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UDK 517.958:57+519.63NUMERICAL MODELING OF THE DESIGNOF BIFURCATED PROSTHESES USEDIN THE TREATMENT OF ABDOMINALAORTIC ANEURYSMS. Lapin, S. �Cani�AbstratThe main goal of this paper is to address the numerial solution of the problem of �uid-struture interation between blood and arterial walls. We use one-dimensional e�etive modelderived asymptotially from the Navier � Stokes equations desribing blood �ow and the linearelasti membrane equation for arterial walls. In this study we onsider ase with bifuratedompliant arteries with inserted prosthesis. We use the derived model to estimate the in�ueneof a shear stress on the developing of atherogenesis.1. Introdution1.1. Bakground of the problem. The dynami interation between a �uid anda struture is a mehanism that is seen in many di�erent physial phenomena. One ofthe �uid struture interation problems reeiving a lot of attention in reent years isthe problem arising in hemodynamis appliations. In this paper we onsider numerialsimulation of the blood �ow through branhing arteries with an inserted prosthesesalled stents and stent-grafts [1℄. Both the arteries and the stents are assumed to beelasti. The Young's modulus of elastiity for arteries was obtained from [2℄. The Young'smodulus of elastiity of stents was obtained from the measurements by K. Ravi-Chandarand R. Wang [3, 4℄. The underlying problem onsists of modeling the �ow throughthe human aorta branhing into ilia arteries, that su�ers from an aorti abdominalaneurysm (AAA).Non-surgial treatment of AAA onsists of inserting a prosthesis inside the diseasedaorta to rediret the �ow of blood and lower the pressure to the aneurysmal walls.There are various ompliations assoiated with this proedure, they inlude stent-graft migration, olusion of the graft limbs and formation of new aneurysms near theanhoring sites [5℄. The purpose of the study presented here is to use mathematialmodeling and numerial simulations to understand some of the hemodynami fatorsthat might be responsible for the ompliations listed above, and suggest an improvedprosthesis design that might minimize some of the problems.1.2. Mathematial model. We use a redued, one dimensional model, togetherwith the speial onditions derived via Riemann invariants, to simulate the �ow throughthe branhing arteries. The model is derived using an asymptoti redution of theNavier � Stokes equations modeling blood with the linear elasti membrane equation forthe wall.The resulting set of equations is used to study the optimal prostheses design byinvestigating the impat of shear stress rates on the initiation of foal atherogenesis.
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Fig. 1. Computational domain2. E�etive model derivationWe onsider the unsteady axisymmetri �ow of a Newtonian inompressible �uid ina thin elasti ylinder whose radius is small with respet to its length. We de�ne theratio ε = R/L , where R is the radius and L is the length of the ylinder. Now, forevery �xed ε > 0 we introdue the omputational domain (Figure 1)
Ωε(t) = {x ∈ R

3; x = (r cosΘ, r sin Θ, x), r < R + ηε(x, t), 0 < x < L},where ηε(x, t) is the radial wall displaement.This domain is �lled with �uid modeled by the inompressible Navier � Stokesequations. We assume that the �ow is axially symmetri, so the �uid veloity is
v

ε(r, x, t) = (vε
r(r, x, t), vε

x(r, x, t)) ; the pressure de�ned by pε(r, x, t) − pref with prefbeing onstant referene pressure.Now the problem in an Eulerian framework in ylindrial oordinates in Ωε(t)×R+reads as follows
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= 0, (3)where µ is the �uid dynami visosity, and ρ is the �uid density.Further we assume that the lateral wall of the ylinder Σε(t) = {r = R + ηε(x, t)}×

×(0, L) is elasti and allows only radial displaement. We an desribe its motion (inLagrangian oordinates) using the linear elasti membrane equation.The radial ontat fore is given by [6℄
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, (4)where Fr is the radial omponent of external fores (oming from the stresses induedby the �uid), h = h(ε) is the membrane thikness, ρw is the wall volumetri mass,

E = E(ε) is the Young's modulus, 0 < σ ≤ 0.5 is the Poisson ratio. Typial values ofthe parameters are given in Table 1.The �uid equations are oupled with the membrane equation through the lateralboundary onditions requiring the ontinuity of veloity and balane of fores. Now weonsider the balane of fores, namely we set the radial ontat fore equal to the radialomponent of the fore exerted by the �uid.The �uid ontat fore is given in Eulerian oordinates as
Ff = ((pε − pref)I − 2µD(vε))ner,
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ε 0.002 − 0.06Charateristi radius: R0 0.0025 − 0.012 mCharateristi length: L 0.065 − 0.2 mYoung's modulus: E 105

