
УЧЕНЫЕ ЗАПИСКИ КАЗАНСКОГО УНИВЕРСИТЕТА.
СЕРИЯ ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

2018, Т. 160, кн. 2 ISSN 2541-7746 (Print)
С. 309–316 ISSN 2500-2198 (Online)

UDK 519.226.3

LOWER BOUNDS FOR THE EXPECTED SAMPLE SIZE
IN THE CLASSICAL AND d-POSTERIOR STATISTICAL

PROBLEMS

I.A. Kareev, I.N. Volodin
Kazan Federal University, Kazan, 420008 Russia

Abstract

In this report, the problem of construction of lower boundaries for the expected sample
size of statistical inference procedures has been considered. The general methodology for con-
struction of the lower bounds and the review of the main results for the classical statistical
problems have been presented along with the analysis of the new and earlier results on adop-
tion of the technique to the d -posterior approach. Namely, the hypothesis testing problem has
been considered.
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Introduction

In mathematical statistics, we have some inequalities determining lower boundaries
for various components of the risk functions of estimating and hypotheses distingui-
shing procedures. Rao–Cramér’s inequality is the most famous one. It determines
a lower boundary for the estimation variance constricted by a sample with the fixed size
when the distribution of an observed random variable satisfies certain regularity con-
ditions. Various generalizations and modifications of this inequality were developed by
A. Bhattachryya, L. Bolshev, E. Barankin, J. Chipman, H. Robbins, et al. J. Wolfowitz
generalized Rao–Cramer’s inequality for sequential sampling.

Another well-known inequality was introduced by A. Wald. He determined a lower
boundary for the expected sample size in any sequential procedure regarding the prob-
lem of distinguishing between two simple hypotheses with the given limits on the pro-
babilities of type-I and type-II errors. W. Hoeffding and G. Simons generalized this
inequality for the case of distinguishing between more than two hypotheses (see [1]).
Later, in the 1960s-1880s, I. Volodin [2–12], as well as some other authors, have estab-
lished several analogous inequalities for the expected total sample size in the problems
of hypothesis testing, classification, selection, etc. The essential similarity of all these
inequalities is that they are only simple implications of a single important property of
the Kullback-Leibler divergence: data contained in the statistic set do not exceed those
contained in the sample.

Several uses can be distinguished for such lower boundaries:
1) they can be used as a robust criterion of sample size insufficiency — if the expected

sample size is less than the lower boundary, then there is no appropriate procedure for
solving the statistical problem with the given limits on the risks;

2) they can be used to measure the efficiency of existing procedures by comparing
their needed sample size to some theoretical optimal one;

3) they can be used as some another measure of difficulty of a problem.
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This paper provides an overview of the obtained lower boundaries for the average
sample size with regard to many classical problems of mathematical statistics (section
1) and presents the new and earlier results on adaptation of the lower bounds construc-
tion methods for Bayesian problems, namely on hypothesis testing in the d-posterior
approach (in section 2).

1. Volodin’s lower bounds in the general form
and their applications for the classical statistical problems

In his earliest investigations, I.N. Volodin introduced a general method for the con-
struction of lower boundaries for the expected sample size of statistical inference proce-
dures [5]. The method allows to obtain the closed form of lower boundaries for a wide
range of statistical problems. Here, we provide Malyutov’s modification [10] of that
method, which gives more precise lower bounds in problems when several independent
populations are involved.

1.1. The lower bound in the general form (see [5, 10]). Let us denote the
Kullback–Leibler divergence by

KL(F1, F2) =
∫

ln
dF1

dF2
dF1

for some distributions F1 and F2 . When F1 = F (θ), F2 = F (ϑ) (i.e., they coincide up
to the value of parameter θ ) we denote KL(θ, ϑ;F ) = KL(F (θ), F (ϑ)) .

