsteady axisymmetri
 �ow of a Newtonian in
ompressible �uid ina thin elasti
 
ylinder whose radius is small with respe
t to its length. We de�ne theratio ε = R/L , where R is the radius and L is the length of the 
ylinder. Now, forevery �xed ε > 0 we introdu
e the 
omputational domain (Figure 1)
Ωε(t) = {x ∈ R

3; x = (r cosΘ, r sin Θ, x), r < R + ηε(x, t), 0 < x < L},where ηε(x, t) is the radial wall displa
ement.This domain is �lled with �uid modeled by the in
ompressible Navier � Stokesequations. We assume that the �ow is axially symmetri
, so the �uid velo
ity is
v

ε(r, x, t) = (vε
r(r, x, t), vε

x(r, x, t)) ; the pressure de�ned by pε(r, x, t) − pref with prefbeing 
onstant referen
e pressure.Now the problem in an Eulerian framework in 
ylindri
al 
oordinates in Ωε(t)×R+reads as follows
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= 0, (3)where µ is the �uid dynami
 vis
osity, and ρ is the �uid density.Further we assume that the lateral wall of the 
ylinder Σε(t) = {r = R + ηε(x, t)}×

×(0, L) is elasti
 and allows only radial displa
ement. We 
an des
ribe its motion (inLagrangian 
oordinates) using the linear elasti
 membrane equation.The radial 
onta
t for
e is given by [6℄
Fr = −h(ε)E(ε)

1 − σ2

ηε

R2
− pref

η

R
− ρwh(ε)

∂2ηε

∂t2
, (4)where Fr is the radial 
omponent of external for
es (
oming from the stresses indu
edby the �uid), h = h(ε) is the membrane thi
kness, ρw is the wall volumetri
 mass,

E = E(ε) is the Young's modulus, 0 < σ ≤ 0.5 is the Poisson ratio. Typi
al values ofthe parameters are given in Table 1.The �uid equations are 
oupled with the membrane equation through the lateralboundary 
onditions requiring the 
ontinuity of velo
ity and balan
e of for
es. Now we
onsider the balan
e of for
es, namely we set the radial 
onta
t for
e equal to the radial
omponent of the for
e exerted by the �uid.The �uid 
onta
t for
e is given in Eulerian 
oordinates as
Ff = ((pε − pref)I − 2µD(vε))ner,



NUMERICAL MODELING OF THE DESIGN. . . 139Table 1. Parameter valuesParameters Values
ε 0.002 − 0.06Chara
teristi
 radius: R0 0.0025 − 0.012 mChara
teristi
 length: L 0.065 − 0.2 mYoung's modulus: E 105

− 106 Pa [2℄Wall thi
kness: h 1 − 2 × 10−3 mBlood density: ρ 1050 kg/m3Referen
e pressure: pref 13000 Pa = 97.5 mmHgwhere D(vε) is the symmetrized gradient of velo
ity de�ned by,
D(vε) =

1

2
(∇vε + (∇vε)t).Using the Ja
obian of the transformation from Eulerian to Lagrangian 
oordinateswe have (pointwise):

−Fr = ((pε − pref)I − 2µD(vε))ner(1 +
ηε

R
)

√

1 + (
∂ηε

∂x
)2 on Σ0

ε × R+. (5)The initial data are given by,
ηε =

∂ηε

∂t
= 0 and vε = 0 on Σε(0) × {0}. (6)We assume that the end-points of the tube are �xed and that the problem is drivenby a time-dependent pressure drop between the inlet and outlet boundary. Therefore,we have the following inlet-outlet boundary 
onditions:

vε
r = 0, pε + ρ(vε

x)2/2 = P1(t) + pref on (∂Ωε(t) ∩ {x = 0}) × R+, (7)
vε

r = 0, pε + ρ(vε
x)2/2 = P2(t) + pref on (∂Ωε(t) ∩ {x = L}) × R+, (8)

ηε = 0 for x = 0, ηε = 0 for x = L and ∀t ∈ R+. (9)We will assume that the pressure drop, A(t) = P1(t) − P2(t) ∈ C∞
0 (0, +∞) .2.1. Asymptoti
 redu
tion of the model. Now, using the asymptoti
 te
h-niques des
ribed in detail in [7, 8℄ we will obtain the redu
ed, two-dimensional equa-tions.In order to represent the equations (1)�(3) in nondimensional form we introdu
e theindependent variables r̃ , x̃ and t̃

