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Abstract

Identification of network structures using the finite-size sample has been considered.
The concepts of random variables network and network model, which is a complete weighted
graph, have been introduced. Two types of network structures have been investigated: network
structures with an arbitrary number of elements and network structures with a fixed number
of elements of the network model. The problem of identification of network structures has
been investigated as a multiple testing problem. The risk function of statistical procedures for
identification of network structures can be represented as a linear combination of expected
numbers of incorrectly included elements and incorrectly non-included elements. The sufficient
conditions of optimality for statistical procedures for network structures identification with
an arbitrary number of elements have been given. The concept of statistical uncertainty of
statistical procedures for identification of network structures has been introduced.

Keywords: random variables network, network model, network structure, procedure for
identification of network structure, additive loss function, risk function, unbiasedness, optima-
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Introduction

One approach to analyze a complex system with N elements is to consider the cor-
responding network model, which can be visualized as a complete weighted graph
with N nodes [1]. Network model can be represented as a complete weighted graph
G = (V, E, γ) , where nodes V = {1, 2, . . . , N} correspond to the elements of the sys-
tem and weights γi,j of edges ei,j ∈ E are given by measure γ of relation (dependence,
association) between elements. In this paper, we focus on probabilistic networks models
only. In probabilistic network models, nodes correspond to random variables. The Gaus-
sian graphical model is a well-developed probabilistic network model [2]. Statistical pro-
cedures for selection (identification) of the Gaussian graphical model by observations
were studied in [3–5]. The weak point of statistical procedures proposed in these works
is control of type I errors only.

Another probabilistic network model is the network model of financial market. Every
node of the network model corresponds to stock, and the weights of edges are given
by the selected measure of dependence between stock returns. For financial market,
the popular network structures are threshold graph [6] and maximum spanning tree [7].

The threshold graph is unweighted graph obtained from the network model by re-
moving edges with weights less than or equal to the given threshold. The maximum
spanning tree is a spanning tree of network model with the maximum sum of edges
weights. There are many publications on calculation of such network structures and
interpretation of obtained results. The statistical approach to threshold graph identifi-
cation is proposed in [8].
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The general problem statement of network structures identification is considered in
the paper. The general approach to develop statistical procedures for network structure
identification is discussed. The natural quality characteristic of these procedures is mean
numbers of first- and second-kind errors, respectively. Two types of network structures
identification problems are introduced: problems of network structure identification with
an arbitrary number of elements from the network model; problems of network structure
identification with a fixed number of elements from the network model. An example of
the network structure identification problem with an arbitrary number of elements
from the network model is the problem of threshold graph identification. An example
of the network structure identification problem with a fixed number of elements from
the network model is the problem of MST identification. It is shown in [9] that the risk
function of statistical procedures for network structures identification of both types can
be represented as a sum of mean numbers of first- and second-kind errors. In the paper,
the sufficient conditions of optimality for statistical procedures for network structures
identification with an arbitrary number of elements are given. The concept of statistical
uncertainty of statistical procedures for network structures identification is introduced.

1. Basic definitions and problem statement

Let X = (X1, X2, . . . , XN ) be a random vector. It is assumed that density f(x)
of the vector X belongs to class {f(x, θ); θ ∈ Ω} , where Ω is a parametric space.
The partition of parametric space Ω by L regions Ωi : i = 1, . . . , L; Ωi ∩ Ωj = ∅, i 6= j
is defined and hypotheses Hi : θ ∈ Ωi,Ωi ⊂ Ω, i = 1, . . . , L are formulated. There is
finite-size sample x(1), x(2), . . . , x(n) from sample space X = RN×n .

The general problem is: to construct the statistical procedure δ(x) , which defines
the partition of sample space X by L part X → D,D = {D1, D2, . . . , DL} . Decision
di : hypothesis Hi is true is accepted if (x(1), x(2), . . . , x(n)) ∈ Di .

In order to formulate the problems of network structures identification, the concept
of random variables network is introduced.

Definition 1. The random variables network is a pair (X, γ) , where X =
(X1, . . . , XN ) is a random vector and γ = {γi,j : i, j = 1, . . . , N ; i 6= j} is a mea-
sure of dependence between random variables Xi, Xj .

The random variables network generates a network model which is complete
weighted graph G = (V, E, γ) , where V = {1, 2, . . . , N} is a set of nodes corresponding
to the random variables X1, X2, . . . , XN , and E is a set of edges with weights given
by measure γ . In order to investigate the network model G = (V, E, γ) , it is clear that
key structures of the corresponding graph should be identified.