− 106 Pa [2℄Wall thikness: h 1 − 2 × 10−3 mBlood density: ρ 1050 kg/m3Referene pressure: pref 13000 Pa = 97.5 mmHgwhere D(vε) is the symmetrized gradient of veloity de�ned by,
D(vε) =
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(∇vε + (∇vε)t).Using the Jaobian of the transformation from Eulerian to Lagrangian oordinateswe have (pointwise):
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= 0 and vε = 0 on Σε(0) × {0}. (6)We assume that the end-points of the tube are �xed and that the problem is drivenby a time-dependent pressure drop between the inlet and outlet boundary. Therefore,we have the following inlet-outlet boundary onditions:
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ηε = 0 for x = 0, ηε = 0 for x = L and ∀t ∈ R+. (9)We will assume that the pressure drop, A(t) = P1(t) − P2(t) ∈ C∞
0 (0, +∞) .2.1. Asymptoti redution of the model. Now, using the asymptoti teh-niques desribed in detail in [7, 8℄ we will obtain the redued, two-dimensional equa-tions.In order to represent the equations (1)�(3) in nondimensional form we introdue theindependent variables r̃ , x̃ and t̃
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ηε = Ξ{η̃0 + εη̃1 + · · · }, with Ξ =
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pε = ρV 2{p̃0 + εp̃1 + · · · }. (12)Here P denotes a norm that measures the magnitude of inlet and outlet pressure,the pressure drop, and the averaged pressure in one ardia yle [7℄.After ignoring the terms of order ε2 and smaller the momentum equations and theinompressibility ondition beome
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NUMERICAL MODELING OF THE DESIGN. . . 141Now we formulate the two-dimensional problem in the following way,Find a triple (ṽx, ṽr, η̃) satisfying
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∂ṽε
x

∂r̃
+

∂p̃

∂x̃
=

1

Re

[

1

r̃

∂

∂r̃

(

r̃
∂vε

z

∂r̃

)]

, (20)
∂

∂r̃
(r̃ṽr) +

∂

∂x̃
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ÃŨ2

1+ Ξ

R
η̃

∫

0

2ṽx
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A.A.

I.A.(1)

I.A.(2)Fig. 2. Blood �ow through abdominal aorta (A.A) and ilia arteries (I.A.(1) and I.A.(2))The next step is to speify the axial veloity pro�le ṽx in terms of the averagedquantities. The typial approximation (orresponding to Poiseuille �ow [9℄) is
ṽx =

γ + 2

γ
Ũ
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Ã
.Using A0 to denote the non-stressed area R2 we obtain a one-dimensional systemwritten in dimensional variables

∂A

∂t
+

∂m

∂x
= 0, (32)

∂m

∂t
+

∂

∂x

(

αm2

A

)

+
A

ρ

∂p

∂x
= −2µ

ρ
(γ + 2)

m

A
, (33)

p := p − pref =

(

Eh

(1 − σ2)R

(

√

A

A0

− 1

))

. (34)We use σ = 0.5 , so equation (34) redues to
p = G0

(

√

A

A0

− 1

)

, (35)with G0 = (4Eh)/(3R).3. Conditions at the bifuration pointWe use the system of equations (32)�(33) and (35) to model blood �ow through theabdominal aorta branhing into the ilia arteries (Fig. 2).One of the important questions here is how to model the �ow at the branhingpoint. We use the ontinuity of pressure and onservation of mass ondition to ouplethe �ow exiting the abdominal aorta with the �ow entering the ilia arteries [12℄. It wasshown in [13℄ that the 1-D approximation to the �ow at the branhing point for the



