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UDK 512.56+12.57ON LATTICES CONNECTED WITH VARIOUS TYPESOF CLASSES OF ALGEBRAIC STRUCTURESA. Nurakunov, M. Semenova, A. Zamojska-DzienioAbstratThis survey paper reviews some reent results related to various derived latties onnetedwith various types of lasses of algebrai strutures whih were obtained by the authors.Key words: axiomatizable lass, variety, quasivariety, prevariety, �nitary prevariety, iden-tity, quasi-identity, lattie, subsemilattie lattie.IntrodutionThis survey paper presents reent results obtained for latties of sublasses of ertaintypes. Mainly, we fous on representing latties by latties of relatively axiomatizablelasses and those of (�nitary) prevarieties, also mentioning some general algebrai andomputational properties of those latties.Study of suh latties has a long history and goes bak to G. Birkho� and A.I. Malt-sev. In [1℄ and [2℄, they have independently asked about whih latties an be repre-sented as latties of (quasi)varieties, that is, lasses de�ned by (quasi-)identities. It isone of the oldest and hardest problems in lattie theory. A number of remarkable re-sults was obtained onerning this question of Birkho� and Maltsev. An advane in theBirkho�-Maltsev problem was made by K.V. Adariheva, W. Dziobiak and V.A. Gor-bunov by desribing algebrai atomisti latties isomorphi to quasivariety latties in [3℄,see also [4, Theorem 5.3.17℄. It is also known (V.A. Gorbunov [4℄) that all atomistialgebrai quasivariety latties are isomorphi to the so-alled latties of algebrai sub-sets of algebrai latties. We also note that those latties are dual to latties of suitable�rst-order theories (f. results of K. Adariheva, J.B. Nation [5�7℄ and also the talk ofG.F. MNulty on latties of equational theories [8℄). For other results onerning thistopi, we refer to the book [4, Chapter 5℄, see also the survey paper [9℄, as well as tothe bibliography lists in those two. In addition to these, latties of pseudovarieties of�nite algebras were investigated in a number of papers, see, for example, [10℄.A.M. Nurakunov proved in [11℄ that there are quasivarieties of algebras (strutureswith no relation in the signature) suh that the set of �nite sublatties of their quasi-variety latties is not omputable, see Setion 6. This result shows in partiular that�nding a omplete desription of quasivariety latties should be very hard. But there aresome restrited versions of the Birkho� �Maltsev problem whih are still of big interest.While sub(quasi)variety latties were studied in a onsiderable extent, lat-ties of other �rst-order axiomatizable lasses remain almost untouhed. In [12℄,D.E. Pal'hunov has proved that any at most ountable omplete lattie is isomorphito a lattie of relatively axiomatizable lasses. In [12, Problem 1℄, he asked whether thesame result holds for an arbitrary omplete lattie. We answer the latter question inthe positive in Theorem 4, whih is based on the result of V.A. Gorbunov [13℄.All lasses are abstrat ; that is, they are losed under isomorphi opies. For example,when writing {Ai | i ∈ I} for a set I , we always mean the lass of isomorphi opies ofstrutures from the set {Ai | i ∈ I} .For all the onepts whih are not de�ned here, we refer to [4℄.



168 A. NURAKUNOV ET AL.1. Basi oneptsFor an arbitrary signature σ , let K(σ) denote the lass of all strutures of sig-nature σ . Let also T(σ) denote the variety of σ -strutures de�ned by the identity
∀xy x = y .Following [4℄, for a lass K ⊆ K(σ) , let V(K) [Q(K) , respetively℄ denote theleast [quasi-℄variety ontaining K . Let H(K) denote the lass of strutures from K(σ)whih are homomorphi images of strutures from K ; let P(K) [Pω(K) , respetively℄denote the lass of strutures from K(σ) whih are isomorphi to Cartesian produtsof [�nitely many℄ strutures from K ; let Ps(K) [Pω

s (K) , respetively℄ denote the lassof strutures from K(σ) whih are isomorphi to subdiret produts of [�nitely many℄strutures from K ; let Ls(K) denote the lass of strutures from K(σ) whih areisomorphi to superdiret limits of strutures from K ; and let S(K) denote the lassof strutures from K(σ) whih are isomorphi to substrutures of strutures from K .Finally, let Kfin denote the lass of �nite members of K .Aording to Birkho�'s Theorem (see [4, Setion 2.3℄),
V(K) = HSP(K) = HPsS(K) = HPs(K),while aording to [14, Theorem 5.2℄ (see also [4, Theorem 2.3.6℄),