The key structures satisfying the following definition are investigated in the paper.

Definition 2. The network structure of network model G = (V,E, γ) is unweighted
subgraph G′ = (V ′, E′) : V ′ ⊆ V,E′ ⊆ E .

Two types of network structures are considered. The first type of network structures
is that one with any number of elements from the network model. The threshold graph
and the Gaussian graphical model are network structures of the first type.

Definition 3. The threshold graph (TG) of network model G = (V, E, γ) is sub-
graph G′(γ0) = (V ′, E′) : V ′ = V ; E′ ⊆ E, E′ = {(i, j) : γi,j > γ0} , where γ0 is some
threshold.

The second type of network structures includes those of them with a fixed number of
elements from the network model. The maximum spanning tree is a network structure
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of the second type, because the maximum spanning tree must contain N − 1 edges
exactly.

Definition 4. Maximum spanning tree (MST) of network model G = (V, E, γ) is
a tree G′ = (V ′, E′) : V ′ = V ; E′ ⊂ E; |E′| = |V |−1; , such that

∑
(i,j)∈E′

γi,j is maximum.

To provide more details, let us propose the following general formulation of the prob-
lem of network structures identification.

Let (X, γ) be a random variable network. Let the density of random vector X be-
long to f(x) ∈ {f(x, θ) : θ ∈ Ω} . Let G = (V, E, γ) be a network model generated
by random variable network (X, γ) . Let β ∈ E (β = 1, . . . , K , K = N(N − 1)/2)
be elements (edges) of network model G = (V, E, γ) . Let G′ = (V ′, E′) : V ′ ⊆
V, E′ ⊆ E be the network structure of interest, which must be defined by observa-
tions xi(t), i = 1, . . . , N, t = 1, . . . , n . Let hβ : θ ∈ ωβ be the hypothesis that element
β of the network model does not belong to the network structure, kβ : θ ∈ ω−1

β be
the alternative to hβ , Hi : θ ∈ Ωi; i = 1, . . . , L be the hypothesis that elements
{i1, i2, . . . , iM}, {i1, i2, . . . , iM} ⊆ {1, 2, . . . , K} belong to the network structure. Let
M be the number of elements of the network structure. It is necessary to construct
a statistical procedure to select one from the set of disjoint hypotheses:

Hi : θ ∈ Ωi,
where
Ωi = (

⋂
il∈{i1,...,iM}

ω−1
il

)
⋂

(
⋂

is∈{1,...,K}−{i1,...,iM}
ωis)

or
Hi = (

⋂
il∈{i1,...,iM}

kil
)

⋂
(

⋂
is∈{1,...,K}−{i1,...,iM}

his).

(1)

Depending on M , there are two types of problems:

• problems with an arbitrary number of elements of the network model M ∈
{0, 1, . . . , C2

N}
• problem with a fixed number M of elements of the network model

2. Statistical procedures for network structure identification

Let ϕβ(x) be the tests for testing individual hypotheses hβ versus kβ . Let Aβ be
the acceptance region of test ϕβ(x) and A−1

β be the rejection region of test ϕβ(x) ,
respectively. Let δ(x) be the statistical procedure for problem (1), where di is the
decision that hypothesis Hi, i = 1, . . . , L is true, and Di be the acceptance region of
hypothesis Hi

δ(x) = di, if x ∈ Di,

Di

⋂
Dj = ∅, i 6= j, i, j = 1, . . . , L;

L⋃
i=1

Di = X ,

where X is a sample space.

(2)

According to the results of [10], any procedure for network structure identification with
an arbitrary number of elements from the network model can be written in the following
form:

Di =
K⋂

β=1

A
κiβ

β , (3)
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where

κiβ =

{
1, Ωi

⋂
ωβ 6= ∅,

−1, Ωi

⋂
ωβ = ∅.