Let us consider the general problem of statistical inference where we observe m
populations X1, . . . , Xm independently. The lower boundary for the expected total
sample size ν = ν1 + · · ·+ νm is given by the inequality:

E(ν | θ) ≥ inf
ϕ

sup
ϑ∈Θ

KL(θ, ϑ; δϕ)
/ m∑

i=1

πϕ
i KL(θ, ϑ; Xi) ∀ θ ∈ Θ, (1)

where δϕ is a random variable denoting the decision made by the procedure ϕ after

the experiment is over; πi(θ) = E
(
νϕ

i

/ m∑

j=1

νϕ
j

)
is the expected ratio of observations,

which ϕ takes from the i -th population.
When dom δ ∈ {d0, d1} (a bivalued random variable), then

KL(θ, ϑ ; δϕ) = w
(
ψ(d0 | θ) , 1− ψ(d0 |ϑ)

)
,

where

w(x, y) = x ln
x

1− y
+ (1− x) ln

1− x

y
, ψ(d | θ) = P(δϕ = d | θ).

1.2. Multiple simple hypotheses testing (see [2]). Consider the problem of
distinguishing between m ≥ 3 simple hypotheses

Hi : θ = θi, i = 1, . . . , m,

about the distribution of a population X ∼ F (θ) , θ ∈ Θ ⊂ R .
For this problem, the inequality (1) gives us

Eθiν ≥ max
j 6=i

r∑

k=1

αik ln(αik/αjk)
/

KL(θi, θj ; X), i = 1, . . . ,m,

where ‖αij‖ = ‖ψ(dj | θi) ‖ is a matrix consisting of values of the operating characte-
ristic (the strength of the procedure ϕ).
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1.3. Goodness-of-fit test (see [6]). Let F be a family of mutually absolutely
continuous distributions F in the same measurable space. We consider the problem of
testing the null hypothesis (for some ∆ > 0)

H0 : F = F0 against H1 : sup
A∈A

|F (A)− F0(A)| ≥ ∆

about the distribution F of a population X with the given limitation α0, α1 on proba-
bilities of type-I and type-II errors. Here and elsewhere, the A is the algebra of the prob-
lem’s probabilistic space (X ,A) .

For this problem, we obtained the lower boundaries on the expected sample size
when H1 is true:

E(ν |F ∈ H1) ≥ w(α1, α0)
KL(F, F0)

.

When H0 is true, the lower bound is:

E(ν |F ∈ H0) ≥ w(α0, α1)
inf

F∈H1
KL(F0, F )

=
w(α0, α1)

−h(1/2− 2∆/3)− C ·∆8
,

where
h(p) = p ln

p + ∆
p

+ (1− p) ln
1− p−∆

1− p

and

0 ≤ C ≤ 1024
3645

(
1 +

8∆6

91

)
.

1.4. Homogeneity test (see [6]). Let F be a family of mutually absolutely
continuous distributions F on the same measurable space. Let X1 ∼ F1 and X2 ∼ F2

be the population which can be observed in an arbitrary way, so ν = ν1+ν2 . We consider
the problem of testing the null hypothesis (for some ∆ > 0)

H0 : F1 = F2 ∈ F0 against H1 : sup
A∈A

|F1(A)− F2(A)| ≥ ∆

subject to the limitations α0, α1 on probabilities of type-I and type-II errors.
For this problem, there is the following adaptation of the general lower boundary (1).

When H0 is true:

E(ν |H0) ≥ 2w(α0, α1)
− ln(1−∆)

. (2)

When H1 is true:

E(ν |H1) ≥ 2w(α1, α0)

ln(1−∆2) + ∆ ln
1 + ∆
1−∆

. (3)

1.5. Test for invariance to a group of transformations (see [7]). Let G be
a group of transformations and consider two sets of distributions:

F0 = {F : F (A) = F (gA) ∀A ∈ A, ∀g ∈ G},
F1 =

{
F : ∃g ∈ G, ∃A0 ⊆ A sup

A∈A0

|F (A)− F (gA)| ≥ ∆
}

, ∆ > 0.

The problem of invariance to a group of transformation consists in testing the null
hypothesis

H0 : F ∈ F0 against H1 : F ∈ F1

about the distribution F of the population subject to the limits α0, α1 on the risk.
Surprisingly, the adaptation of the general lower boundary (1) yields the same form

as of the lower boundaries for the homogeneity testing problem (2), (3).
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1.6. Selection problem (see [13–15]). Let us have m ≥ 3 populations
Xi ∼ N (θi, σ

2), i = 1, . . . , m with the same known σ2 . The problem is to select
the population with the highest value of θ , i.e., to select one of the hypotheses

Hi : θi ≥ θj + ∆ ∀ j 6= i, ∆ > 0,

subject to the limit α on the wrong decision probability. The populations might be

observed in an arbitrary way, so the total sample size ν =
m∑

i=1

νi .

