Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ФИЗИКИ

КАФЕДРА МЕДИЦИНСКОЙ ФИЗИКИ

Направление: 03.03.02 Физика Профиль. Физика живых систем

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА
РАЗРАБОТКА ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ
ДЛЯ ПОВЫШЕНИЯ ИНФОРМАТИВНОСТИ ОБСЛЕДОВАНИЙ НА
СПЕЦИАЛИЗИРОВАННОМ МАГНИТНО-РЕЗОНАНСНОМ
ТОМОГРАФЕ С ИНДУКЦИЕЙ МАГНИТНОГО ПОЛЯ 0.4 ТЛ

Студент 4 ку	рса группы <u>06-911</u>	11,5	
«21» Lewus	2023 г	- Cul	(Колесова А.Ю

Научный руководитель
<u>д.х.н., профессор</u>
«24» шоня 2023 г

(Аганов А.В.)

Научный консультант

к.ф.-м.н., в.н.с. КФТИ ФИЦ КазНЦ РАН

«21» wores 2023 r

Маши (Фаттахов Я.В.)

Заведующий кафедрой медицинской физики

д.х.н., профессор

«21» шоне, 2023 г

(Аганов А.В.)

Казань-2023

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3	
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР	5	
1.1 ЯМР	5	
1.1.1. Открытие и применение	5	
1.1.2. Основы ЯМР		
1.2. Магнитно-резонансные томографы и их отличие		
от ЯМР спектрометров	11	
1.3. Источники магнитного поля.	13	
1.4. Импульсные последовательности	14	
1.4.1. Спин-эхо томография		
1.4.2. Томография по сигналам градиентного эха	15	
ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	17	
2.1. Разработка импульсной последовательности	17	
ЗАКЛЮЧЕНИЕ	22	
СПИСОК ЛИТЕРАТУРЫ	23	

ВВЕДЕНИЕ

В современном мире магнитно-резонансная томография (МРТ) представляет собой один из наиболее результативных неинвазивных методов диагностики в медицине. В данном методе не используется ионизирующее излучение, что делает его безопасным в применении. В его основе лежит детектирование релаксационных изменений структурной составляющей тканей при патологических процессах в органах.

Во всем мире наблюдается повышение интереса к средне- и низкополевым томографам. Приведу небольшое сравнение высокополевых и среднеполевых томографов (таблица 1).

Таблица 1 - Сравнение высокополевых и низкополевых томографов по различным характеристикам.

Характеристики	Высокополевые томографы (от 1.5 Тл)	Среднеполевые томографы (0.3-0.6 Тл)
Цена	От 70 млн. рублей	От 17 млн. рублей
Тип	Закрытого типа	Открытого типа
Криоген	Есть	Нет
Время обследовани	10-15 минут	От 20 минут
Я		
Артефакты	Сильно выражены	Слабо выражены

Томографы со сверхпроводящими магнитными системами с индукцией поля 1.5 Тл являются наиболее используемыми в большинстве клинических случаев. Но приобретение, установка и эксплуатация подобных томографов обходятся очень дорого. Поэтому в последние годы относительная дешевизна средне- и низкополевых томографов на базе

электромагнитов и постоянных магнитов сделала их рентабельными на рынке, при этом их использование позволяет получить возможности высококачественной диагностики. А также преимуществом среднеполевых томографов является их открытый тип, что делает обследование комфортнее для детей и пациентов с клаустрофобией. В то время как высокополевые томографы имеют туннельную форму и издают шум во время обследования, что может послужить причиной развития страха и панических атак у пациентов. Томографы открытого типа не создают ощущение сдавленности и не издают сильного шума.

Однако методики, применяемые в высокополевых установках, могут не быть применимы в средне- и низкополевых из-за некоторых ограничений последних, что создает нишу для разработок новых методик измерений при использовании низкополевых томографов.

Поэтому мы поставили перед собой цель создать новые методики среднеполевой томографии, которые повысят чувствительность диагностики и сократят время обследования пациентов.

Наша задача состояла в разработке методики, которая позволит за стандартное время обследования получить больший объем информации. Эту последовательность решили строить на базе уже существующей в технологиях ЯМР последовательности КПМГ, которая используется для измерения релаксационного спада по T_2 .

