МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"

Институт физики

	УТВЕРЖДАЮ
Проректор по образовательной	деятельности КФУ

_____ Турилова Е.А. "___"____20___ г.

Программа дисциплины

Квантовые вычисления и связь

Направление подготовки: 10.04.01 - Информационная безопасность

Профиль подготовки: Информационная безопасность автоматизированных систем

Квалификация выпускника: магистр

Форма обучения: очное

Язык обучения: русский

Год начала обучения по образовательной программе: 2023

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО
- 2. Место дисциплины (модуля) в структуре ОПОП ВО
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)
- 4.2. Содержание дисциплины (модуля)
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
- 6. Фонд оценочных средств по дисциплине (модулю)
- 7. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
- 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины (модуля) к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья
- 13. Приложение №1. Фонд оценочных средств
- 14. Приложение №2. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 15. Приложение №3. Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Программу дисциплины разработал(а)(и): доцент, к.н. (доцент) Гайнутдинова А.Ф. (кафедра теоретической кибернетики, отделение фундаментальной информатики и информационных технологий), Aida.Gainutdinova@kpfu.ru

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО

Обучающийся, освоивший дисциплину (модуль), должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции
	Способен осуществлять сбор, обработку и анализ научно-технической информации по теме исследования, разрабатывать планы и программы проведения научных исследований и технических разработок;
	Способность обобщать и критически оценивать опыт и результаты научных исследований в области информационной безопасности

Обучающийся, освоивший дисциплину (модуль):

Должен знать:

Историю зарождения квантовой информатики и состояние развития данной области информатики на сегодняшний день, основные законы квантовых вычислений, определения различных квантовых моделей вычислений (машин Тьюринга, автоматов, схем из функциональных элементов); каким образом производится обработка входных слов и распознавание языков в данных моделях;

Должен уметь:

Ориентироваться в области квантовых вычислений, и в том, где и каким образом применяются знания из этой области, - в рассмотренных алгоритмах квантовых вычислений, демонстрирующих эффективность квантовых вычислителей по сравнению с классическими, объяснять с математической точки зрения такие явления квантовой механики, как телепортация, запутанность состояний, квантовая передача кода, квантовый параллелизм, и т.д.

Должен владеть:

Основными понятиями квантовой информатики, такими, как понятие кубита, квантовых преобразований и измерения квантовой системы; навыками построения эффективных алгоритмов для различных вычислительных моделей.

Должен демонстрировать способность и готовность:

применять полученные знания в своей профессиональной деятельности.

2. Место дисциплины (модуля) в структуре ОПОП ВО

Данная дисциплина (модуль) включена в раздел "Б1.В.ДВ.01.02 Дисциплины (модули)" основной профессиональной образовательной программы 10.04.01 "Информационная безопасность (Информационная безопасность автоматизированных систем)" и относится к дисциплинам по выбору части ОПОП ВО, формируемой участниками образовательных отношений.

Осваивается на 1 курсе в 2 семестре.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) на 144 часа(ов).

Контактная работа - 72 часа(ов), в том числе лекции - 18 часа(ов), практические занятия - 54 часа(ов), лабораторные работы - 0 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 72 часа(ов).

Контроль (зачёт / экзамен) - 0 часа(ов).

Форма промежуточного контроля дисциплины: зачет во 2 семестре.

- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)

