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Abstract

Identification of network structures using the finite-size sample has been considered.
The concepts of random variables network and network model, which is a complete weighted
graph, have been introduced. Two types of network structures have been investigated: network
structures with an arbitrary number of elements and network structures with a fixed number
of elements of the network model. The problem of identification of network structures has
been investigated as a multiple testing problem. The risk function of statistical procedures for
identification of network structures can be represented as a linear combination of expected
numbers of incorrectly included elements and incorrectly non-included elements. The sufficient
conditions of optimality for statistical procedures for network structures identification with
an arbitrary number of elements have been given. The concept of statistical uncertainty of
statistical procedures for identification of network structures has been introduced.

Keywords: random variables network, network model, network structure, procedure for
identification of network structure, additive loss function, risk function, unbiasedness, optima-
lity, statistical uncertainty

Introduction

One approach to analyze a complex system with N elements is to consider the cor-
responding network model, which can be visualized as a complete weighted graph
with N nodes [1]. Network model can be represented as a complete weighted graph
G = (V,E,~), where nodes V = {1,2,..., N} correspond to the elements of the sys-
tem and weights v; ; of edges e; ; € E are given by measure v of relation (dependence,
association) between elements. In this paper, we focus on probabilistic networks models
only. In probabilistic network models, nodes correspond to random variables. The Gaus-
sian graphical model is a well-developed probabilistic network model [2]. Statistical pro-
cedures for selection (identification) of the Gaussian graphical model by observations
were studied in [3-5]. The weak point of statistical procedures proposed in these works
is control of type I errors only.

Another probabilistic network model is the network model of financial market. Every
node of the network model corresponds to stock, and the weights of edges are given
by the selected measure of dependence between stock returns. For financial market,
the popular network structures are threshold graph [6] and maximum spanning tree [7].

The threshold graph is unweighted graph obtained from the network model by re-
moving edges with weights less than or equal to the given threshold. The maximum
spanning tree is a spanning tree of network model with the maximum sum of edges
weights. There are many publications on calculation of such network structures and
interpretation of obtained results. The statistical approach to threshold graph identifi-
cation is proposed in [8].
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The general problem statement of network structures identification is considered in
the paper. The general approach to develop statistical procedures for network structure
identification is discussed. The natural quality characteristic of these procedures is mean
numbers of first- and second-kind errors, respectively. Two types of network structures
identification problems are introduced: problems of network structure identification with
an arbitrary number of elements from the network model; problems of network structure
identification with a fixed number of elements from the network model. An example of
the network structure identification problem with an arbitrary number of elements
from the network model is the problem of threshold graph identification. An example
of the network structure identification problem with a fixed number of elements from
the network model is the problem of MST identification. It is shown in [9] that the risk
function of statistical procedures for network structures identification of both types can
be represented as a sum of mean numbers of first- and second-kind errors. In the paper,
the sufficient conditions of optimality for statistical procedures for network structures
identification with an arbitrary number of elements are given. The concept of statistical
uncertainty of statistical procedures for network structures identification is introduced.

1. Basic definitions and problem statement

Let X = (X1,Xs,...,Xn) be a random vector. It is assumed that density f(x)
of the vector X belongs to class {f(z,0);0 € Q}, where  is a parametric space.
The partition of parametric space 2 by L regions ; :¢=1,...,L;Q;NQ; =0,i # j
is defined and hypotheses H; : 6 € ©;,Q; C Q,i = 1,...,L are formulated. There is
finite-size sample z(1),(2),...,z(n) from sample space X = RVN*".

The general problem is: to construct the statistical procedure §(x), which defines
the partition of sample space X by L part X — D,D = {Dy,Da,...,Dr}. Decision
d; : hypothesis H; is true is accepted if (z(1),z(2),...,2(n)) € D;.

In order to formulate the problems of network structures identification, the concept
of random variables network is introduced.

Definition 1. The random variables network is a pair (X,v), where X =
(X1,...,Xn) is a random vector and v = {v,,; : 4,5 = 1,...,N;i # j} is a mea-
sure of dependence between random variables X, X;.

The random variables network generates a network model which is complete
weighted graph G = (V, E,v), where V = {1,2,..., N} is a set of nodes corresponding
to the random variables X1, Xs,..., Xy, and E is a set of edges with weights given
by measure . In order to investigate the network model G = (V| E, ), it is clear that
key structures of the corresponding graph should be identified.