NUMERICAL MODELING OF THE DESIGN. . . 143�xed geometry provides ε1/2 auray to the 3-D �ow for small to moderate Reynoldsnumbers.We alulate the ontinuity of pressure and onservation of mass ondition at thebranhing point using the onept of Riemann invariants for a hyperboli system. Morepreisely, let us write the system (32)�(33) and (35) in quasilinear form:
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. (41)Now, we assume that the bifuration ours at a point and that there is no leakageat the bifuration. Then the out�ow from the abdominal aorta (�parent� vessel) shouldbe balaned by the in�ow into the ilia arteries (�daughter� vessels) [12℄:
mp = md1 + md2, (42)whih desribes onservation of mass. We also assume the ontinuity of pressure
pp = pd1 = pd2, (43)here subsript p orresponds to the �parent�vessel and d1 , d2 orrespond to the �daugh-ter� vessels.The Riemann invariants for the �parent� and the two �daughter� vessels read asfollows:
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Ad1 , mp , md1 and md2 in terms of the Riemann invariants wp , zd1 and zd2 . The�forward� Riemann invariant wp and the �bakward� Riemann invariants zd1 and zd2are known from the initial onditions and the inlet and outlet boundary data.4. Numerial methodIn order to solve equations (32)�(33) and (35) we rewrite them �rst in onservationform. We take into aount that A0 an depend on x and write the equations inonservation form as follows
∂

∂t
U +

∂

∂x
F = S, (48)where

U =

[

A
m

]

, F (U) =





m

αm2

A
+

G0

3ρ

(

A

A0

)3/2

A0



 , (49)and
S(U) =





0

−2
α

α − 1

m

A
+

G0

3ρ

(

A

A0

)3/2

A′
0



 . (50)For the numerial solution of the problem stated above we apply the two-step Lax �Wendro� method [15℄. We assume here that the grid is uniform, with ∆x denoting themesh step size and ∆t the time step, then we de�ne Un
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Fig. 3. Aneurysmal abdominal aorta and ilia arteries with inserted bifurated stent5. Numerial experimentsWe use the numerial method desribed above to study blood �ow through theaneurysmal prostheses (see Fig. 3). We onsidered two kinds of prostheses:
• Fabri overed �rigid� stent-grafts, suh as AneuRx TM.
• Highly ompliant bare stents, suh as Wallstent.The goal of this study was to understand the in�uene of the elasti properties of theprosthesis on the stresses exerted by the prostheses to the walls of the native aorta. Inpartiular we were interested in understanding what hemodynami fators are relatedto the olusion of graft limbs, observed in patients and reported in [5, 16℄.Many researhers have shown that the wall shear stress has a signi�ant in�ueneon blood oagulation and thrombosis, endothelial ell struture and funtion.C.K. Zarins et al.( [17, 18℄) proposed a method alled Osillatory Shear Index (OSI)to quantify the degree of osillation in shear diretion. OSI an be alulated using thefollowing formula:

OSI =
|Aneg|

|Apos| + |Aneg|
,where Aneg and Apos are the areas under the shear stress vs. time when the shear stressis negative and positive respetively.M. Haidekker, C. White and J.A. Frangos suggested that the spatial and temporalgradients of the shear stress must be separated in order to identify whih one is theprimary ause of atherosleroti plaque. In their paper [19℄, they presented a studyimpliating high shear stress rate (or the temporal gradient of shear stress) as the mainhemodynami fator responsible for the initiation of foal atherogenesis.We studied the Osillatory Shear Index and the shear stress rate to detet possibleauses for graft limb olusion.The following two parameters were varied in our study:

• prostheses �exibility (Young's modulus),
• prostheses diameter.We have used the following data in our omputations:
• Young's modulus Ec = 8700 Pa and Er = 217500 Pa for ompliant and rigidstents respetively
• Young's modulus of a human aorta Ea = 105 Pa
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Fig. 4. Osillatory Shear Index for rigid stent-graft with limb diameter equal to 12 mm andmain body diameter 23 mm (left) and with limb diameter equal to 16 mm and main bodydiameter 28.5 mm (right)
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Fig. 5. Osillatory Shear Index for ompliant stent with limb diameter equal to 14.5 mm andmain body diameter 23 mmFirst, we present the results of the numerially omputed OSI for two di�erentprostheses �exibility parameters and di�erent diameters of �parent� (main body) and�daughter� (limb) omponents.On eah of the Fig. 4, 5 the solid urve shows the Osillatory Shear Index for themain body omponent from the anhoring site to the bifuration point and the �solid-star� urve presents the OSI orresponding to the limb omponent from the bifurationpoint downstream to the distal anhoring site.The Young's modulus of the prosthesesshown in Fig. 4 orresponds to the one of rigid stent-graft, the main body diametersare 23 mm and 28.5 mm and the limb diameters are 12 mm and 16 mm. We observedthat the smaller the diameter of the prosthesis the higher the OSI. We also tested a�exible prosthesis with a Young's modulus Ec = 8700 Pa (Fig. 5). The diameter of themain body for this ase was taken to be 20 mm and the limb diameter is 14.5 mm. The