The lower boundary for the least favorable case:

sup
θ1,...,θm

E(ν | θ1, . . . , θm) ≥ (
√

m− 1 + 1)2

2∆2
σ2w(α, α).

1.7. Ranking problem (see [14, 16]). Let us have m ≥ 3 populations
Xi ∼ N (θi, σ

2), i = 1, . . . , m with the same known σ2 . It is known that |θi − θj | ≥ ∆,
∆ > 0 . The problem is to place the population in an ascending order of values θi

subject to the limit α on the probability of wrong ordering. The populations can be

observed in an arbitrary way, so the total sample size ν =
m∑

i=1

νi .

The lower bound for the least favorable case:

sup
θ1,...,θm

E(ν | θ1, . . . , θm) ≥ m− 1
∆2

σ2w(α, α).

2. The lower bounds for hypotheses testing in the d-posterior approach

We consider the following Bayesing problem. Let X ∼ F (ϑ) , where ϑ ∈ Θ ⊆ R is
the unknown random parameter of interest; let ϑ ∼ G . The problem is to distinguish
between the null hypotheses

H0 : ϑ ∈ Θ0, H1 : ϑ ∈ Θ1

based on the observations from X , where Θ0 + Θ1 = Θ . Let us put Θ0 = (−∞, 0] ,
Θ1 = (0,∞) .

Let dom δϕ ∈ {d0, d1} , where d0 denotes the selection of H0 by a procedure ϕ
after an experiment, and d1 is the selection of H1 . In the d-posterior approach, type-I
(on the left) and type-II (on the right) d-risks are considered:

P(ϑ ≤ 0| δ = d1), P(ϑ > 0| δ = d0).

Type-I d-risk is a probability of that H0 is correct among all experiments for which
the procedure ϕ selected H1 by the results of the experiment. On the contrary, type-II
d-risk is a probability of that H1 is correct among all experiments for which H0 was
selected.

For the considered hypotheses, the testing problem we bring in the constraints – the
type-I and type-II d-risk must be less than the prescribed limits β0 and β1 :

P(ϑ ≤ 0| δ = d1) ≤ β0, P(ϑ > 0| δ = d0) ≤ β1. (4)

We suggest the following lower boundary for the expected sample size when H0 is
true:

1
G0

∫

θ∈Θ0

Eθν dG(θ) ≥ L,
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where
L = inf

ϕ

1
G0G1

∫

θ∈Θ0

dG(θ)
∫

ϑ∈Θ1

dG(ϑ)
KL(θ, ϑ; δ)
KL(θ, ϑ; X)

, (5)

Gk = G(Θk) , and inf
ϕ

is taken subject to restrictions (4) on the d-risks for ϕ . Note

that

KL(θ, ϑ; δ) = w(ψ(θ), 1− ψ(ϑ)) = ψ(θ) ln
ψ(θ)
ψ(ϑ)

+ (1− ψ(θ)) ln
1− ψ(θ)
1− ψ(ϑ)

,

where ψ(θ) = P(δ = d0| θ) . Namely, the lower bound depends on the procedure ϕ only
through its operative characteristic. Thus, we can consider inf by ψ rather than inf
by ϕ .

Lemma 1. The constrains on d-risks

P(ϑ ≤ 0| δ = d1) = β0, P(ϑ > 0| δ = d0) = β1.

are equivalent to the following constraints on the “Bayesian” risks:
∫

Θ0

ψ(θ)dG(θ) = a0,

∫

Θ1

ψ(θ)dG(θ) = a1, (6)

where
a0 =

(1− β1)(G0 − β0)
1− β0 − β1

, a1 =
β1(G0 − β0)
1− β0 − β1

(7)

Proof. We put

ψk =
∫

Θk

ψ(θ) dG(θ), k = 0, 1.

The equations on d-risks can be rewritten in terms of ψk as

G0 − ψ0

1− ψ0 − ψ1
= β0,

ψ1

ψ0 + ψ1
= β1,

from which we easily obtain the statement of the lemma.