Q(K) = LsPsS(K) = LsPs(K).A lass K ⊆K(σ) is a (�nitary) prevariety if K = SP(K) = PsS(K) (K = SPω(K) =
Pω
s S(K) , respetively). The notion of a �nitary prevariety (in ase of signature on-taining no relation symbols) was introdued by A. Vernitski in [15℄. Aording to [16℄,a lass is a prevariety if and only if it an be de�ned by in�nite impliations.De�nition 1 [4, Setion 2.5℄. Let K′ ⊆ K ⊆ K(σ) . Then K′ is K-(quasi-)equational if K′ = K ∩Mod(Σ) for some set Σ of (quasi-)identities of signature σ .For the following onept, see [4℄ and also [17℄.De�nition 2. Let K′ ⊆ K ⊆ K(σ) . Then K′ is a (�nitary) K-prevariety if

K′ = K ∩ A for some (�nitary) prevariety A ⊆ K(σ) ; K′ is a K-(quasi)varietyif K′ = K ∩A for some (quasi)variety A ⊆K(σ) .Equivalently, K′ is a (�nitary) K-prevariety if and only if K′ = K ∩ SP(K′)(K′ = K ∩ SPω(K′) , respetively). Similarly, K′ is a K-(quasi)variety if and only if
K′ = K ∩V(K′) (K′ = K ∩Q(K′) , respetively).De�nition 3. A lass K ⊆ K(σ)fin is a pseudo-quasivariety if it is a �nitaryprevariety.Note that K ⊆ K(σ)fin is a pseudo-quasivariety if and only if it is a (�nitary)
Kfin -prevariety, and if and only if it is a Kfin -quasivariety.Let Lv(K) denote the set of all K-equational sublasses of K , while Lq(K) de-notes the set of all K-quasi-equational sublasses of K . Let also Lp(K) (Lpω(K) ,respetively) denote the set of all (�nitary) K-prevarieties. Ordered with respet toset inlusion, all the three form omplete latties. Note that in the ase of (�nitary)prevarieties, we also allow the ase when the ground of a lattie is a proper lass.De�nition 4. Let L be a omplete lattie. A subset A ⊆ L is a omplete meetsubsemilattie of L , if ∧

X ∈ A for any X ⊆ A . A omplete meet subsemilattie A ⊆ Lis an algebrai subset of L if ∨

X ∈ A for any non-empty up-direted subset X of A .



ON LATTICES CONNECTED WITH ALGEBRAIC STRUCTURES 169A binary relation R on a meet semilattie 〈S,∧〉 is distributive if for any a, b, c ∈ Srelation (c, a ∧ b) ∈ R implies that c = a′ ∧ b′ for some a′, b′ ∈ S suh that (a′, a) ∈ Rand (b′, b) ∈ R . The equality relation = is obviously distributive.For a meet semilattie 〈S,∧, 1〉 with unit and for any binary relation R ⊆ S2 , let
Sub(S, R) denote the set of all R -losed subsemilatties of S ; that is, X ∈ Sub(S, R)if and only if the following onditions hold:
•

∧

F ∈ X for all �nite F ⊆ X ;
• b ∈ X and (a, b) ∈ R imply a ∈ X .For a omplete lattie L , let Subc(L, R) denote the set of all omplete R -losed meetsubsemilatties of L , while Sp(L, R) denotes the set of all algebrai subsets of L whihare R -losed. Let also F(L, R) denote the set of R -losed �lters of L . We write Sub(L) ,

Subc(L) , Sp(L) , and F(L) instead of Sub(L, =) , Subc(L, =) , Sp(L, =) , and F(L, =) ,respetively. Ordered by inlusion, Sub(L, R) , Subc(L, R) , and Sp(L, R) form ompletelatties, while ordered by reverse inlusion, F(L, R) also forms a omplete lattie.2. Representing by ongruene lattiesFor a struture A ∈ K(σ) and for a lass K ⊆K(σ) , let ConKA denote the set ofongruenes θ on A suh that A/θ ∈ K . If K = K(σ) , then we write ConA insteadof ConKA . For θ, θ′ ∈ ConA , we write θ′ E θ if A/θ′ embeds into A/θ . Then E isalled the embedding relation. Obviously, this relation is distributive.The next theorem ombines the haraterization theorem proved for quasivarietiesby V.A. Gorbunov and V.I. Tumanov [14, 19℄, see also [4, Corollaries 5.2.2, 5.2.6℄ withits analogue for (�nitary) prevarieties obtained in [17℄.Theorem 1. Let A ⊆K(σ) be a prevariety, and let A ∈ A . The following holds:
Lp(H(A) ∩A) ∼= Subc(ConAA, E);