			Виды и часы контактной работы, их трудоемкость (в часах)						Само-
N	Разделы дисциплины / модуля	Се- местр		в эл.	Практи- ческие занятия, всего	ческие	Лабора- торные работы, всего		тель- ная ра- бота
1.	Тема 1. История зарождения квантовых вычислений. Современное состояние в области квантовой информатики.	2	2	0	0	0	0	0	
2.	Тема 2. Основные понятия квантовых вычислений. Постулаты квантовой механики.	2	0	0	4	0	0	0	4
3.	Тема 3. Квантовые эффекты. Теорема о неклонировании.	2	0	0	2	0	0	0	2
4.	Тема 4. Квантовые гейты. Квантовые схемы. Универсальные квантовые гейты.	2	2	0	4	0	0	0	4
5.	Тема 5. Простейшие квантовые алгоритмы: телепортация, алгоритм плотного кодирования.	2	0	0	4	0	0	0	4
6.	Тема 6. Квантовая криптография. Квантовое распределение ключа.	2	2	0	4	0	0	0	8
7.	Тема 7. Квантовая вычислительная модель с оракулом. Алгоритм Дойча. Алгоритм Дойча-Джозса.	2	2	0	4	0	0	0	4
8.	Тема 8. Алгоритм Бернштейна-Вазирани, Алгоритм Саймона.	2	0	0	2	0	0	0	6
9.	Тема 9. Задача поиска в неупорядоченной базе данных. Алгоритм Гровера. Приложения.	2	2	0	4	0	0	0	10
10.	Тема 10. Квантовое преобразование Фурье.	2	0	0	4	0	0	0	6
11.	Тема 11. Квантовый алгоритм Шора факторизации числа. Анализ.	2	2	0	2	0	0	0	4
12.	Тема 12. Квантовое исправление ошибок.	2	2	0	4	0	0	0	4
13.	Тема 13. Квантовые и классические классы сложности.	2	2	0	0	0	0	0	4
14.	Тема 14. Квантовые конечные автоматы	2	0	0	6	0	0	0	4
15.	Тема 15. Квантовая ветвящаяся программа.	2	0	0	6	0	0	0	4
16.	Тема 16. Квантовая коммуникационная модель вычислений.	2	2	0	4	0	0	0	4
	Итого		18	0	54	0	0	0	72

4.2 Содержание дисциплины (модуля)

Тема 1. История зарождения квантовых вычислений. Современное состояние в области квантовой информатики.

В данной теме обсуждается история зарождения квантовых вычислений начиная с 80-х годов XX века, а также современное состояние в области квантовой информатики. Излагаются перспективы развития данной области. Отдельно обсуждаются области применения квантовых вычислений, такие, как криптография, обработка больших данных, задачи поиска и т.д. Обсуждаются основные отличия квантовых вычислений от классических.

Тема 2. Основные понятия квантовых вычислений. Постулаты квантовой механики.

Основные понятия квантовых вычислений: кубит, квантовая система, квантовое преобразование, квантовое измерение. Математический аппарат квантовых вычислений: линейные преобразования, унитарные преобразования, норма вектора, свойства унитарных преобразований, декартово и тензорное произведение векторов и матриц, и т.д.

Тема 3. Квантовые эффекты. Теорема о неклонировании.

Квантовые эффекты: квантовый параллелизм, квантовая запутанность, квантовая интерференция. Теорема о неклонировании, ее доказательство и значение. Обратимость квантовых вычислений. Квантовое вычисление функций. Информационная емкость кубита. Сравнение информационной емкости классического и квантового бита.

Тема 4. Квантовые гейты. Квантовые схемы. Универсальные квантовые гейты.

Понятие квантовых гейтов, способы их определения, отличие от классических гейтов. Однокубитные, двухкубитные, трехкубитные Контролируемые квантовые гейты. Универсальные квантовые гейты. Преобразование Адамара и Уолша-Адамара. Их роль в квантовых алгоритмах. Квантовые схемы. Сравнение квантовых и классических схем.

Тема 5. Простейшие квантовые алгоритмы: телепортация, алгоритм плотного кодирования.

Простейшие квантовые алгоритмы: алгоритм телепортации, алгоритм плотного кодирования. Реализация алгоритмов на языке квантовых схем. Роль запутанных состояний в этих алгоритмах. Сложность алгоритмов. Сравнительный анализ квантовых и классических алгоритмов. Значение и примеры использования данных алгоритмов.

Тема 6. Квантовая криптография. Квантовое распределение ключа.

Классическая криптография. Понятие симметричного и ассиметричного шифрования. Задача распределения ключа в криптографии. Квантовая криптография. Протоколы квантового распределения ключа. Протокол BB84, его основные этапы. Обоснование стойкости протокола. Квантовые атаки. Понятие постквантовой криптографии.

Тема 7. Квантовая вычислительная модель с оракулом. Алгоритм Дойча. Алгоритм Дойча-Джозса.