By swapping the order of inf and the integration, we obtain the basic estimate for
the lower boundary.

Theorem 1. Let us suppose that the inf in (5) is reached on the procedure with
the non-increasing operating characteristic ψ(θ) . Then,

L ≥ 1
G0G1

∫

θ∈Θ0

dG(θ)
∫

ϑ∈Θ1

dG(ϑ) I
(
h0(θ) ≥ h1(ϑ)

)w
(
h0(θ), 1− h1(ϑ)

)

KL(θ, ϑ; X)
,

where
h0(θ) =

a0 −G(θ)
G0 −G(θ)

, h1(ϑ) =
a1

G(ϑ)−G0
,

and a0 , a1 are as in (7):

a0 =
(1− β1)(G0 − β0)

1− β0 − β1
, a1 =

β1(G0 − β0)
1− β0 − β1

.
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Proof. Let us consider a set H of all non-increasing functions h(θ) , such that
h(−∞) = 1 , h(∞) = 0 . Then,

L ≥ 1
G0G1

∫

θ∈Θ0

dG(θ)
∫

ϑ∈Θ1

dG(ϑ)
infh∈H w

(
h(θ), 1− h(ϑ)

)

KL(θ, ϑ; X)

For fixed θ ∈ Θ0, ϑ ∈ Θ1 , the minimum by h(θ) of w
(
h(θ), 1 − h(ϑ)

)
subject to

the constrains (6) is reached on a step-function of form

h(x) =





1, x ≤ θ;

y0, θ < x ≤ 0;

y1, 0 < x ≤ ϑ;

0, ϑ < x.

Now, minimizing the expression by y0, y1 gives the statement of the theorem.

Conclusions

In this paper, the results of the studies on the problems of construction of lower
bounds for the expected sample size of statistical inference procedures are presented.
As the review shows, the problem of construction of lower bounds for the classical
statistical problems is sufficiently developed.

On the other hand, little has been done for the case of the Bayesian paradigm. In this
paper, we present some new basic results on adaptation of the technique of lower bounds
construction to the d-posterior approach. As the study shows, the construction of lower
boundaries in this setting can involve solving integral minimization. Apparently, one of
the best approaches is to apply calculus of the variations methods. Another one is to
provide some additional assumptions and simplifications.
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УДК 519.226.3

Нижние границы для среднего объёма выборки
для классических и d-апостериорных задач

И.А. Кареев, И.Н. Володин

Казанский (Приволжский) федеральный университет, г. Казань, 420008, Россия

Аннотация

В работе рассмотрена проблема построения нижних границ для среднего объёма на-
блюдений для процедур статистического вывода. Приведены общая методология постро-
ения нижних границ и обзор основных результатов, полученных для классических стати-
стических задач. Представлены новые результаты по адаптации этой методологии к зада-
чам, сформулированным согласно d -апостериорному подходу. В частности, рассмотрена
задача построения проверки сложной гипотезы в d -апостериорной формулировке.

Ключевые слова: средний объём выборки, нижние границы, эффективность, d -апо-
стериорный подход, Байесовская парадигма, проверка гипотез

Поступила в редакцию
14.12.17

Кареев Искандер Амирович, кандидат физико-математических наук, доцент ка-
федры математической статистики

Казанский (Приволжский) федеральный университет
ул. Кремлевская, д. 18, г. Казань, 420008, Россия

E-mail: kareevia@gmail.com

Володин Игорь Николаевич, доктор физико-математических наук, профессор ка-
федры математической статистики

Казанский (Приволжский) федеральный университет
ул. Кремлевская, д. 18, г. Казань, 420008, Россия ]

〈 For citation : Kareev I.A., Volodin I.N. Lower bounds for the expected sample
size in the classical and d -posterior statistical problems. Uchenye Zapiski Kazanskogo
Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 2, pp. 309–316.

〉

〈 Для цитирования : Kareev I.A., Volodin I.N. Lower bounds for the expected sample
size in the classical and d -posterior statistical problems // Учен. зап. Казан. ун-та. Сер.
Физ.-матем. науки. – 2018. – Т. 160, кн. 2. – С. 309–316.

〉