Lpω(H(A) ∩A) ∼= Sub(ConAA, E).If A is [l]-projetive in A , then
Lq(H(A) ∩A) ∼= Sp(ConAA, E);

Lv(H(A) ∩A) ∼= F(ConAA, E).In partiular, one gets the followingCorollary 1 [4, Corollaries 5.2.2, 5.2.5℄. Let A ⊆ K(σ) be a prevariety, andlet FK(ω) ∈ A be a K-free struture of ountable rank. The following holds:
Lq(A) ∼= Sp

(

ConK FK(ω), E
)

;

Lv(A) ∼= F
(

ConKFK(ω), E
)

.For any lass K ⊆ K(σ) and any ardinal κ , let Kκ denote the lass of κ-generatedstrutures from K . The following statement is an analogue of Corollary 1 for prevari-eties.Corollary 2 [17℄. For any prevariety K ⊆ K(σ) and for any ardinal κ ,
Lp(Kκ) ∼= Subc

(

ConKFK(κ), E
)

.We note that if K is a prevariety, then for any struture A , the ongruene lattie
ConKA is a omplete lattie, whih is algebrai if and only if K is a quasivariety.In the next setion, we will state a partial onverse of Corollary 1. More preisely, any



170 A. NURAKUNOV ET AL.omplete lattie is isomorphi to the lattie of relative varieties of a prevariety, anylattie of algebrai subsets of an algebrai lattie is isomorphi to a quasivariety lattie,any lattie of omplete subsemilatties of a omplete lattie is isomorphi to a prevarietylattie, and any subsemilattie lattie is isomorphi to a �nitary prevariety lattie, seePropositions 1, 2 and 3.A well-known and long-standing problem in lattie theory asks whether any �nitelattie is isomorphi to the ongruene lattie of a �nite algebra of �nite signature. Thenext result proved by A.M. Nurakunov [20℄ shows that any �nite lattie is isomorphito a relative ongruene lattie of a �nite algebra of �nite signature.Theorem 2 [20℄. For any �nite lattie L , there is a quasivariety K of unars [poin-ted Abelian groups, respetively ] and a �nite algebra A ∈ K suh that L ∼= ConK(A) .The following result obtained by A.M. Nurakunov [21℄ gives a desription of lattiesof subvarieties in terms of ongruene latties.Theorem 3 [21℄. A lattie is isomorphi to a variety lattie if and only if it is duallyisomorphi to the ongruene lattie of a monoid with two additional unary operationspossessing ertain properties.Based on ideas from [21℄, K. Adariheva and J.B. Nation proved in [5℄ an analogueof Theorem 3 for quasivariety latties: quasivariety latties are exatly latties duallyisomorphi to ongruene latties of semilatties endowed with unary operations pos-sessing ertain properties. In addition to that, J.B. Nation proved in [7, Corollary 16℄that the ongruene lattie of any semilattie with operators is dually isomorphi to thelattie of subprevarieties of a prevariety.3. Representation by latties of sublasses3.1. Relation symbols. Let σ = {pi | i ∈ I} be a signature onsisting of unaryrelation symbols only. Furthermore, for any set X ⊆ I , let AX denote a struture from
T(σ) suh that AX |= ∀x pi(x) if and only if i ∈ X . Obviously, T(σ) onsists ofisomorphi opies of strutures AX , X ⊆ I .Let 〈X, C〉 be a losure spae and L(X, C) be the losure lattie on X . We put

σ(X) = {px | x ∈ X}.Let Σ(X, C) onsist of (in general in�nite) impliations of the form
∀x

∧

a∈A

pa(x)→ pb(x), A ⊆ X, b ∈ C(A).Of ourse, if the set X is �nite, then the signature σ(X) is �nite, while Σ(X, C)beomes a �nite set of quasi-identities.The lass Mod
(

Σ(X, C)
) is obviously losed under substrutures and Cartesianproduts, whene it is a prevariety. Therefore, the lass K(X, C) = Mod

(

Σ(X, C)
)

∩

∩T
(

σ(X)
) is also a prevariety.Lemma 1 [17℄. For any losure spae 〈X, C〉 , the lass K(X, C) onsists of iso-morphi opies of strutures AB , where B ∈ L(X, C) .The following proposition shows, in partiular, that any omplete lattie is isomor-phi to the lattie of relative equational lasses of a prevariety. Originally, it was provedby V.A. Gorbunov [13, Example 4.9℄. In [17℄, M. Semenova and A. Zamojska-Dzieniogave a short diret proof; a sketh of it is presented below.