The key structures satisfying the following definition are investigated in the paper.

Definition 2. The network structure of network model G = (V, E, ) is unweighted
subgraph G' = (V/,E'): V' CV,E' CE.

Two types of network structures are considered. The first type of network structures
is that one with any number of elements from the network model. The threshold graph
and the Gaussian graphical model are network structures of the first type.

Definition 3. The threshold graph (TG) of network model G = (V, E, ) is sub-
graph G'(y) = (V/,E') : V! =V, E' C E,E' = {(i,j) : vi,; > Y0}, where 7 is some
threshold.

The second type of network structures includes those of them with a fixed number of
elements from the network model. The maximum spanning tree is a network structure
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of the second type, because the maximum spanning tree must contain N — 1 edges
exactly.

Definition 4. Maximum spanning tree (MST) of network model G = (V, E,~) is
atree G' = (V/,E'): V' =V; E' C E; |[E'| = |V|—-1;,such that > ~;; is maximum.
(i.5)eE’

To provide more details, let us propose the following general formulation of the prob-
lem of network structures identification.

Let (X,~) be a random variable network. Let the density of random vector X be-
long to f(x) € {f(x,0) : 0 € Q}. Let G = (V,E,v) be a network model generated
by random wvariable network (X,v). Let 8 € E (8 =1,....,K, K = N(N—-1)/2)
be elements (edges) of network model G = (V,E,v). Let G = (V,E') : V' C
V, E' C E be the network structure of interest, which must be defined by observa-
tions z;(t),i =1,...,N, t=1,...,n. Let hg : 6 € wg be the hypothesis that element
B of the network model does not belong to the network structure, kg : 6 € wEl be
the alternative to hg, H; : 0 € Q1 = 1,...,L be the hypothesis that elements
{i1,92, .- yin by {0102, yim} € {1,2,..., K} belong to the network structure. Let
M be the number of elements of the network structure. It is mecessary to construct
a statistical procedure to select one from the set of disjoint hypotheses:

H,;:0¢ Qi,
where
L= N )Nl N wi)
G €{in, i} G0 €{1,0., K} —{i1,oying } (1)
or
Hi=( N ki) N( N hi).
’L‘le{il,“.,iM} ise{l,...,K}f{il,...,’i]\{}

Depending on M, there are two types of problems:

e problems with an arbitrary number of elements of the network model M €

{0,1,...,C%}

e problem with a fixed number M of elements of the network model

2. Statistical procedures for network structure identification

Let @g(x) be the tests for testing individual hypotheses hg versus kg. Let Ag be
the acceptance region of test ¢g(x) and Agl be the rejection region of test ¢g(x),
respectively. Let §(z) be the statistical procedure for problem (1), where d; is the
decision that hypothesis H;,7 = 1,...,L is true, and D; be the acceptance region of
hypothesis H;

5(1‘) = di, ifz e Di,
DiN D=0, i#j, 4j=1,....,L; UDi=4&, (2)
where X' is a sample space.

According to the results of [10], any procedure for network structure identification with
an arbitrary number of elements from the network model can be written in the following
form:

K
D= ) A", (3)
B=1
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where
1 Qz )
m,@z{’ Nes 70 (W
]., Qz m Wf} = @

For statistical procedures for network structure identification with fixed number M
of elements from the network model, the condition of compatibility must be satisfied,
which can be written as:

Definition 5. Set of tests g(x),8 = 1,..., M is compatible with decision space
of procedure 6(zx)(2) if

Y PlzeNAf?) =1 (5)
(K"iﬁil“"’ﬁiBiK): ’8
K‘iﬁﬂil :...:Hiﬁiﬂ/f =—1
Rigi]u+1=...=,‘-€i5iK=1
If the set of tests wg(z),8 = 1,...,M is compatible with the decision space of
procedure d(x), then there is one-to-one correspondence between procedure é(x)(2)

and the set of tests pg(x),3=1,..., M [10]. Such correspondence has the form:

K
D; = A", Ag=UD; Az'=UD; (6)
B=1

itkig=1 itkig=—1

In the case of compatible set of tests pg(x), relations (6) define the statistical procedures
for network structure identification.