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 ЯМР

1.1.1. Открытие и применение

Исидор Раби является первооткрывателем явления магнитного резонанса, которое он обнаружил в 1938 году (Нобелевская премия 1944 года). Магнитный резонанс в твёрдых телах и жидкостях смогли получить В 1946 году Эдвард Миллз Парселл и Феликс Блох (Нобелевская премия 1952 года). Важно учесть, что Е.К. Завойскому удалось наблюдать те же сигналы ЯМР в июне 1941 невоспроизводимость его результатов оставили его работы неопубликованными. Далее ставились вопросы, связанные с созданием методов МРТ, необходимые условия для наблюдения ЯМР сигналов и способ получения ЯМР изображений. Подробнее ознакомиться с историей создания отечественных МРТ можно у Н.К. Андреева [6].

Исследуемое вещество, облучаясь радиочастотным полем, поглощает энергию поля собственными магнитными спинами. При достижении определенной частоты облучения происходит полное поглощение энергии и наступает резонанс. Ядерным магнетизм лежит в основе данного явления, при котором ядра исследуемого вещества выстраиваются параллельно в одном направлении при нахождении в магнитном поле [5].

Ядерный магнитный резонанс — явление максимального поглощения энергии спиновой системой при совпадении частоты радиочастотного поля и частоты ларморовской прецессии.

Благодаря явлению ЯМР становятся доступными исследования свойств тканей и получение контрастных изображений по времени продольной (T_1) и поперечной (T_2) релаксации, по протонной плотности, а также доступно измерение диффузии и перфузии.

Одним из основных биологических и химических методов изучения вещества является ЯМР спектроскопия. В химии и фармакологии ЯМР спектроскопия широко используется для установления и подтверждения правильности результатов химических реакций, в частности при синтезировании лекарственных препаратов. Явление ЯМР в виде магнитно-резонансной томографии смогло стать широко применимым методом обследований в медицине, позволяющим визуализировать патологии и заболевания пациентов. Важно знать, что МРТ применяется не только в медицине. Область применения достаточно широка — начиная материаловедением и заканчивая археологией и палеонтологией [7].

1.1.2. Основы ЯМР

Использование импульсного возбуждения с последующем Фурье преобразованием позволило сократить время наблюдения ЯМР сигнала и повысить чувствительность методов измерения. А также, благодаря этому, число модификаций ЯМР экспериментов значительно возросло [2].

Более детально принципы импульсного ЯМР расписаны в монографиях [8-10].

Движение магнитного момента μ ядра в магнитном поле можно описать:

$$\frac{d\mu}{dt} = \gamma [\mu H_0]. \tag{1.1}$$

Магнитный момент ядра, помещенного в стационарное магнитное поле H_0 , вращается так, что проекция на z является константой, а проекции x и y меняется по гармоническому закону, вращаясь в плоскости xy (рисунок 1). Движение μ называется прецессией [3].

Магнитный момент $\pmb{\mu}$ прецессирует с ларморовской частотой $\omega_0 = \gamma H_0$

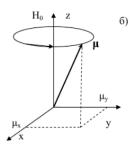


Рисунок 1 - Прецессирующий магнитный момент ядра μ в стационарном магнитном поле H_0 с частотой ω_0 [3]

Выполнение условия резонанса обеспечивается только тогда, когда частоты вынужденных колебаний и ларморовской частоты совпадают. При подаче переменного магнитного поля с частотой ω и амплитудой H_1 вдоль направления x, прецессирующее движение μ усложняется (рисунок 2) Включение дополнительного переменного магнитного поля заставляет вращаться магнитный момент вокруг направления эффективного поля и вокруг оси z [3].

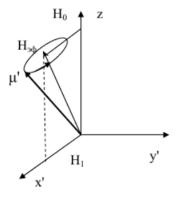


Рисунок 2 -. Находящееся в эффективном магнитном поле ${m H}_{{}_{3}{\varphi}{\varphi}}$,ядро и прецессия магнитного момента ядра ${\pmb \mu}$, складывающееся из амплитуд магнитного ${\pmb H}_{{\bf 0}}$ и переменного полей ${\pmb H}_{{\bf 1}}$ [3]

Тогда движение можно описать выражением:

$$\left(\frac{\partial \mu}{\partial t}\right)' = \gamma [\mu H_0] + [\mu \omega] = \gamma [\mu H_{\ni \varphi \varphi}], \qquad (1.2)$$

где ω - частота, направленная вдоль х.

$$H_{3\phi\phi} = k \left(H_0 - \frac{\omega}{\gamma} \right) + iH_1 \tag{1.3}$$

где i, k- единичные вектора, направленных вдоль х и у.