ON LATTICES CONNECTED WITH ALGEBRAIC STRUCTURES 171Proposition 1. For any omplete lattie L , there is a signature σ onsisting onlyof unary relation symbols, and a prevariety K ⊆ T(σ) suh that L∂ ∼= Lv
(

K
) and

Subc(L) ∼= Lp
(

K
) .Sketh of proof. Sine the lattie L is omplete there is a losure spae 〈X, C〉suh that L ∼= L(X, C) . Let σ = σ(X) and K = K(X, C) . Then K is a prevariety anda map ϕ : L(X, C)→ Lv(K) de�ned by the rule

ϕ : B 7→ {AF ∈ T(σ) | F ∈ L(X, C) and B ⊆ F}, B ∈ L(X, C),establishes a dual lattie isomorphism.The following proposition is a �nitary analogue of Proposition 1 for prevarieties.Proposition 2 [17℄. For any meet semilattie 〈S,∧, 1〉 with unit, there is a signa-ture σ onsisting only of unary relation symbols, and a �nitary prevariety K ⊆ T(σ)suh that Sub(S) ∼= Lpω(K) .Combining Propositions 1, 2, one gets the following proposition. A part of thisresult onerning relative (quasi)variety latties was proved by V.A. Gorbunov andV.I. Tumanov [14, 19℄, see also [4, Theorem 5.2.8℄. In the present form, it was provedin [17℄.Proposition 3. For any omplete algebrai lattie L , there is a signature σonsisting only of unary relation symbols, and a quasivariety K ⊆ T(σ) suh that
L∂ ∼= Lv

(

K
) , Sp(L) ∼= Lq

(

K
) , Subc(L) ∼= Lp(K) , and Sub(L) ∼= Lpω(K) .From Proposition 3, we get also the following statement whih appeared in [17℄.Corollary 3. The lass of omplete dually algebrai latties oinides with the lassof latties of relative equational lasses of quasivarieties.Proposition 4. For any omplete upper ontinuous lattie L , there is a signature σonsisting only of unary relation symbols, and a prevariety K ⊆ T(σ) suh that Sp(L)embeds into Lq

(

K
) .In general, for a omplete upper ontinuous lattie L , the lattie Sp(L) is notneessarily isomorphi to Lq(K) , see [17℄. However, it is the ase when L is algebrai,as Proposition 3 above shows.Remark 1. It is well-known that quasivariety latties are ompletely join-semidist-ributive and dually algebrai (f. [4, Theorem 5.1.12 and Proposition 5.1.1℄). In ontrast,examples given in [17℄ show that, in general, latties of the form Lq(K) and Lp(K) ,where K is a prevariety, are neither join-semidistributive nor even lower ontinuous.Corollary 4 [17℄. There are prevarieties K suh that neither Lq(K) nor Lp(K)embed into a quasivariety lattie.Using similar methods one an also prove that any omplete lattie is isomorphi tothe lattie of relative equational lasses of a lass of signature with one unary relationsymbol and onstant symbols as well as of signature ontaining only onstant symbols.3.2. A relation symbol and onstants. Let 〈X, C〉 be a �xed losure spae.We onsider the signature σp(X) = {p} ∪ {cx | x ∈ X} , where p is a unary relationsymbol and cx is a onstant symbol for any x ∈ X .



172 A. NURAKUNOV ET AL.Let K′ ⊆ K
(

σp(X)
) be the lass of strutures A = 〈A; σp(X)〉 suh that for any

a ∈ A , there is x ∈ X with a = cAx , and satisfying the following �rst-order sentenes:
∀xy cu = cv → x = y, u 6= v in X ;

∀x cu = cv → p(x), u 6= v in X ;

∀xy
∧

x∈X

p(cx)→ x = y.Furthermore, for any set U ⊆ X , let PU denote a struture from K′ suh that
PU |= p(cx) if and only if x ∈ U . Obviously, K′ onsists of isomorphi opies ofstrutures PU , U ⊆ X . Moreover, PX is the trivial struture.Lemma 2. The following statements hold for any set X .