3. Risk function of statistical procedures
for network structure identification

Let w(H;;d;) = w;; be the loss from decision d; when hypothesis H; is true. Let us
assume that the loss from the correct decision is equal to zero, w; =0 Vi=1,... L.
According to [11], the quality of any statistical procedure §(x) is characterized by the
risk function

L
R(H;,0:0) =Y wijPy(d(x) =d;), 0€Q;, i=1,... L,
j=1

where Pp(d(x) = d;) is the probability of decision d;.
Let ag,bs be the loss from the first- and second-kind errors for testing of individual
hypotheses hg . Consider loss function w;; of the following form

wij = Z(eijﬂaﬁ + €5ipbs)s (7)
B

where
1, if Rig = 1, Rip = —17
€ij3 = .
0, otherwise,
kig defined by (4).

The following theorems [9] characterize the risk function for the problem of network
structure identification.
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Theorem 1. Let the loss function be defined by (7). Then the risk function of
the statistical procedure for the problem of identification of the metwork structure with
an arbitrary number of elements is:

K
R(H;,0,0) = Z r(hg, ), (8)

where r(hg, pg) is the loss function of test @g.
In the case ag =a,bg =b,Y3=1,..., K, one has:

R(H;,0,0) = aBg{Y1(H;,0)} + bEg{Y1r(H;,0)}, 9)

where Y7 (H;,0) is the number of erroneously included elements (the number of first-kind
errors) by procedure & if hypothesis H; is true, Yir(H;, d) is the number or erroneously
non-included elements (the number of second-kind errors) by procedure § if hypothesis
H; is true.

Theorem 2. Let

o the set of tests pg for testing individual hypotheses hg be compatible with the
decision space of statistical procedure § for testing hypotheses H; ;

o the loss function be additive and defined by (7). Then the risk function of statistical
procedure & for the problem of identification of the network structure with a fized number
of elements has the form:

HZ,G 5 ZT hﬁ (pg (10)
p=1

where r(hg, pg) is the risk function of test g .

e Ifag=ua, bg=0b, B =1,...,K then the risk function of statistical procedure &
for the problem of identification of the network structure with a fired number of elements
has the form:

R(HZ,H,(S) = (CL + b)Eg(Y[(HZ,(S)) = (CL + b)E@(Y[[(H,',(S)), (11)

where Yi(H;, 0) is the number of first-kind errors, Y (H;,d) is the number of second-
kind errors of procedure § when hypothesis H; is true.

Note that theorem 1 is a simple result of [10]. On the other hand, theorem 2 is new
and corresponds to a generalization of the result of [10].

4. Sufficient conditions to optimality
of statistical procedure for identification of network structure
with arbitrary number of elements

Consider the set G of all N x N symmetric matrices G = (g; ;) with g¢; ; € {0, 1},
i,7=12,...,N, ¢g;; =0, 1=1,2,...,N. Matrices G € G represent the adjacency
matrices of all simple undirected graphs with N nodes. The total number of matrices
in G is equal to L = 2™ with M = N(N — 1)/2. The problem of identification of the
network structure with an arbitrary number of elements can be formulated as a multiple
decision problem of the selection of one hypothesis from the set of L hypotheses:

Hg:vij <7, if gi;=0, 7>, if g;=1 1i#] (12)
Let 8= (i,7). Let individual tests for individual edge hypotheses:

hij ivi; <y vs kit > 0.
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have the form:
L ti(z) > cijy
pij(z) =
tij(z) < cijy
where c¢;; is defined from:
Py (Ti > cij) = auj (13)

and a;; is the given significance level.
According to (3), the multiple statistical procedure for identification of the network
structure with an arbitrary number of elements has the form

1, v12(x), ..., oin(z)
N R s
en1(x), en2(z), ..y 1

Let us define the multiple statistical procedure for network structure identification
§(z) =dg, iff o(z)=G. (15)

Let S =(sij), Q@=(¢;), S,Q € G. Denote by w(S,Q) the loss from decision dg
when hypothesis Hg is true

The risk function is defined by

R(S,0,0) =Y w(S,Q)Py(d(z) =dg), S€G, 0€Qs,
Qeg

where Py(6(x) = dg is the probability that decision dg is taken, while the true decision
is dg : 0 € Qg, Qg with § = ||v;5]|, such that hypothesis Hg is true. According to [10],
the multiple decision procedure §(x) is w-unbiased if

D w(S,Q)P(5(x) =dg) < Y w(S',Q)Py(d(x) =dg) VS, S €G, 0. (16)
Qeg Qeg

Let a;; be the loss from the false inclusion of edge (¢,j) in the network struc-
ture, and let b; ; be the loss from the false non-inclusion of edge (7,7) in the network
structure, i, j =1,2,..., N, i # j.