Эффективное поле направлено вдоль х в момент резонанса.

Поворот μ относительно оси z на 90° и 180° воздействующее переменное поле H_1 называют 90- и 180-градусным радиочастотными импульсами. Выражение 1.2 можно представить в виде:

$$\frac{d\mu_x}{dt} = \gamma \left[\mu_y H_0 + \mu_z H_1 \sin(\omega_0 t) \right], \tag{1.4}$$

$$\frac{d\mu_y}{dt} = \gamma [\mu_z H_1 \cos(\omega_0 t) - \mu_x H_0], \qquad (1.5)$$

$$\frac{d\mu_z}{dt} = -\gamma \left[\mu_x H_1 \sin(\omega_0 t) + \mu_y H_1 \cos(\omega_0 t) \right]. \tag{1.6}$$

Феноменологическое уравнение Блоха получим, учитывая взаимодействие ядер не только с решеткой, но и с другими ядрами:

$$\frac{d\mu_x}{dt} = \gamma \left[\mu_y H_0 + \mu_z H_1 \sin(\omega_0 t) \right] - \frac{\mu_x}{T_2},\tag{1.7}$$

$$\frac{d\mu_{y}}{dt} = \gamma [\mu_{z} H_{1} \cos(\omega_{0} t) - \mu_{x} H_{0}] - \frac{\mu_{y}}{T_{2}}, \tag{1.8}$$

$$\frac{d\mu_z}{dt} = -\gamma \left[\mu_x H_1 \sin(\omega_0 t) + \mu_y H_1 \cos(\omega_0 t) \right] - \frac{\mu_z - \mu_0}{T_1}. \tag{1.9}$$

Рассмотрим движение **µ** на рисунке 3.

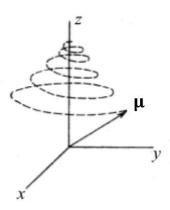


Рисунок 3 - Вектор суммарной ядерной намагниченности, прецессирующий при ларморовой частоте, при происходящих процессах релаксации в лабораторной

 T_1 называется спин-решеточной или продольной релаксацией.

 T_2 называется спин-спиновой или поперечной релаксацией.

После окончания действия РЧ-импульса, μ начинает релаксировать в исходное положение: μ_z стремиться к μ_0 , μ_x и μ_y тем временем стремятся к 0 (рисунок 4).

$$\mu_x = \mu_y = \mu_0 \exp\left(-\frac{t}{T_2}\right),$$
 (1.10)

$$\mu_z = \mu_0 \left(1 - \exp\left(-\frac{t}{T_1} \right) \right).$$
 (1.11)

Вместо значений µ на практике используется значение амплитуды сигнала.

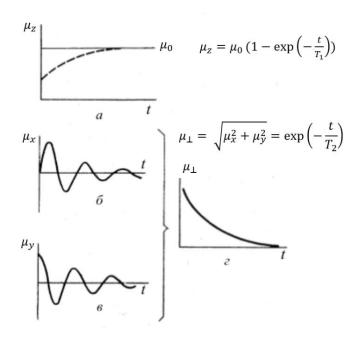


Рисунок 4 - Временные зависимости z -компоненты μ (a) и x, y -компоненты μ (б, в), спад свободной индукции (Γ) [11]

 T_1 — процесс, соответствующий восстановлению равновесной заселенности уровней Больцмана (рисунок 4 а), T_2 — процесс, соответствующий полной расфазировке x и y компонент ядерных спинов

(рисунок 4 б, в): на рисунке 4 г представлен спад свободной индукции – ССИ [2].

1.2. Магнитно-резонансные томографы и их отличие от ЯМР спектрометров

Использование ЯМР Н¹ обусловлено тем фактом, что вода, содержащая ядра водорода, является основой мягких тканей организма, поэтому может активно использоваться для целей томографии. Но и другие структурообразующие ядра молекул могут стать объектом медицинских исследований. [1, 4].