(i) If A, B ⊆ X , then PA ∈ H(PB) if and only if B ⊆ A .
(ii) Let {Ai | i ∈ I} ⊆ X and A ⊆ X . Then the struture A = PA ∈ K′ isisomorphi to a substruture in B =

∏

i∈I

PAi
if and only if A =

⋂

i∈I Ai .Let Σp(X, C) onsist of the following (in general in�nite) impliations of the form
∧

u∈U

p(cu)→ p(cv), U ⊆ X, v ∈ C(U).Of ourse, if the set X is �nite, then the signature σp(X) is �nite, while Σp(X, C)beomes a �nite set of quasi-identities. Let Kp(X, C) = K′ ∩Mod
(

Σp(X, C)
) .Lemma 3. For any losure spae 〈X, C〉 , the lass Kp(X, C) onsists of isomorphiopies of strutures PB , where B ∈ L(X, C) .Proposition 5. For any omplete lattie L , there is a signature σ onsisting of oneunary relation symbol and |L| many onstant symbols, and there is a lass K ⊆ K(σ)suh that L ∼= Lv

(

K
) and Subc(L

∂) ∼= Lp
(

K
) .Sketh of proof. Sine the lattie L is omplete, there is a losure spae 〈X, C〉suh that L∂ ∼= L(X, C) . Let σ = σp(X) and K = Kp(X, C) . It follows from Lemma 1that the lass K onsists of isomorphi opies of strutures Pψ(a) , where a ∈ L . Now,the map ϕ : L(X, C)→ Lv(K) de�ned by the rule

ϕ : B 7→ {PF ∈ K′ | B ⊆ F ∈ L(X, C)}, B ∈ L(X, C),establishes a dual isomorphism. Moreover, the map ϕ′ : Subc(L
∂) → Lp(K) de�nedby the rule

ϕ′ : B 7→ {Pψ(b) ∈ K′ | b ∈ B}, B ∈ Subc(L
∂),is a lattie isomorphism.Proposition 6. For any meet semilattie 〈S,∧, 1〉 with unit, there is a signature

σ onsisting of one unary relation symbol and |S| many onstant symbols, and there isa lass K ⊆ K(σ) suh that Sub(S) ∼= Lpω(K) .Sketh of proof. Let σ = {p} ∪ {cx | x ∈ S} onsist of a unary relation symbol pand onstant symbols cx , x ∈ S , and let the lass K onsist of isomorphi opies ofstrutures P↓a , where a ∈ S . De�ne a map ϕ : Sub(S)→ Lpω(K) by the rule
ϕ : B 7→ {P↓b ∈ K | b ∈ B}, B ∈ Sub(S).It is a lattie isomorphism.



ON LATTICES CONNECTED WITH ALGEBRAIC STRUCTURES 1733.3. Only onstants. Let 〈X, C〉 be a �xed losure spae. We onsider the sig-nature σ(X) = {c} ∪ {cx | x ∈ X} , where cx is a onstant symbol for any x ∈ X aswell as c is a onstant symbol. In fat, one an proeed without this additional onstant
c , but it is just more onvenient to have it.Let K′ ⊆ K

(

σ(X)
) be the lass of strutures A = 〈A; σ(X)〉 suh that for any

a ∈ A , a = cA or there is x ∈ X with a = cAx and satisfying the following �rst-ordersentenes:
∀xy cu = cv → cu = c, u 6= v in X.Furthermore, for any set U ⊆ X , let FU denote a struture from K′ suh that FU |=

cx = c if and only if x ∈ U . Obviously, K′ onsists of isomorphi opies of strutures
FU , U ⊆ X . Moreover, FX is the trivial struture.Lemma 4. The following statements hold for any set X .

(i) If A, B ⊆ X , then FA ∈ H(FB) if and only if B ⊆ A .
(ii) Let {Ai | i ∈ I} ⊆ X and A =

⋂

i∈I Ai . Then the struture A = FA ∈ K′ isisomorphi to a substruture in B =
∏

i∈I FAi
.Let Σ(X, C) onsist of the following (in general in�nite) impliations of the form

∧

u∈U

cu = c→ cv = c, U ⊆ X, v ∈ C(U).Of ourse, if the set X is �nite, then the signature σ(X) is �nite, while Σ(X, C)beomes a �nite set of quasi-identities. Let K(X, C) = K′ ∩Mod
(

Σ(X, C)
) .Proofs of all the results presented in this setion are similar to ones of orrespondingresults about the lass Kp(X, C) presented in Subsetion 3.2.Lemma 5. For any losure spae 〈X, C〉 , the lass K(X, C) onsists of isomorphiopies of strutures FB , where B ∈ L(X, C) .Proposition 7. For any omplete lattie L , there is a signature σ onsisting of

|L| + 1 many onstant symbols, and a lass K ⊆ K(σ) suh that L ∼= Lv
(

K
) and

Subc(L
∂) ∼= Lp

(

K
) .Proposition 8. For any meet semilattie 〈S,∧, 1〉 with unit, there is a signature