Квантовая модель запросов (модель с оракулом) и ее меры сложности. Алгоритмы Дойча и Дойча-Джозса. Реализация данных алгоритмов на языке схем. Сложность алгоритмов в терминах количества обращений к оракулу (черному ящику). Сравнение с классическими алгоритмами решения задачи (детерминированными и вероятностными).

Тема 8. Алгоритм Бернштейна-Вазирани, Алгоритм Саймона.

Алгоритм Бернштейна-Вазирани. Периодичность булевой функции по модулю 2 и алгоритм Саймона нахождения периода булевой функции. Сложностной анализ алгоритмов. Реализация алгоритмов на языке схем. Сравнение с классическими алгоритмами решения задачи (детерминированными и вероятностными). Квантовые эффекты, используемые в данных алгоритмах.

Тема 9. Задача поиска в неупорядоченной базе данных. Алгоритм Гровера. Приложения.

Задача поиска в неупорядоченной базе данных . Классические алгоритмы решения задачи поиска в неупорядоченной базе данных (детерминированные и вероятностные). Их сложность. Квантовый алгоритм Гровера. Основные этапы алгоритма. Анализ сложности алгоритма Гровера. Использование алгоритма Гровера для решения других задач.

Тема 10. Квантовое преобразование Фурье.

Классическое преобразование Фурье, алгоритмы его вычисления и сложность. Алгоритм быстрого преобразования Фурье и сложность его вычисления. Квантовое преобразование Фурье, его сравнение с классическим преобразованием Фурье. Сравнительный сложностной анализ квантовых и классических алгоритмов вычисления преобразования Фурье..

Тема 11. Квантовый алгоритм Шора факторизации числа. Анализ.

Односторонние функции и их значение для криптографии. Задача умножения как пример условно односторонней функции. Задача факторизации. Классические алгоритмы факторизации (детерминированные, вероятностные), их сложность. Квантовый алгоритм Шора факторизации числа и нахождения периода. Анализ алгоритма Шора. Применение алгоритма Шора к криптографии.

Тема 12. Квантовое исправление ошибок.

Понятие устойчивости вычислений. Типы ошибок в классических вычислениях и методы их исправления. Устойчивость квантовых вычислений. Типы квантовых ошибок, их отличие от классических. Квантовое исправление ошибок. Методы коррекции квантовых ошибок, сравнение с классическим случаем. Примеры коррекции квантовых ошибок.

Тема 13. Квантовые и классические классы сложности.

Понятия вычислимости и сложности. Тезис Черча, расширенный тезис Черча. Классическая и квантовая машина Тьюринга, их сравнение. Определение основных классических классов сложности и их соотношения. Открытые проблемы. Определение квантовых классов сложности. Их место в общей иерархии сложностных классов.

Тема 14. Квантовые конечные автоматы

Определение классического конечного автомата. Класс языков, распознаваемых классическими конечными автоматами (детерминированными, недетерминированными, вероятностными). Определение квантового конечного автомата. Распознавание языков квантовыми конечными автоматами. Различные модели квантовых конечных автоматов, их сравнение. Класс языков, распознаваемых квантовыми конечными автоматами Сравнение квантовых, детерминированных и вероятностных автоматов

Тема 15. Квантовая ветвящаяся программа.

Определение классической ветвящейся программы. Длина, ширина и сложность ветвящейся программы. Определение квантовой ветвящейся программы. Отличие квантовой модели от классической. Вычислений функций квантовыми ветвящимися программами. Сравнительный сложностной анализ квантовых и классических ветвящихся программ.

Тема 16. Квантовая коммуникационная модель вычислений.

Классическая коммуникационная модель. Основные понятия: односторонний, двусторонний коммуникационный протокол, сложность протокола. Квантовая коммуникационная модель вычислений, ее отличие от классической модели. Примеры эффективных алгоритмов для квантовой коммуникационной модели. Протоколы, использующие запутанность квантовых состояний.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины, так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине.

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства науки и высшего образования Российской Федерации от 6 апреля 2021 года №245)

Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"

Устав федерального государственного автономного образовательного учреждения "Казанский (Приволжский) федеральный университет"

Правила внутреннего распорядка федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет"

Локальные нормативные акты Казанского (Приволжского) федерального университета

6. Фонд оценочных средств по дисциплине (модулю)

Фонд оценочных средств по дисциплине (модулю) включает оценочные материалы, направленные на проверку освоения компетенций, в том числе знаний, умений и навыков. Фонд оценочных средств включает оценочные средства текущего контроля и оценочные средства промежуточной аттестации.