(4)

For statistical procedures for network structure identification with fixed number M
of elements from the network model, the condition of compatibility must be satisfied,
which can be written as:

Definition 5. Set of tests ϕβ(x), β = 1, . . . , M is compatible with decision space
of procedure δ(x)(2) if

∑

(κiβi1
,...,κiβiK

):

κiβi1
=...=κiβiM

=−1;

κiβiM+1
=...=κiβiK

=1

P (x ∈ ⋂
β

A
κiβ

β ) = 1. (5)

If the set of tests ϕβ(x), β = 1, . . . ,M is compatible with the decision space of
procedure δ(x) , then there is one-to-one correspondence between procedure δ(x)(2)
and the set of tests ϕβ(x), β = 1, . . . , M [10]. Such correspondence has the form:

Di =
K⋂

β=1

A
κiβ

β , Aβ =
⋃

i:κiβ=1

Di, A−1
β =

⋃
i:κiβ=−1

Di (6)

In the case of compatible set of tests ϕβ(x) , relations (6) define the statistical procedures
for network structure identification.

3. Risk function of statistical procedures
for network structure identification

Let w(Hi; dj) = wij be the loss from decision dj when hypothesis Hi is true. Let us
assume that the loss from the correct decision is equal to zero, wii = 0 ∀ i = 1, . . . , L .
According to [11], the quality of any statistical procedure δ(x) is characterized by the
risk function

R(Hi, θ; δ) =
L∑

j=1

wijPθ(δ(x) = dj), θ ∈ Ωi, i = 1, . . . , L,

where Pθ(δ(x) = dj) is the probability of decision dj .
Let aβ , bβ be the loss from the first- and second-kind errors for testing of individual

hypotheses hβ . Consider loss function wij of the following form

wij =
∑

β

(εijβaβ + εjiβbβ), (7)

where

εijβ =

{
1, if κiβ = 1, κjβ = −1,

0, otherwise,

κiβ defined by (4).
The following theorems [9] characterize the risk function for the problem of network

structure identification.
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Theorem 1. Let the loss function be defined by (7). Then the risk function of
the statistical procedure for the problem of identification of the network structure with
an arbitrary number of elements is:

R(Hi, θ, δ) =
K∑

β=1

r(hβ , ϕβ), (8)

where r(hβ , ϕβ) is the loss function of test ϕβ .
In the case aβ = a, bβ = b,∀β = 1, . . . , K , one has:

R(Hi, θ, δ) = aEθ{YI(Hi, δ)}+ bEθ{YII(Hi, δ)}, (9)

where YI(Hi, δ) is the number of erroneously included elements (the number of first-kind
errors) by procedure δ if hypothesis Hi is true, YII(Hi, δ) is the number or erroneously
non-included elements (the number of second-kind errors) by procedure δ if hypothesis
Hi is true.

Theorem 2. Let
• the set of tests ϕβ for testing individual hypotheses hβ be compatible with the

decision space of statistical procedure δ for testing hypotheses Hi ;
• the loss function be additive and defined by (7). Then the risk function of statistical

procedure δ for the problem of identification of the network structure with a fixed number
of elements has the form:

R(Hi, θ, δ) =
K∑

β=1

r(hβ , ϕβ), (10)

where r(hβ , ϕβ) is the risk function of test ϕβ .
• If aβ = a, bβ = b, β = 1, . . . , K then the risk function of statistical procedure δ

for the problem of identification of the network structure with a fixed number of elements
has the form:

R(Hi, θ, δ) = (a + b)Eθ(YI(Hi, δ)) = (a + b)Eθ(YII(Hi, δ)), (11)

where YI(Hi, δ) is the number of first-kind errors, YII(Hi, δ) is the number of second-
kind errors of procedure δ when hypothesis Hi is true.

Note that theorem 1 is a simple result of [10]. On the other hand, theorem 2 is new
and corresponds to a generalization of the result of [10].

4. Sufficient conditions to optimality
of statistical procedure for identification of network structure

with arbitrary number of elements

Consider the set G of all N ×N symmetric matrices G = (gi,j) with gi,j ∈ {0, 1} ,
i, j = 1, 2, . . . , N , gi,i = 0 , i = 1, 2, . . . , N . Matrices G ∈ G represent the adjacency
matrices of all simple undirected graphs with N nodes. The total number of matrices
in G is equal to L = 2M with M = N(N − 1)/2 . The problem of identification of the
network structure with an arbitrary number of elements can be formulated as a multiple
decision problem of the selection of one hypothesis from the set of L hypotheses:

HG : γij ≤ γ0, if gi,j = 0, γij > γ0, if gi,j = 1; i 6= j. (12)

Let β = (i, j) . Let individual tests for individual edge hypotheses:

hij : γij ≤ γ0 vs kij : γij > γ0 .
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have the form:

ϕij(x) =

{
1, tij(x) > cij ,

0, tij(x) ≤ cij ,

where cij is defined from:
Pγ0(Tij > cij) = αij (13)

and αij is the given significance level.
According to (3), the multiple statistical procedure for identification of the network

structure with an arbitrary number of elements has the form

Φ(x) =




1, ϕ12(x), . . . , ϕ1N (x)
ϕ21(x), 1, . . . , ϕ2N (x)

. . . . . . . . . . . .
ϕN1(x), ϕN2(x), . . . , 1


 . (14)

Let us define the multiple statistical procedure for network structure identification

δ(x) = dG, iff Φ(x) = G. (15)

Let S = (si,j) , Q = (qi,j) , S, Q ∈ G . Denote by w(S, Q) the loss from decision dQ

when hypothesis HS is true

w(HS ; dQ) = w(S, Q), S, Q ∈ G.

The risk function is defined by

R(S, θ, δ) =
∑

Q∈G
w(S,Q)Pθ(δ(x) = dQ), S ∈ G, θ ∈ ΩS ,

where Pθ(δ(x) = dQ is the probability that decision dQ is taken, while the true decision
is dS : θ ∈ ΩS , ΩS with θ = ||γij || , such that hypothesis HS is true. According to [10],
the multiple decision procedure δ(x) is w -unbiased if

∑

Q∈G
w(S,Q)Pθ(δ(x) = dQ) ≤

∑

Q∈G
w(S′, Q)Pθ(δ(x) = dQ) ∀S, S′ ∈ G, θ ∈ ΩS . (16)

Let ai,j be the loss from the false inclusion of edge (i, j) in the network struc-
ture, and let bi,j be the loss from the false non-inclusion of edge (i, j) in the network
structure, i, j = 1, 2, . . . , N, i 6= j .

Then additive loss function (7) can be written as

w(S, Q) =
∑

{i,j:si,j=0;
qi,j=1}

ai,j +
∑

{i,j:si,j=1;
qi,j=0}

bi,j .

It means that the loss from the misclassification of HS is equal to the sum of losses
from the misclassification of individual edges.

Theorem 3. Let the loss function be additive and tests ϕij(x) be uniformly most
powerful in the class of unbiased (UMPU) levels αij tests. Then statistical procedure
(15) is optimal in the class of unbiased statistical procedures for identification of the net-

work structure with an arbitrary number of elements if αij =
bij

aij + bij
.
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Proof. First, we prove that statistical procedure δ is unbiased. Individual tests
ϕij(x) are unbiased, then r(si,j , ϕij(x)) ≤ r(s′i,j , ϕij(x)) for any si,j , s′i,j ∈ {0, 1},
i, j = 1, . . . , N .

The loss function is additive, then, according to theorem 1, the risk function of statis-

tical procedure δ can be written as R(HS , θ, δ) =
N∑

i, j=1

r(si,j , ϕij) . Therefore, ∀S, S′ ∈ G,

θ ∈ ΩS ∑

Q

w(S,Q)Pθ(δ(x) = dQ) ≤
∑

Q

w(S′, Q)Pθ(δ(x) = dQ).

Then δ(x) is unbiased.
Now we should prove that statistical procedure δ is optimal in the class of unbiased

statistical procedures. Let δ′(x) be any other unbiased procedure. Then δ′(x) defines
the partition of the sample space by L parts DG = {x : δ′(x) = G} . Let Ai,j =

⋃
G:gi,j=0

DG,

A−1
i,j =

⋃
G:gi,j=1

DG . Define

ϕ′i,j =

{
0, x ∈ Ai,j ,

1, x ∈ A−1
i,j .

Tests ϕ′i,j are used to test individual hypotheses, hi,j – elements (i,j) do not belong
to network structure S. Then, according to theorem 1, the risk function of statistical
procedure δ′ can be written as

R(HS , θ, δ′) =
N∑

i,j=1

r(si,j , ϕ
′
ij).

Since statistical procedure δ′(x) is unbiased, then
∑

Q

w(S, Q)Pθ(δ′(x) = dQ) ≤
∑

Q

w(S′, Q)Pθ(δ′(x) = dQ) ∀S, S′ ∈ G, θ ∈ ΩS . (17)

Since network structure S has an arbitrary number of elements, there exists network
structure S′ , such that

∃i, j : si,j 6= s′i,j , sj,i 6= s′j,i ∀ (k, l) 6= (i, j), (k, l) 6= (j, i), sk,l = s′k,l.