σ onsisting of |S| + 1 many onstant symbols, and a lass K ⊆ K(σ) suh that
Sub(S) ∼= Lpω(K) .4. Relatively axiomatizable lasses of struturesIn [12, Theorem 8℄, D.E. Pal'hunov has proved that any at most ountable ompletelattie is isomorphi to a lattie of relatively axiomatizable lasses. In [12, Problem 1℄, heasked whether the same result holds for an arbitrary omplete lattie. M. Semenova andA. Zamojska-Dzienio answered the latter question in the positive in [17℄ for a signatureonsisting of unary relation symbols and a prevariety of trivial strutures, see Theorem4 below. We emphasize that this positive answer follows essentially by the results ofV.A. Gorbunov [13℄, see also [4℄ and Proposition 1.Exposition here follows [17℄. We also note that Theorem 4 an be inferred from theresults of Subsetions 3.2, 3.3 for a signature ontaining one unary relation symbol andonstants as well as for a signature ontaining only onstants.De�nition 5 [12, De�nition 26℄ . Let K be a lass of strutures of signature
σ , and let ∆ be a set of �rst-order sentenes of the same signature. A lass K′ isaxiomatizable in K relative to ∆ if K′ = K ∩Mod(Σ) for some set Σ ⊆ ∆ .



174 A. NURAKUNOV ET AL.It follows from De�nition 5 that a lass K ⊆K(σ) is axiomatizable if and only if itis axiomatizable in K(σ) relative to the set of all �rst-order sentenes. Furthermore, forany set ∆ of sentenes and any lass K ⊆ K(σ) , the set of all lasses, axiomatizable in
K relative to ∆ , forms a omplete lattie. Following D.E. Pal'hunov [12℄, we denotethis lattie by A(K, ∆) . The following orollary shows that any omplete lattie isa lattie of relatively axiomatizable lasses.Theorem 4. For any omplete lattie L , there is a signature σ , a prevariety K ⊆
⊆ K(σ) , and a set ∆ suh that L ∼= A(K, ∆) , where ∆ is a set of all identities ofsignature σ .Now, we get from Corollary 3 and [4, Proposition 5.1.1℄:Corollary 5. The lass of omplete dually algebrai latties oinides with the lassof latties of the form A(K, ∆) , where K is a quasivariety and ∆ is a set of �rst-ordersentenes.Corollary 6 [12, Theorem 9℄, [17℄. For any �nite lattie L , there is a �nitesignature σ and a set ∆ of �rst-order sentenes of σ suh that L ∼= A(K(σ), ∆) .5. A redution theoremIn [23℄ (see also his monograph [4℄), V.A. Gorbunov has proved the so-alled re-dution theorems for latties of quasivarieties and latties of varieties. For a lass
K ⊆ K(σ) , and for a positive n < ω , let FK(n) denote the K-free struture ofrank n .Theorem 5 [4, Corollaries 5.5.2, 5.5.12℄. Let K ⊆ K(σ) be a prevariety. Thenthe following holds:

Lq(K) ∼= lim←− Lq
(

H(FK(n)) ∩K
)

∼= lim←− Sp
(

ConKFK(n), E
)

;

Lv(K) ∼= lim←− Lv
(

H(FK(n)) ∩K
)

∼= lim←− F∗
(

ConK FK(n)
)

.In partiular, the following statements are true.Corollary 7 [4, Corollaries 5.5.4, 5.5.13℄. Let σ ontain �nitely many relationsymbols, and let K ⊆ K(σ) be a loally �nite prevariety. Then
(i) Lq(K) ∼= lim←−Ln for a set {Ln | n < ω} of �nite lower bounded latties;
(ii) Lv(K) ∼= lim←−Ln for a set {Ln | n < ω} of �nite latties.In partiular, both Lq(K) and Lv(K) are residually �nite latties.In [23℄, V.A. Gorbunov has also proved the following version of the redution theoremfor latties of pseudo-quasivarieties.Theorem 6 [4, Theorem 5.5.16℄. Let σ ontain only �nitely many relation sym-bols, and let K ⊆ K(σ) be a pseudo-quasivariety. Then there is a family {Ln | n < ω}of �nite lower bounded latties suh that Lp(K) ∼= lim←−Ln .In [17℄, M. Semenova and A. Zamojska-Dzienio proved a (�nitary) prevariety ana-logue of Theorem 5. More preisely, the lattie of subprevarieties of a prevariety isisomorphi to an inverse limit of omplete subsemilattie latties of semilatties en-dowed with a distributive binary relation (see Theorem 7), while the lattie of �nitarysubprevarieties of a �nitary prevariety is isomorphi to an inverse limit of subsemilat-tie latties of semilatties endowed with a distributive binary relation (see Theorem 8).These results generalize Theorem 6.To prove Theorems 7 and 8, one should assume the following lass form of the Axiomof Choie, see (CAC 1) in [24, Setion II.2℄:



ON LATTICES CONNECTED WITH ALGEBRAIC STRUCTURES 175If S is a lass of non-empty sets,there is a funtion F suh that F (x) ∈ x for eah x ∈ S .Theorem 7 [17℄. For any prevariety K ⊆ K(σ) , the lattie Lp(K) is isomorphito an inverse limit of latties of the form Subc(S, R) , where S is a omplete meetsemilattie with unit, and R is a distributive relation on S .Sketh of proof. Let I be the lass of all subsets of K ordered by inlusion, let
Ai =

∏

{A | A ∈ i} , and let Ki = H(Ai) ∩K for all i ∈ I . Moreover, as Ki ⊆ Kj ,the map
ϕji : Lp(Kj)→ Lp(Ki), ϕji : X 7→ X ∩Kiis a omplete lattie homomorphism for all i ⊆ j in I . In addition, ϕkjϕji = ϕki and

ϕii is just the identity map for all i ⊆ j ⊆ k in I . Therefore, the triple Λ = 〈I,Ki, ϕji〉is an inverse spetrum.Now, the map ϕ : Lp(K)→ lim←−Λ de�ned as
ϕ : X 7→ 〈X ∩Ki | i ∈ I〉,is a omplete lattie isomorphism, and one obtains Lp(K) ∼= lim←−Λ .Finally, for any i ∈ I , we have Lp(Ki) = Lp

(

H(Ai) ∩ K
)

∼= Subc
(

ConKAi, E
)aording to Theorem 1, whene the statement of the theorem follows.The next statement is an analogue of Theorem 7 for �nitary prevarieties.Theorem 8 [17℄. For any �nitary prevariety K ⊆ K(σ) , the lattie Lpω(K) isisomorphi to an inverse limit of latties of the form Sub(S, R) , where S is a meetsemilattie with unit and R is a distributive relation on S .Now, Theorem 6 beomes an easy orollary of any of Theorems 7 and 8 aordingto the de�nition of a pseudo-quasivariety. We also note that to prove Theorem 8 forpseudo-quasivarieties, ordinary Axiom of Choie is su�ient.It is not hard to hek (see [4, Lemma 5.5.17 and Corollary 5.5.18℄) that if K isa loally �nite quasivariety, then the map

ϕ : Lq(K)→ Lp(Kfin); ϕ : X→ Xfinde�nes an isomorphism. Therefore, Theorem 7 implies Corollary 7(i).For a pseudo-quasivariety K ⊆ K(σ) , let I be the set of all �nite subsets of K , let
Ki = H

(
∏

{A | A ∈ i}
)

∩K for all i ∈ I , and let
Lq = {Lq

(

Q(Ki)
)

| i ∈ I}.The following orollary generalizes V.A. Gorbunov [4, Corollary 5.5.22℄.Corollary 8. Let σ ontain �nitely many relation symbols, and let K ⊆ K(σ)finbe a pseudo-quasivariety. Then Lp(K) ∈ SPuH(Lq)∩SPu

(

Lq
(

Q(K)
)) . In partiular,any universal sentene whih holds in Lq

(

Q(K)
) also holds in Lp(K) .The next theorem shows that a similar result for latties of pseudo-varieties alsoholds. It was proved by P. Agliano and J.B. Nation [10℄ for pseudo-varieties of algebras,but their proof remains valid for strutures with �nitely many relation symbols.Theorem 9 [10, Theorem 2.1℄. Let σ ontain �nitely many relation symbols,and let K ⊆ K(σ)fin be a pseudo-variety. Then the lattie Lpv(K) of pseudo-varietiesontained in K belongs to the lass

HSPu

(

Lv
(

V(A)
)

| A ∈ K
)

.In partiular, any positive universal sentene whih holds in Lv
(

V(K)
) also holds inthe lattie Lpv(K) of all pseudo-varieties ontained in K .