• r = Rr̃ ,
• x = Lx̃ ,
• t =

1

ωε
t̃ , where ωε =

1
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hE

Rρ(1 − σ2)
.Further, we introdu
e the following asymptoti
 expansions

vε = V {ṽ0 + εṽ1 + · · · }, with V =

√
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ρhE
P , (10)
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ηε = Ξ{η̃0 + εη̃1 + · · · }, with Ξ =

R2(1 − σ2)

hE
P , (11)

pε = ρV 2{p̃0 + εp̃1 + · · · }. (12)Here P denotes a norm that measures the magnitude of inlet and outlet pressure,the pressure drop, and the averaged pressure in one 
ardia
 
y
le [7℄.After ignoring the terms of order ε2 and smaller the momentum equations and thein
ompressibility 
ondition be
ome
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(r̃ṽx) = 0, (15)where Sh = (Lωε)/V and Re = (ρV R2)/(µL) .The leading order linear elasti
 membrane equation read

−Fr = P η̃ + O(ε2). (16)The asymptoti
 form of the 
onta
t for
e derived from (5) be
omes
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.Therefore, we obtain the following leading order relationship between the pressureand the radial displa
ement
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. (17)We assume that Ξ/R is of order ε so the last term on right-hand side of (17) 
anbe ignored and we obtain
p̃ε − p̃ref =

PR

ρV 2
η̃, (18)whi
h in dimensional variables gives us the Law of Lapla
e,

pε − pref =
Eh

(1 − σ2)R

η

R
. (19)Having the above results in hand, we pro
eed by introdu
ing the redu
ed two-dimensional model written in non-dimensional variables.We de�ne the s
aled domain

Ω̃(t̃) =

{

(x̃, r̃) ∈ R
2|r̃ < 1 +

Ξ

R
η(x̃, t̃), 0 < x̃ < 1

}

,and the lateral boundary Σ̃(t̃) = {r̃ = 1 + Ξ
Rη(x̃, t̃)} × (0, 1) .



NUMERICAL MODELING OF THE DESIGN. . . 141Now we formulate the two-dimensional problem in the following way,Find a triple (ṽx, ṽr, η̃) satisfying
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η̃ = 0 for x̃ = 0, η̃ = 0 for x̃ = 1 and ∀t̃ ∈ R+. (27)The model de�ned above is a free-boundary degenerate hyperboli
 system withparaboli
 regularization. This system, though already simpli�ed, is still quite 
omplex.The theoreti
al analysis and numeri
al simulation of (20)�(27) is a di�
ult task; thatis why we will pro
eed further in order to obtain a simpli�ed one-dimensional redu
edmodel.2.2. Derivation of the one-dimensional redu
ed model. In order to derivea simpli�ed one-dimensional model we express the two-dimensional equations in termsof the averaged quantities a
ross the 
ross-se
tional area.Let us introdu
e Ã = (1 + Ξ
R η̃)2 and m̃ = ÃŨ where
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A.A.

I.A.(1)

I.A.(2)Fig. 2. Blood �ow through abdominal aorta (A.A) and ilia
 arteries (I.A.(1) and I.A.(2))The next step is to spe
ify the axial velo
ity pro�le ṽx in terms of the averagedquantities. The typi
al approximation (
orresponding to Poiseuille �ow [9℄) is
ṽx =

γ + 2

γ
Ũ

[

1 −
(

r̃

1 + Ξ
R η̃

)γ]

. (31)We assume that γ = 9 , whi
h 
orresponds to the non-Newtonian �ow of blood [10,11℄.After plugging (31) into (27) the right hand side be
omes
−2(γ + 2)

Re
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Ã
.Using A0 to denote the non-stressed area R2 we obtain a one-dimensional systemwritten in dimensional variables
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. (34)We use σ = 0.5 , so equation (34) redu
es to
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)

, (35)with G0 = (4Eh)/(3R).3. Conditions at the bifur
ation pointWe use the system of equations (32)�(33) and (35) to model blood �ow through theabdominal aorta bran
hing into the ilia
 arteries (Fig. 2).One of the important questions here is how to model the �ow at the bran
hingpoint. We use the 
ontinuity of pressure and 
onservation of mass 
ondition to 
ouplethe �ow exiting the abdominal aorta with the �ow entering the ilia
 arteries [12℄. It wasshown in [13℄ that the 1-D approximation to the �ow at the bran
hing point for the
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ura
y to the 3-D �ow for small to moderate Reynoldsnumbers.We 
al
ulate the 
ontinuity of pressure and 
onservation of mass 
ondition at thebran
hing point using the 
on
ept of Riemann invariants for a hyperboli
 system. Morepre
isely, let us write the system (32)�(33) and (35) in quasilinear form:
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. (37)Let us further use the following notation:
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0 .One 
an show that the right eigenve
tors 
orresponding to λ1 and λ2 are given by