NUMERICAL MODELING OF THE DESIGN. . . 147

5 10 15 20 25 30 35 40 45 50 55 60
−20

−10

0

10

20

30

40

50

60

70

80

P
a/

s

mesh points

Time derivative of Shear Stress (main body diameter=23mm, limbs diameters=12mm)

D
mb

=23mm

D
l
=12mm

5 10 15 20 25 30 35 40 45 50 55 60
−20

−10

0

10

20

30

40

50

60

70

80

P
a/

s

mesh points

Time derivative of Shear Stress (main body diameter=28.5mm, limbs diameters=16mm)

D
mb

=28.5mm

D
l
=16mm

Fig. 6. Shear Stress Rates for rigid stent-graft with limb diameter equal to 12 mm and mainbody diameter 23 mm (left) and with limb diameter equal to 16 mm and main body diameter28.5 mm (right)
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Fig. 7. Shear Stress Rates for the rigid stent-graft with a limb diameter equal to 14.5 mm anda main body diameter 28.5 mm (left) and with a limb diameter equal to 14.5 mm and a mainbody diameter 23 mm (right)amplitude of the Osillatory Shear Index drastially inreased for this ase, indiatinga muh higher probability for olusion.Although the OSI showed that the smaller the diameter of the limbs the higher theOSI, it did not apture the patient-observed prosthesis harateristis that show higherprobability for thrombosis at the distal site and not typially at the proximal site ofthe prosthesis. In ontrast, the shear stress rate of the bifurated prostheses did showto be higher at the distal anhoring site thereby onforming better to the ompliationsobserved in patients.Fig. 6�9 present the temporal gradient of shear stress at the systoli peak for di�erentprostheses data. Again, eah �gure has two urves: solid urve orresponds to the shearstress rate of the main body omponent and �star� urve shows shear stress rate alongthe limb.Fig. 6 shows the shear stress rates orresponding to the two extreme ases for om-pliant prosthesis: the prosthesis with the smallest limb diameter (12 mm) and the pros-thesis with the largest limb diameter (16 mm), respetively. We observe that the smaller
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Fig. 8. Shear Stress Rates for the ompliant endoprosthesis with a limb diameter equal to 14.5mm and a main body diameter of 23 mm
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Fig. 9. Shear Stress Rates (left) and Osillatory Shear Index (right) for an �optimal� stent witha limb diameter equal to 20 mm and a main body diameter of 28.5 mmthe diameter of the limbs the larger the shear stress rate, indiating a higher hanefor olusion. The worst performane was obtained for the smallest prostheses (Fig. 6(left)) and the best performane was for prostheses with a limb diameter equal to 16 mm(Fig. 6 (right)).We also observed that the size of the diameter of the main body in�uenes themagnitude of the shear stress rate. Fig. 7 shows the omparison between two prostheseswith the same limb diameters, but with di�erent sizes for the main body: one witha main body diameter of 23 mm and the seond one with a main body diameter of28.5 mm. We an see an improvement in the shear stress rates for the larger main bodyprosthesis.We alulated the shear stress rates for a bifurated prosthesis with a ompliany
Ec = 8700 Pa. As in the previous experiments for the �sti�� stent, we assumed that thediameter of the main modular omponent ranged from 23 mm to 28.5 mm, and that



NUMERICAL MODELING OF THE DESIGN. . . 149the limbs diameter is between 12 mm and 16 mm. Fig. 8 presents the results of thenumerial omputations whih indiate that the shear stress rates are drastially higherthen for the ase of sti� prosthesis.The results presented above indiate that the magnitude of the shear stress rate isa�eted mainly by the size of the limbs and by the prostheses elastiity. In an attemptto obtain an optimal design minimizing shear stress rates we tested di�erent prosthesisstrutures varying the limb diameter and elastiity parameters. We have found that theshear stress rate is minimized for the prosthesis with the following two harateristi:
• The diameter of the prosthesis limbs should be around √

2/2 of the diameter of themain body omponent: if Dmb denotes the diameter of the main body omponentand Dl denotes the diameter of the limb omponent, then we obtained numeriallythat the lowest shear stress rates in the limbs are observed when Dl =
√