Then additive loss function (7) can be written as

w(S,Q)= > ai;+ Y bij
{4,5:54,;=0; {i,5:54,;=1;
q:,j=1} q:,;=0}
It means that the loss from the misclassification of Hg is equal to the sum of losses
from the misclassification of individual edges.

Theorem 3. Let the loss function be additive and tests p;;(x) be uniformly most
powerful in the class of unbiased (UMPU) levels oy; tests. Then statistical procedure
(15) is optimal in the class of unbiased statistical procedures for identification of the net-
ij

work structure with an arbitrary number of elements if o;; = ————.
aij + bij
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Proof. First, we prove that statistical procedure § is unbiased. Individual tests
¢ij(x) are unbiased, then r(s;;, pi;(x)) < 7(sj;,i5(x)) for any s;;, si; € {0,1},
i, j=1,...,N.

The loss function is additive, then, according to theorem 1, the risk function of statis-

N
tical procedure ¢ can be written as R(Hg,0,0) = > 7(s; 4, ¢:j). Therefore, VS, §' € G,

7, 7=1
0 e Qg
> (S, Q)Py(d(x <Z (5", Q)Po(6(x) = da).
Q
Then 6(z) is unbiased.
Now we should prove that statistical procedure  is optimal in the class of unbiased
statistical procedures. Let ¢'(x) be any other unbiased procedure. Then ¢’(z) defines

the partition of the sample space by L parts Dg = {z : §'(x) = G}.Let 4, ; = | Dg,
Gigiyj:()

-
1,7

A 1 U D¢ . Define
GQz]*I

, 0, JTEAi,j,
Pig =
' 1, xeA;l.

Tests ¢; ; are used to test individual hypotheses, h;; — elements (i,j) do not belong
to network structure S. Then, according to theorem 1, the risk function of statistical
procedure ¢’ can be written as

N
HS70 5 Z Sl,jﬂgpz]

Since statistical procedure ¢’(z) is unbiased, then

> w(S, Q) Py (0 (x <> w(S,Q)Py(d'(z) =dg) VS, 5 €G, 0eQs. (17)
Q Q

Since network structure S has an arbitrary number of elements, there exists network
structure S’, such that

37’7] N IN 7& Sg,jasj,i 7é S;’,i V(kvl) 7é (Zuj)u (kul) 7é (372)7 Skl = S;c,l'

Then, (17) has the form:
7 (i3> () < (si 5, 5 (2))-

Hence, tests ¢} j are unbiased.
However, tests ¢; j(z) are UMPU, then 7(s; j, i (7)) < 7(sij, 5 ().
Therefore, R(Hg,0,0) < R(Hg,0,5"). O

Note that theorem 3 is based on the general ideas of [10]. Nevertheless, the restriction
of the problem of identification of the network structure with an arbitrary number of
elements allows to give a simpler proof.

Multiple testing procedures for Gaussian graphical model (GGM) iden-
tification. Let us consider random variables network (X,7), where vector X =
(X1,X2,...,Xn) has multivariate normal distribution N(u,X) and measure v; ; =
|p%7] is the absolute value of partial correlation coefficient p*7.
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The individual hypotheses for the problem of GGM identification have the form:
hij Zpi’j =0 ws kij : pi’j 75 0. (18)

According to [12], UMPU tests for testing individual hypotheses (18) are:

i3 _ 9.8
opt _ 0, |1“J| <1 2%/2» (19)
ML > 1-2d] g,
—N n—N
where cg /2 is the a/2-quantile of Beta distribution Be (n 5 r 5 ) . Let us define
the multiple statistical procedure for concentration graph identification
8P (x) =dg, iff ®°P'(z) =G, (20)
where . .
07 QOIT)Q (.’L’)7 L Splf)N (ﬂ?)
opt opt
PP (1) = 802,p1 (), 0, ) 802?1\/(@ . (21)
Pra(@), PNa@), 0

According to theorem 3, it is easy to prove the following

Theorem 4. Multiple-decision statistical procedure (20) is optimal in the class of
unbiased statistical procedures for GGM identification under the additive loss function.