ЯМР спектрометры и ЯМР томографы имеют в основе одни те же компоненты, такие как источник магнитного поля, передатчик и приемник, а также компьютер и систему обработки данных. Но ряд специфических функциональных особенностей все же отличает их.

1. Источник поля

Основным требованием к источнику поля в ЯМР спектроскопии является его однородность и стабильность по всему образцу. В то время как в МРТ добавление градиентных катушек позволяет создать разные магнитные поля.

2. Передатчик. Импульсный генератор радиочастотных волн.

В ЯМР спектрометрах РЧ облучение образца происходит целиком. В этом случае применяется импульс широкого спектра. А в МРТ, хоть поле и действует также полностью на все тело, но для этого применяют только

узкий частотный диапазон

3. Приемник. Предусилитель — это блок предварительного усиления сигнала в датчике ЯМР.

В ЯМР спектрометре и МРТ имеют существенные конструктивные и технические отличия.

- 4. Система обработки данных и управляющий компьютер.
- В МРТ система обработки данных гораздо сложнее, чем в ЯМР спектрометре.

1.3. Источники магнитного поля.

Таблица 2 – Преимущества и недостатки разных типов магнита [1]

Тип магнита	преимущества	Недостатки
Постоянный	- не требует электропитания - удобство для пациента - ограниченное поле рассеяния - не требует криогенных жид- костей - достаточное качество изображе- ния для многих рутинных иссле- дований	- более низкая, но не конкуренто- способная стоимость по сравне- нию средне- высокопольными сис- темами - чувствительность к колебаниям температуры - магнитное поле нельзя выклю- чить - ограниченная напряженность по- ля и поэтому низкое отношение сигнал/шум
Резистивный	- удобство для пациента - не требует криогенных жидкостей -легкость размещения в трудных местах - реализация многих более сложных методов получения изображения - поле может быть выключено	- более низкая, но не конкуренто- способная стоимость по сравне- нию с системами с постоянными и сверхпроводящими магнитами - ограниченная напряженность по- ля и поэтому низкое отношение сигнал/шум
сверхпроводящий	- высокое отношение сигнал/шум - высокая однородность поля - более легкая реализация сложных методов получения изображения - единственная система пригодная для спектроскопии	- высокая стоимость и эксплутаци- онные расходы - трудность размещения клаустрофобия встречается чаще, чем в других системах

1.4 Импульсные последовательности

1.4.1. Спин-эхо томография

В методе спин-эхо выполняется следующая последовательность (рисунок 5):

- 1. Подается возбуждающий импульс обычно 90-градусный в сопровождении слой-селективного (СС) градиента, амплитуда которого рассчитывается исходя из требуемой толщины слоя.
- 2. После него формируются градиентные импульсы: предфазирующий частотно-кодирующий (ЧК) и фазо-кодирующий (ФК) с соответствующими амплитудами и длительностями.
- 3. Через время τ после центра возбуждающего импульса формируется 180-градусный РЧ импульс, также в сопровождении селективного градиента
- 4. Регистрируется сигнал спинового эха в сопровождении частотнокодирующего градиента. Чтобы максимум сигнала эха попал в центр интервала регистрации, т.е. через время т после 180-градусного импульса, произведение амплитуды на длительность предфазирующего ЧК импульса должно быть равно произведению амплитуды на длительность половины интервала ЧК импульса при регистрации эха.
- 5. Амплитуда и длительность ФК импульса рассчитывается исходя из поля зрения изображения направлению ФК градиента, а амплитуда ЧК импульса исходя из поля зрения в направлении ЧК градиента и шага точек регистрации эха.

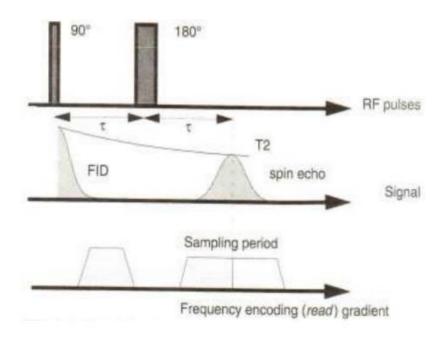


Рисунок 5 - Спин—эхо эксперимент с градиентами, сбалансированными в течение последовательности. [1]

1.4.2. Томография по сигналам градиентного эха

Последовательность градиентного эха приведена на рисунке 6:

- 1. Подается возбуждающий импульс обычно 90-градусный в сопровождении слой-селективного (СС) градиента, амплитуда которого рассчитывается исходя из требуемой толщины слоя. Для создания эха, мы можем воспользоваться только градиентами поля и добьемся того же эффекта.
- 2. После него формируются градиентные импульсы: предфазирующий частотно-кодирующий (ЧК) и фазо-кодирующий (ФК) с соответствующими амплитудами и длительностями.
- 3. Регистрируется сигнал градиентного эха в сопровождении частотно-кодирующего градиента. Чтобы максимум сигнала эха попал в центр интервала регистрации, т.е. через время τ после 180-градусного импульса, произведение амплитуды на длительность предфазирующего ЧК импульса должно быть равно произведению

амплитуды на длительность половины интервала ЧК импульса при регистрации эха.

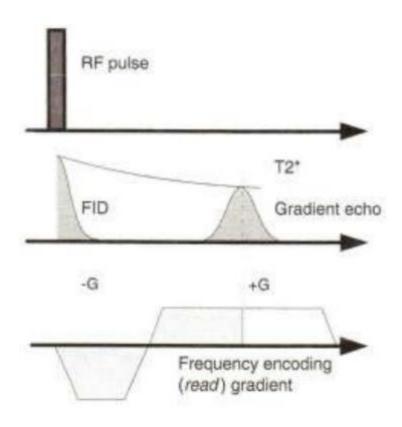


Рисунок 6 - Образование градиентного эха. [1]

Эксперименты на последовательности градиентное эхо занимают меньшее время.

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Разработка импульсной последовательности

С помощью первого варианта нашей методики удалось сразу получить довольно качественные изображения, но явно заметны артефакты на снимках (рисунок 7).

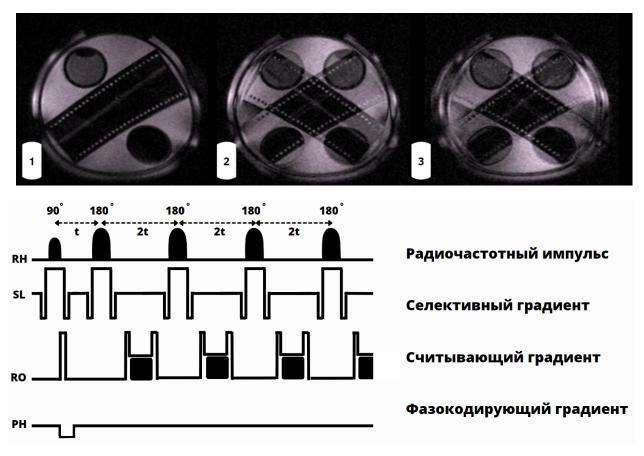
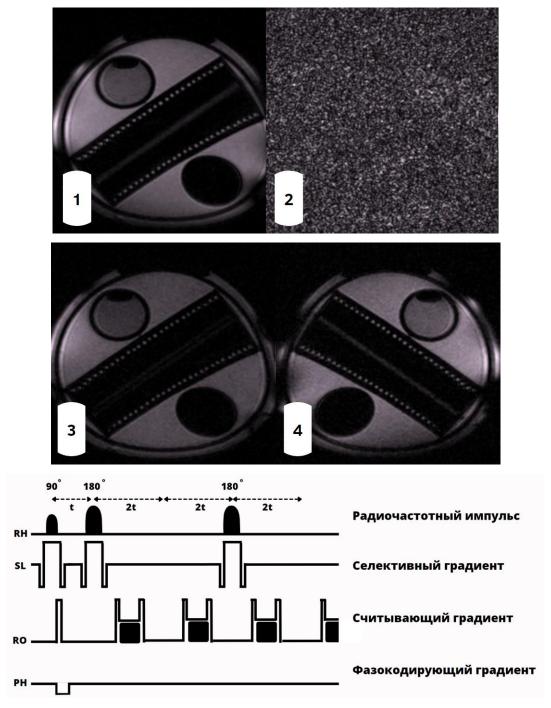



Рисунок 7 -. Предварительные результаты измерений фантома при параметрах: $TR = 500 \ TE = 20$

У нас получились изображения с наложением зеркальной картинки.