2
2

Dmb .This relationship is a onsequene of the onservation of mass priniple.
• Variable elastiity: The prosthesis whih is sti�er in the entral setion, wherethere is no support to the prosthesis walls by the walls of native aorta, and softerat the overlap with the ilia arteries, showed best performane. In this test weused the fat that the sti�ness of the omposit prosthesis/vessel struture is equalto the ombined sti�ness of eah struture, [20℄. Hene, the smaller the sti�ness ofthe prosthesis in the overlap anhoring region, the smaller the di�erene betweenthe sti�ness of the native vessel and prosthesis.Fig. 9 (left) shows the behavior of the shear stress rates for the �optimal� prosthesiswith harateristis obtained from the suggestions above:
• Young's modulus in the overlap region Eoverlap = 8700 Pa,
• Young's modulus of the prosthesis in the aneurysm sa region is equal to

100000 Pa,
• diameter of the main body omponent is Dmb = 28.5 mm,
• diameter of the limbs is Dl = 20 mm (whih is about √

2
2

Dmb ).We observed a drasti improvement in the limb shear stress rates with respet tothe previous prosthesis strutures.We also alulated the Osillatory Shear Index for the �optimal prosthesis� desribedabove (see Fig. 9 (right)). The results also showed a muh smaller amplitude of OSIompared to the ases given in Fig. (4), (5).�åçþìåÑ.À. Ëàïèí, Ñ. ×àíè÷. ×èñëåííîå ìîäåëèðîâàíèå äèçàéíà ðàçäâàèâàþùèõñÿ ïðîòåçîâèñïîëüçóåìûõ â ëå÷åíèè àíåâðèçìû áðþøíîé àîðòû.Â ñòàòüå ðàññìàòðèâàåòñÿ ÷èñëåííîå ðåøåíèå çàäà÷è âçàèìîäåéñòâèÿ êðîâè ñî ñòåíêà-ìè àðòåðèé. Èñïîëüçóåòñÿ îäíîìåðíàÿ ý��åêòèâíàÿ ìîäåëü ïîëó÷åííàÿ àñèìïòîòè÷åñêèèç óðàâíåíèé Íàâüå �Ñòîêñà äëÿ òå÷åíèÿ êðîâè è óðàâíåíèÿ ëèíåéíîé ýëàñòè÷íîé ìåì-áðàíû îïèñûâàþùåãî ïîâåäåíèå ñòåíîê àðòåðèé. Â ýòîé ðàáîòå ðàññìàòðèâàåòñÿ ñëó÷àéðàçäâàèâàþùèõñÿ ýëàñòè÷íûõ àðòåðèé ñî âñòàâëåííûì ïðîòåçîì. Ïîñòðîåííàÿ ìîäåëü èñ-ïîëüçóåòñÿ äëÿ îïðåäåëåíèÿ âëèÿíèÿ êàñàòåëüíîãî íàïðÿæåíèÿ íà ïîÿâëåíèå è ðàçâèòèåàòåðîãåíåçà.
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8. Čanić S., Kim E.H. Mathematical analysis of the quasilinear effects in a hyperbolic

model of blood flow through compliant axisymmetric vessels // Math. Methods in Appl.

Sciences. – 2003. – V. 26. – P. 1161–1186.

9. White F.M. Viscous Fluid Flow. – N. Y.: McGraw-Hill, 1974.

10. Smith N.P., Pullan A.J., Hunter P.J. The generation of an anatomically accurate geo-

metric coronary model // Ann. Biomed. Eng. – 2000. – V. 28, No 1. – P. 14–25.

11. Smith N.P., Pullan A.J., Hunter P.J. An anatomically based model of transient coronary

blood flow in the heart // SIAM J. Appl. Math. – 2002. – V. 62. – P. 990–1018.

12. Olufsen M., Peskin C., Kim W., Pedersen E., Nadim A., Larsen J. Numerical simu-

lation and experimental validation of blood flow in arteries with structured-tree outflow

conditions // Ann. Biomed. Eng. – 2000. – V. 28. – P. 1281–1299.

13. Marusic-Paloka E. Fluid flow through a network of thin pipes // Comptes Rendus de

l’Academie des Sciences Paris, Serie II, Fascicule B – Mecanique. – 2001. – V. 329, No 2. –

P. 103–108.

14. Smoller J. Shock waves and reaction-diffusion equations. – N. Y.: Springer-Verlag, 1994.

15. Leveque R. Numerical Methods for Conservation Laws. – Basel; Boston: Birkhäuser,
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