r1 =

(

1
λ1

)
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. (38)Consider Riemann invariants w and z 
orresponding to the eigenvalues λ1 and λ2respe
tively. Then w and z satisfy the following equations [14℄:
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= 0, (39)Dire
t 
al
ulations give us
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. (41)Now, we assume that the bifur
ation o

urs at a point and that there is no leakageat the bifur
ation. Then the out�ow from the abdominal aorta (�parent� vessel) shouldbe balan
ed by the in�ow into the ilia
 arteries (�daughter� vessels) [12℄:
mp = md1 + md2, (42)whi
h des
ribes 
onservation of mass. We also assume the 
ontinuity of pressure
pp = pd1 = pd2, (43)here subs
ript p 
orresponds to the �parent�vessel and d1 , d2 
orrespond to the �daugh-ter� vessels.The Riemann invariants for the �parent� and the two �daughter� vessels read asfollows:

wp =
mp
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+ c̃p4A1/4

p , (44)



144 S. LAPIN, S. �CANI�C
zd1 =
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) . (47)Thus, using Riemann invariants and 
onditions (42) and (43) we 
an 
al
ulate Ap ,

Ad1 , mp , md1 and md2 in terms of the Riemann invariants wp , zd1 and zd2 . The�forward� Riemann invariant wp and the �ba
kward� Riemann invariants zd1 and zd2are known from the initial 
onditions and the inlet and outlet boundary data.4. Numeri
al methodIn order to solve equations (32)�(33) and (35) we rewrite them �rst in 
onservationform. We take into a

ount that A0 
an depend on x and write the equations in
onservation form as follows
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 . (50)For the numeri
al solution of the problem stated above we apply the two-step Lax �Wendro� method [15℄. We assume here that the grid is uniform, with ∆x denoting themesh step size and ∆t the time step, then we de�ne Un
m to be the approximation ofthe solution at (m∆x, n∆t) . The method takes the following form
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)for j = m + 1/2 and j = m − 1/2 .The method is stable if the CFL 
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Fig. 3. Aneurysmal abdominal aorta and ilia
 arteries with inserted bifur
ated stent5. Numeri
al experimentsWe use the numeri
al method des
ribed above to study blood �ow through theaneurysmal prostheses (see Fig. 3). We 
onsidered two kinds of prostheses:
• Fabri
 
overed �rigid� stent-grafts, su
h as AneuRx TM.
• Highly 
ompliant bare stents, su
h as Wallstent.The goal of this study was to understand the in�uen
e of the elasti
 properties of theprosthesis on the stresses exerted by the prostheses to the walls of the native aorta. Inparti
ular we were interested in understanding what hemodynami
 fa
tors are relatedto the o

lusion of graft limbs, observed in patients and reported in [5, 16℄.Many resear
hers have shown that the wall shear stress has a signi�
ant in�uen
eon blood 
oagulation and thrombosis, endothelial 
ell stru
ture and fun
tion.C.K. Zarins et al.( [17, 18℄) proposed a method 
alled Os
illatory Shear Index (OSI)to quantify the degree of os
illation in shear dire
tion. OSI 
an be 
al
ulated using thefollowing formula:

OSI =
|Aneg|

|Apos| + |Aneg|
,where Aneg and Apos are the areas under the shear stress vs. time when the shear stressis negative and positive respe
tively.M. Haidekker, C. White and J.A. Frangos suggested that the spatial and temporalgradients of the shear stress must be separated in order to identify whi
h one is theprimary 
ause of atheros
leroti
 plaque. In their paper [19℄, they presented a studyimpli
ating high shear stress rate (or the temporal gradient of shear stress) as the mainhemodynami
 fa
tor responsible for the initiation of fo
al atherogenesis.We studied the Os
illatory Shear Index and the shear stress rate to dete
t possible
auses for graft limb o

lusion.The following two parameters were varied in our study:

• prostheses �exibility (Young's modulus),
• prostheses diameter.We have used the following data in our 
omputations:
• Young's modulus Ec = 8700 Pa and Er = 217500 Pa for 
ompliant and rigidstents respe
tively
• Young's modulus of a human aorta Ea = 105 Pa
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Fig. 4. Os
illatory Shear Index for rigid stent-graft with limb diameter equal to 12 mm andmain body diameter 23 mm (left) and with limb diameter equal to 16 mm and main bodydiameter 28.5 mm (right)
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Fig. 5. Os
illatory Shear Index for 
ompliant stent with limb diameter equal to 14.5 mm andmain body diameter 23 mmFirst, we present the results of the numeri
ally 
omputed OSI for two di�erentprostheses �exibility parameters and di�erent diameters of �parent� (main body) and�daughter� (limb) 
omponents.On ea
h of the Fig. 4, 5 the solid 
urve shows the Os
illatory Shear Index for themain body 
omponent from the an
horing site to the bifur
ation point and the �solid-star� 
urve presents the OSI 
orresponding to the limb 
omponent from the bifur
ationpoint downstream to the distal an
horing site.The Young's modulus of the prosthesesshown in Fig. 4 
orresponds to the one of rigid stent-graft, the main body diametersare 23 mm and 28.5 mm and the limb diameters are 12 mm and 16 mm. We observedthat the smaller the diameter of the prosthesis the higher the OSI. We also tested a�exible prosthesis with a Young's modulus Ec = 8700 Pa (Fig. 5). The diameter of themain body for this 
ase was taken to be 20 mm and the limb diameter is 14.5 mm. The
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Fig. 6. Shear Stress Rates for rigid stent-graft with limb diameter equal to 12 mm and mainbody diameter 23 mm (left) and with limb diameter equal to 16 mm and main body diameter28.5 mm (right)
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Fig. 7. Shear Stress Rates for the rigid stent-graft with a limb diameter equal to 14.5 mm anda main body diameter 28.5 mm (left) and with a limb diameter equal to 14.5 mm and a mainbody diameter 23 mm (right)amplitude of the Os
illatory Shear Index drasti
ally in
reased for this 
ase, indi
atinga mu
h higher probability for o

lusion.Although the OSI showed that the smaller the diameter of the limbs the higher theOSI, it did not 
apture the patient-observed prosthesis 
hara
teristi
s that show higherprobability for thrombosis at the distal site and not typi
ally at the proximal site ofthe prosthesis. In 
ontrast, the shear stress rate of the bifur
ated prostheses did showto be higher at the distal an
horing site thereby 
onforming better to the 
ompli
ationsobserved in patients.Fig. 6�9 present the temporal gradient of shear stress at the systoli
 peak for di�erentprostheses data. Again, ea
h �gure has two 
urves: solid 
urve 
orresponds to the shearstress rate of the main body 
omponent and �star� 
urve shows shear stress rate alongthe limb.Fig. 6 shows the shear stress rates 
orresponding to the two extreme 
ases for 
om-pliant prosthesis: the prosthesis with the smallest limb diameter (12 mm) and the pros-thesis with the largest limb diameter (16 mm), respe
tively. We observe that the smaller
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Fig. 8. Shear Stress Rates for the 
ompliant endoprosthesis with a limb diameter equal to 14.5mm and a main body diameter of 23 mm
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Fig. 9. Shear Stress Rates (left) and Os
illatory Shear Index (right) for an �optimal� stent witha limb diameter equal to 20 mm and a main body diameter of 28.5 mmthe diameter of the limbs the larger the shear stress rate, indi
ating a higher 
han
efor o

lusion. The worst performan
e was obtained for the smallest prostheses (Fig. 6(left)) and the best performan
e was for prostheses with a limb diameter equal to 16 mm(Fig. 6 (right)).We also observed that the size of the diameter of the main body in�uen
es themagnitude of the shear stress rate. Fig. 7 shows the 
omparison between two prostheseswith the same limb diameters, but with di�erent sizes for the main body: one witha main body diameter of 23 mm and the se
ond one with a main body diameter of28.5 mm. We 
an see an improvement in the shear stress rates for the larger main bodyprosthesis.We 
al
ulated the shear stress rates for a bifur
ated prosthesis with a 
omplian
y
Ec = 8700 Pa. As in the previous experiments for the �sti�� stent, we assumed that thediameter of the main modular 
omponent ranged from 23 mm to 28.5 mm, and that
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al 
omputations whi
h indi
ate that the shear stress rates are drasti
ally higherthen for the 
ase of sti� prosthesis.The results presented above indi
ate that the magnitude of the shear stress rate isa�e
ted mainly by the size of the limbs and by the prostheses elasti
ity. In an attemptto obtain an optimal design minimizing shear stress rates we tested di�erent prosthesisstru
tures varying the limb diameter and elasti
ity parameters. We have found that theshear stress rate is minimized for the prosthesis with the following two 
hara
teristi
:
• The diameter of the prosthesis limbs should be around √