5. Statistical uncertainty

Theorems 1, 2 allow to introduce the unique measure of uncertainty for the statistical
procedures of network structures identification.

Definition 6. Value R(S,0,d,n) will be called the statistical uncertainty of proce-
dure ¢ for network structure S identification under n observations and distribution of
vector X with 0 € Qg.

Definition 7. Statistical procedure §; of network structure S; identification has
a smaller statistical uncertainty for € C Q than statistical procedure do of network
structure Sy identification if

R(Sl,ﬁ,ﬁl,n) S R(SQ,Q,(SQ,H),VH,VG (S Ql

1 1
If a = oL, b= 0, where M; is the maximum number of type i errors (i = 1,2),

then the measure of statistical uncertainty is equal to the average number of erroneous
decisions of procedure §. The experimental results from [13] show that the uncertainty
of the statistical procedure for threshold graph identification is much smaller than the
uncertainty of the statistical procedure for maximum spanning tree identification.

Conclusions

The general approach to identification of network structures is proposed in the paper.
In contrast to the known approach [4, 5], our approach allows to pay attention to both
types of errors, as well as to investigate the properties of optimality and to compare
different network structures by statistical uncertainty of their identification procedures.
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VIIK 517.2

DyHKIMSA PUCKA U ONTUMAJIBHOCTh CTATUCTUYECKUX IIPOIEAYP
ompeJieJIEHUsI CETEBBIX CTPYKTYP

II.A. Koadanos

Havyuonaavruli uccaedosamenvckuti yrusepcumem Buicwas wroaa sKonomuky,
2. Huotcnuti Hoszopod, 603025, Poccus

AnHoTanusa

Wccnenyercs npobirlema onpeiesieHust CeTeBOil CTPYKTYPBI Ha OCHOBE KOHEYHOH BBIOODKIU.
IIpuBogsiTcst mouaTHsA ceTn U3 CAyYaWHBIX BEJIMYWH U CETEBON Mozenun. PaccmarpuBaercs: 1Ba
THUIIA CETU: CETEBBbIE CTPYKTYPHI C IIPOU3BOJILHBIM HaOOPOM 3JIEMEHTOB U CETEBBIE CTPYKTYPHI C
(UKCUPOBAHHBIM KOJMIECTBOM 3JIEMEHTOB ceTeBoit Mozean. OupeeseHne ceTeBoit CTPYKTYPhI
paccMaTpuBaeTcs Kak IpobieMa MHOXKECTBEHHOrO TecTupoBanus. DYHKINS PUCKA TAKUX IPO-
LIeJIyp MOXKeT OBITH IIPe/ICTaBjIeHa KaK JIMHelHas KOMOWHAIIWS YNCJIa HEBEPHO BKJIIOYEHHBIX
B CE€Th W OIMUOOYHO HE BKJIIOYEHHBIX B CETb JIEMEHTOB. lIpMBOISITCS HOCTATOYHBIE YCIOBUS
ONTUMAJIbHOCTA CTATUCTUYECKHUX HPOIEAYyD /[Jisl OIpeJieJIeHUs CeTeBBbIX CTPYKTYP C IIPOU3-
BOJIBHBIM KOJIMYECTBOM 3JIEMEHTOB. PaccMmarpuBaeTcss KOHIENINUS HEOIPEJEIEHHOCTU CTaTU-
CTHYECKHUX IIPOIENYP OHpPeAesIeHNs CeTeBOI CTPYKTYPHI.

KirroueBble cjioBa: ceTh CIyYailHBIX BEJIMYMH, CETEBAas MOJIE/b, CETEBasI CTPYKTYPa, IPO-

[e/lypa OIPEIe/IeHNsI CETEBON CTPYKTYPHI, aJJUTUBHAS (PYHKIWSA MOTEPh, (DYHKIINS PUCKA,
HECMENIEHHOCTD, OIITUMAJIbHOCTh, CTATUCTUYECKasl HEOIIPE/IeJIEHHOCTh
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