Было выяснено, что это происходит из-за того, что во время регистрации спинового эха также регистрируется и градиентное эхо. Вследствие чего и происходит наложение изображения от градиентного эха на изображение, полученное от спинового эха. Рассмотрим рисунок 8.

Pисунок 8 -. Pезультаты измерений фантома при параметрах: $TR = 2000\ TE = 50$. Bыключены четные импульсы

Для того, чтобы разделить спиновое и градиентное эхо, мы решили не подавать четные 180° импульсы, но при этом также регистрировали эхо. Таким образом нам удалось избежать наложений картинок, но мы потеряли 2 изображение. Также наблюдались скачки яркости изображений.

Так на рисунке 8 показано, что 4 изображение, полученное от градиентного эха, ярче 3 изображения, полученного от спинового эха.

Изучив литературу и разобравшись с проблемой, нам удалось доработать нашу последовательность Мульти-эхо и добиться качественных снимков. При этом нет наложений и видны все изображения (рисунок 9).

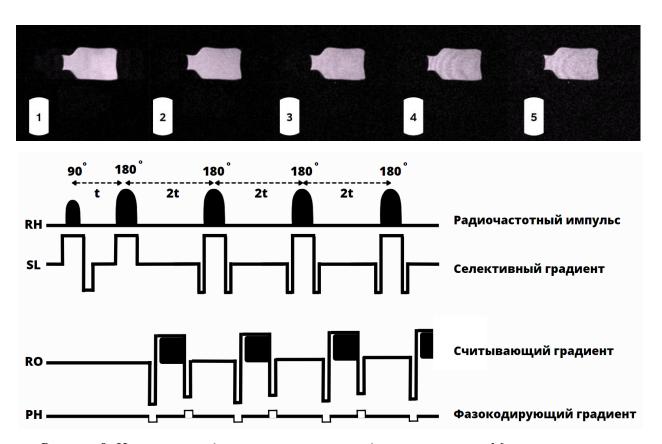


Рисунок 9. Измерения модернизированной последовательностью Мульти-эхо при параметрах: $TR = 2000 \ TE = 20$

На рисунке 10 внизу представлена последовательность Мульти-эхо. Мы включили все 180° импульсы и изменили селективный, считывающий и фазокодирующий градиенты.

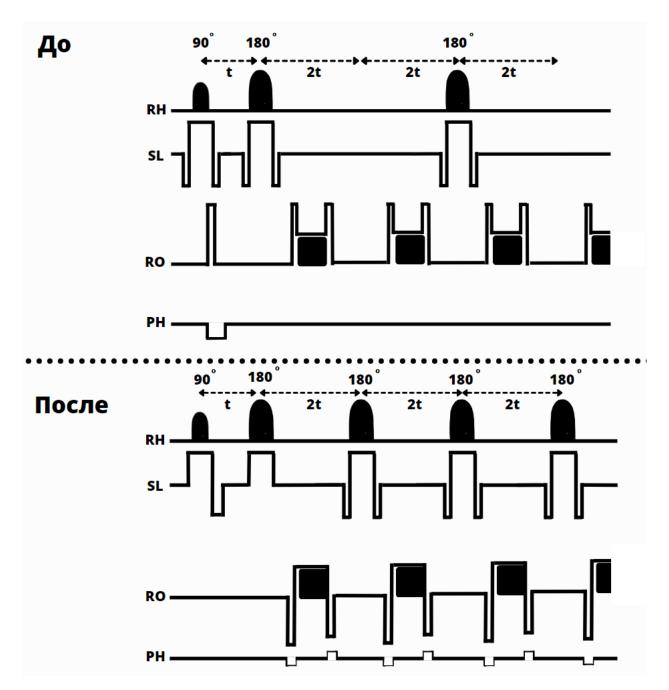


Рисунок 10 - Последовательность до и после модернизации.

На рисунке 11 приведены графики релаксационных спадов, измеренных по яркости нескольких изображений, полученных по соответствующим сигналам эха.