2/2 of the diameter of themain body 
omponent: if Dmb denotes the diameter of the main body 
omponentand Dl denotes the diameter of the limb 
omponent, then we obtained numeri
allythat the lowest shear stress rates in the limbs are observed when Dl =
√

2
2

Dmb .This relationship is a 
onsequen
e of the 
onservation of mass prin
iple.
• Variable elasti
ity: The prosthesis whi
h is sti�er in the 
entral se
tion, wherethere is no support to the prosthesis walls by the walls of native aorta, and softerat the overlap with the ilia
 arteries, showed best performan
e. In this test weused the fa
t that the sti�ness of the 
omposit prosthesis/vessel stru
ture is equalto the 
ombined sti�ness of ea
h stru
ture, [20℄. Hen
e, the smaller the sti�ness ofthe prosthesis in the overlap an
horing region, the smaller the di�eren
e betweenthe sti�ness of the native vessel and prosthesis.Fig. 9 (left) shows the behavior of the shear stress rates for the �optimal� prosthesiswith 
hara
teristi
s obtained from the suggestions above:
• Young's modulus in the overlap region Eoverlap = 8700 Pa,
• Young's modulus of the prosthesis in the aneurysm sa
 region is equal to

100000 Pa,
• diameter of the main body 
omponent is Dmb = 28.5 mm,
• diameter of the limbs is Dl = 20 mm (whi
h is about √

2
2

Dmb ).We observed a drasti
 improvement in the limb shear stress rates with respe
t tothe previous prosthesis stru
tures.We also 
al
ulated the Os
illatory Shear Index for the �optimal prosthesis� des
ribedabove (see Fig. 9 (right)). The results also showed a mu
h smaller amplitude of OSI
ompared to the 
ases given in Fig. (4), (5).�åçþìåÑ.À. Ëàïèí, Ñ. ×àíè÷. ×èñëåííîå ìîäåëèðîâàíèå äèçàéíà ðàçäâàèâàþùèõñÿ ïðîòåçîâèñïîëüçóåìûõ â ëå÷åíèè àíåâðèçìû áðþøíîé àîðòû.Â ñòàòüå ðàññìàòðèâàåòñÿ ÷èñëåííîå ðåøåíèå çàäà÷è âçàèìîäåéñòâèÿ êðîâè ñî ñòåíêà-ìè àðòåðèé. Èñïîëüçóåòñÿ îäíîìåðíàÿ ý��åêòèâíàÿ ìîäåëü ïîëó÷åííàÿ àñèìïòîòè÷åñêèèç óðàâíåíèé Íàâüå �Ñòîêñà äëÿ òå÷åíèÿ êðîâè è óðàâíåíèÿ ëèíåéíîé ýëàñòè÷íîé ìåì-áðàíû îïèñûâàþùåãî ïîâåäåíèå ñòåíîê àðòåðèé. Â ýòîé ðàáîòå ðàññìàòðèâàåòñÿ ñëó÷àéðàçäâàèâàþùèõñÿ ýëàñòè÷íûõ àðòåðèé ñî âñòàâëåííûì ïðîòåçîì. Ïîñòðîåííàÿ ìîäåëü èñ-ïîëüçóåòñÿ äëÿ îïðåäåëåíèÿ âëèÿíèÿ êàñàòåëüíîãî íàïðÿæåíèÿ íà ïîÿâëåíèå è ðàçâèòèåàòåðîãåíåçà.
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1. Čanić S., Krajcer Z., Lapin S. Design of Optimal Endoprosthesis Using Mathematical

Modeling // Endovascular Today. – 2006. – May. – P. 48–50 (Cover story).

2. Nichols W.W., O’Rourke M.F. McDonald’s Blood Flow in Arteries: Theoretical, exper-

imental and clinical principles. – N. Y., London, Sydney, Auckland: Arnold and Oxford

University Press Inc., 1998.

3. Wang R., Ravi-Chandar K. Mechanical response of a metallic aortic stent-I. Pressure-

diameter relationship // J. Appl. Mech. – 2004. – V. 71. – P. 697–705.

4. Wang R., Ravi-Chandar K. Mechanical response of a metallic aortic stent-II. A beam

on elastic foundation model // J. Appl. Mech. – 2004 – V. 71. – P. 706–712.

5. Umscheid T., Stelter W.J. Time-related alterations in shape, position, and structure of

self-expanding, modular aortic stent-grafts // J. Endovasc. Surg. – 1999. – V. 6 – P. 17–32.
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