176 A. NURAKUNOV ET AL.6. Non-omputability properties of relative sublass lattiesThe following problem is due to [8℄. Is the set of all �nite latties of varieties om-putable? This problem is also mentioned in [25℄.In [11, Theorem 1℄, A.M. Nurakunov has proved the following statement.Theorem 10. Let a signature σ ontain at least one non-onstant operation. Thenthere is a quasivariety K ⊆K(σ) suh that the set of all �nite sublatties of the quasi-variety lattie Lq(K) is not omputable.The latter result means that there is no algorithm to deide whether a given �nitelattie embeds into suh a quasivariety lattie. Therefore, it looks hopeless to �nda omplete strutural desription of latties isomorphi to (quasi)variety latties (f.the Birkho�-Maltsev problem).We also note that from the proof of Theorem 10, it is possible to get an estimationof algorithmi omplexity for ertain quasivariety latties as well as to ompute thenumber of non-isomorphi quasivariety latties having a non-omputable set of �nitesublatties.Corollary 9. There is a loally �nite quasivariety suh that the set of all �nite sub-latties of its quasivariety lattie is not omputable, while it is omputably enumerable.Corollary 10. There are ontinuum many loally �nite quasivarieties suh that theset of �nite sublatties of their quasivariety latties is not omputable.While Theorem 10 and Corollaries 9, 10 deal with purely funtional signature, thereare their omplete analogues for purely relational signature. In partiular, it is provedin [17℄ (based on ideas from [11℄) that there are quasivarieties of one-element relationstrutures suh that their (quasi)variety latties or (�nitary) prevariety latties havea non-omputable omputably enumerable set of �nite sublatties.Theorem 11 [17℄. The following statements hold.
(i) There is a ountable relation signature τ and a quasivariety K ⊆ T(τ) suhthat the set of all �nite sublatties of the relative variety lattie Lv(K) is omputablyenumerable but not omputable.
(ii) There is a ountable relation signature σ and a quasivariety K ⊆ T(σ) suhthat Lq(K) = Lp(K) = Lpω(K) and the set of all �nite sublatties of this lattie isomputably enumerable but not omputable.7. Open problemsAs it has been already mentioned in Introdution, very little is known about lattiesof �rst-order axiomatizable lasses di�erent from (quasi)varieties. Thus the followinggeneral problem arises:Problem 1. Study latties of (relatively) axiomatizable lasses and latties of (�ni-tary) prevariety latties.Remark 1 suggests the following problem.Problem 2 [17℄. Is there a nontrivial lattie property satis�ed by all latties of(�nitary) prevarieties? Whih latties are isomorphi to latties of (�nitary) prevari-eties?Problem 2 is an analogue of the Birkho� �Maltsev problem. It is well-known (f. [26,Theorem 2.84℄) that �nite bounded latties generate the variety of all latties. Aording



ON LATTICES CONNECTED WITH ALGEBRAIC STRUCTURES 177to [27℄, the lattie Subc(L) is �nite lower bounded for any �nite lattie L . Therefore,prevariety latties of quasivarieties generate the variety of all latties. Thus aording toProposition 1, there is no nontrivial lattie identity whih would hold on all prevarietylatties.Due to the results presented in Setion 6, one an also pose the following problem.Problem 3. For ertain lasses of strutures, is the �nite membership problemdeidable?The seond author was supported by the Presidential Grant Counil of the RussianFederation, the Program for Support of Leading Sienti� Shools (Grant No. NSh-3669.2010.1), by the J�ozef Mianowski Fund, and by the Foundation for Polish Siene.The third author was supported by the Warsaw University of Tehnology (StatutoryGrant No. 504G/1120/0054000). �åçþìåÀ.Ì. Íóðàêóíîâ, Ì.Â. Ñåìåíîâà, À. Çàìîéñêà-Äæåíèî. Î ðåøåòêàõ, ñâÿçàííûõ ñ ðàç-ëè÷íûìè òèïàìè êëàññîâ àëãåáðàè÷åñêèõ ñòðóêòóð.Â îáçîðíîé ñòàòüå ïðèâîäÿòñÿ ðåçóëüòàòû, ïîëó÷åííûå àâòîðàìè çà ïîñëåäíåå âðåìÿ,î ðàçëè÷íûõ ïðîèçâîäíûõ ðåøåòêàõ, ñâÿçàííûõ ñ ðàçëè÷íûìè òèïàìè êëàññîâ àëãåáðàè-÷åñêèõ ñòðóêòóð.Êëþ÷åâûå ñëîâà: àêñèîìàòèçèðóåìûé êëàññ, ìíîãîîáðàçèå, êâàçèìíîãîîáðàçèå,ïðåäìíîãîîáðàçèå, �èíèòàðíîå ïðåäìíîãîáðàçèå, òîæäåñòâî, êâàçèòîæåäåñòâî, ðåøåòêà,ïîäïîëóðåøåòêà ðåøåòêè.
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