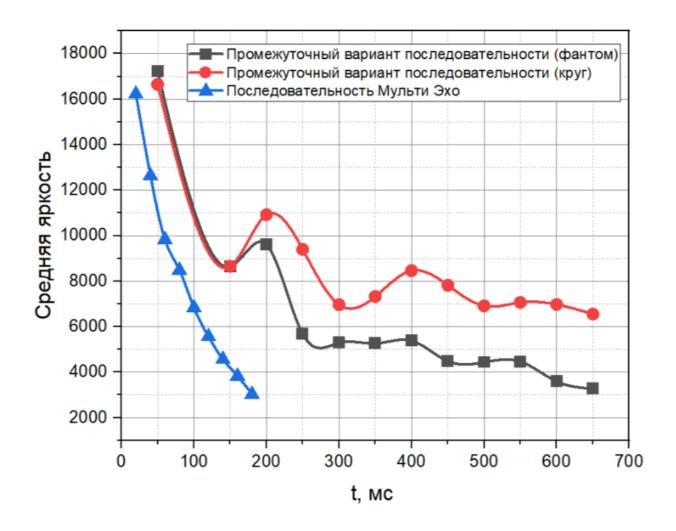


Рисунок 11 - Сравнение релаксационных спадов, измеренных по яркости нескольких изображений, полученных по соответствующим сигналам эха

Красный и Серый графики были построены на значениях яркости двух элементов фантома, который был измерен промежуточной импульсной последовательностью с выключенными четными импульсами. Синий график — измерения проведены с последовательностью Мульти-эхо. Видно, что на протяжении всего сканирования не было никаких скачков яркости, яркость убывает равномерно.

ЗАКЛЮЧЕНИЕ

- 1. В данной работе была разработана эффективная импульсная последовательность для среднеполевой томографии, которая позволила повысить информативность обследований на специализированном магнитно-резонансном томографе с индукцией магнитного поля 0.4 Тл. Томограф был предоставлен ФИЦ КазНЦ РАН в лаборатории методов медицинской физики.
- 2. Доработано программное обеспечения для создания импульсных последовательностей. Проведены исследования на фантоме и съемка кисти руки пациента и других объектов с применением новой импульсной последовательности.

Наша команда, где я была руководителем проекта, выиграла конкурс проектом: «Студенческий стартап» c «Создание новых методик среднеполевой магнитно-резонансной томографии для повышения чувствительности диагностики и сокращения времени обследования пациентов» над которым мы сейчас работаем. Проект на конкурс подавался от Института физики КФУ. Тема моей ВКР затрагивает тему проекта, но работа над стартапом гораздо шире.

СПИСОК ЛИТЕРАТУРЫ

- [1] Ринк, П.А. Магнитный резонанс в медицине. Основной учебник Европейского Форума по магнитному резонансу. Пер. с англ. / Под ред. П. А. Ринка, изд. третье, перераб. Изд. «Blackwell Scientific Publication». Oxford. 1993. 228 с.
- [2] Аганов, А. В. Введение в магнитнорезонансную томографию / А. В. Аганов. Казань: Изд-во Казан. ун-та, 2014 64 с.
- [3] Москалев, А.К. Курс лекций по дисциплине «радиоспектроскопия». Красноярск – 2007 – 126с
- [4] Reiser, M.F. «Magnetic Resonance Tomography» / M.F. Reiser, W. Semmler, H. Hricak. Изд-во Springer 2007
- [5] Purcell, E.M. Resonance Absorption by Nuclear Magnetic Moments in a Solid / E. M. Purcell, H. C. Torrey, R. V. Pound. Physical Review. 1946. V. 69. P. 37-38.
- [6] Андреев, Н.К. К истории развития и о состоянии ЯМР интроскопии в стране / Бюллетень «Новости ЯМР в письмах». Казань. 2007. № 1- 4.
- [7] Физическая энциклопедия. Том 5 / М.: Научное издательство «Большая российская энциклопедия». 1998. 760 с.
- [8] Эрнст, Р., Боденхаузен, Дж., Вокаун, А. ЯМР в одном и двух измерениях: Пер. с англ. М.: Мир. 1990. 711 с.
- [9] Фаррар, Т., Беккер, Э. Импульсная и Фурье-спектроскопия ЯМР. Пер. с англ. Б.А. Квасова /Под ред. Э.И. Федина. М.: Мир. 1973. 162 с.
- [10] Дероум, Э. Современные методы ЯМР для химических исследований: Пер. с англ. М.: Мир. 1992. 403 с.
- [11] Сергеев, Н. М. Спектроскопия ЯМР (для химиков-органиков) / М.: Издательство Моск. университета. 1981. 279 с.