Then, (17) has the form:

r(si,j , ϕ
′
i,j(x)) ≤ r(s′i,j , ϕ

′
ij(x)).

Hence, tests ϕ′i,j are unbiased.
However, tests ϕi,j(x) are UMPU, then r(si,j , ϕi,j(x)) ≤ r(si,j , ϕ

′
i,j(x)) .

Therefore, R(HS , θ, δ) ≤ R(HS , θ, δ′) .

Note that theorem 3 is based on the general ideas of [10]. Nevertheless, the restriction
of the problem of identification of the network structure with an arbitrary number of
elements allows to give a simpler proof.

Multiple testing procedures for Gaussian graphical model (GGM) iden-
tification. Let us consider random variables network (X, γ) , where vector X =
(X1, X2, . . . , XN ) has multivariate normal distribution N(µ, Σ) and measure γi,j =
|ρi,j | is the absolute value of partial correlation coefficient ρi,j .
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The individual hypotheses for the problem of GGM identification have the form:

hij : ρi,j = 0 vs kij : ρi,j 6= 0. (18)

According to [12], UMPU tests for testing individual hypotheses (18) are:

ϕopt
i,j =

{
0, |ri,j | < 1− 2cβ

α/2,

1, |ri,j | > 1− 2cβ
α/2,

(19)

where cβ
α/2 is the α/2 -quantile of Beta distribution Be

(n−N

2
,
n−N

2

)
. Let us define

the multiple statistical procedure for concentration graph identification

δopt(x) = dG, iff Φopt(x) = G, (20)

where

Φopt(x) =




0, ϕopt
1,2 (x), . . . , ϕopt

1,N (x)

ϕopt
2,1 (x), 0, . . . , ϕopt

2,N (x)
. . . . . . . . . . . .

ϕopt
N,1(x), ϕopt

N,2(x), . . . , 0




. (21)

According to theorem 3, it is easy to prove the following

Theorem 4. Multiple-decision statistical procedure (20) is optimal in the class of
unbiased statistical procedures for GGM identification under the additive loss function.

5. Statistical uncertainty

Theorems 1, 2 allow to introduce the unique measure of uncertainty for the statistical
procedures of network structures identification.

Definition 6. Value R(S, θ, δ, n) will be called the statistical uncertainty of proce-
dure δ for network structure S identification under n observations and distribution of
vector X with θ ∈ ΩS .

Definition 7. Statistical procedure δ1 of network structure S1 identification has
a smaller statistical uncertainty for Ω1 ⊂ Ω than statistical procedure δ2 of network
structure S2 identification if

R(S1, θ, δ1, n) ≤ R(S2, θ, δ2, n), ∀n,∀θ ∈ Ω1

If a =
1

2M1
, b =

1
2M2

, where Mi is the maximum number of type i errors (i = 1, 2) ,

then the measure of statistical uncertainty is equal to the average number of erroneous
decisions of procedure δ . The experimental results from [13] show that the uncertainty
of the statistical procedure for threshold graph identification is much smaller than the
uncertainty of the statistical procedure for maximum spanning tree identification.

Conclusions

The general approach to identification of network structures is proposed in the paper.
In contrast to the known approach [4, 5], our approach allows to pay attention to both
types of errors, as well as to investigate the properties of optimality and to compare
different network structures by statistical uncertainty of their identification procedures.
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УДК 517.2

Функция риска и оптимальность статистических процедур
определения сетевых структур

П.А. Колданов
Национальный исследовательский университет Высшая школа экономики,

г. Нижний Новгород, 603025, Россия

Аннотация

Исследуется проблема определения сетевой структуры на основе конечной выборки.
Приводятся понятия сети из случайных величин и сетевой модели. Рассматривается два
типа сети: сетевые структуры с произвольным набором элементов и сетевые структуры с
фиксированным количеством элементов сетевой модели. Определение сетевой структуры
рассматривается как проблема множественного тестирования. Функция риска таких про-
цедур может быть представлена как линейная комбинация числа неверно включённых
в сеть и ошибочно не включённых в сеть элементов. Приводятся достаточные условия
оптимальности статистических процедур для определения сетевых структур с произ-
вольным количеством элементов. Рассматривается концепция неопределённости стати-
стических процедур определения сетевой структуры.

Ключевые слова: сеть случайных величин, сетевая модель, сетевая структура, про-
цедура определения сетевой структуры, аддитивная функция потерь, функция риска,
несмещённость, оптимальность, статистическая неопределённость
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