В фонде оценочных средств содержится следующая информация:

- соответствие компетенций планируемым результатам обучения по дисциплине (модулю);
- критерии оценивания сформированности компетенций;
- механизм формирования оценки по дисциплине (модулю);
- описание порядка применения и процедуры оценивания для каждого оценочного средства;
- критерии оценивания для каждого оценочного средства;
- содержание оценочных средств, включая требования, предъявляемые к действиям обучающихся, демонстрируемым результатам, задания различных типов.

Фонд оценочных средств по дисциплине находится в Приложении 1 к программе дисциплины (модулю).

7. Перечень литературы, необходимой для освоения дисциплины (модуля)

Освоение дисциплины (модуля) предполагает изучение основной и дополнительной учебной литературы. Литература может быть доступна обучающимся в одном из двух вариантов (либо в обоих из них):

- в электронном виде через электронные библиотечные системы на основании заключенных КФУ договоров с правообладателями;
- в печатном виде в Научной библиотеке им. Н.И. Лобачевского. Обучающиеся получают учебную литературу на абонементе по читательским билетам в соответствии с правилами пользования Научной библиотекой.

Электронные издания доступны дистанционно из любой точки при введении обучающимся своего логина и пароля от личного кабинета в системе "Электронный университет". При использовании печатных изданий библиотечный фонд должен быть укомплектован ими из расчета не менее 0,5 экземпляра (для обучающихся по ФГОС 3++ - не менее 0,25 экземпляра) каждого из изданий основной литературы и не менее 0,25 экземпляра дополнительной литературы на каждого обучающегося из числа лиц, одновременно осваивающих данную дисциплину.

Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля), находится в Приложении 2 к рабочей программе дисциплины. Он подлежит обновлению при изменении условий договоров КФУ с правообладателями электронных изданий и при изменении комплектования фондов Научной библиотеки КФУ.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

интернет-портал образовательных ресурсов КФУ - http://www.kfu-elearning.ru/ Интернет-портал образовательных ресурсов по IT - http://algolist.manual.ru Интернет-портал по квантовым вычислениям - https://www.quantiki.org/

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Вид работ	Методические рекомендации
лекции	В курсе 'Квантовые вычисления' рассматривается история зарождения квантовых вычислений; приводятся определения и понятия, используемые в квантовой информатике и опирающиеся на постулаты квантовой механики; обсуждаются основные законы квантовых вычислений; детально рассматриваются известные квантовые алгоритмы обработки и передачи информации, демонстрирующие мощь квантовых вычислительных моделей по сравнению с классическими. По окончании курса студент должен владеть основными понятиями квантовой информатики, такими, как понятие кубита, квантового регистра, квантовых преобразований и измерения квантовой системы, знать основные законы квантовых вычислений, ориентироваться в рассмотренных квантовых алгоритмах. На лекционных занятиях студентам необходимо активно участвовать в учебном процессе, задавая вопросы преподавателю, обсуждаю и предлагая свои решения.
практические занятия	На практических занятиях студенты выполняют задания, закрепляющие пройденный теоретический материал. Квантовая информатика базируется на законах квантовой механики и оперирует понятиями, отличными от соответствующих понятий, используемых в классической информатике. В силу отличия законов квантовой механики от соответствующих законов классической физики, зачастую при рассмотрении квантовых эффектов тяжело привлечь интуицию. При изучении курса необходимо уделить особое внимание правильному пониманию базовых понятий квантовых вычислений, поскольку квантовые вычисления используют эффекты квантовой механики, не существующие в классических вычислениях. Правильное понимание данных понятий отрабатывается регулярным и своевременным выполнением предлагаемых преподавателем упражнений. Только при адекватном понимании природы квантовых вычислений возможно правильное понимание квантовых алгоритмов и выработка соответствующей интуиции, необходимой для создания эффективных квантовых алгоритмов. Основными базовыми понятиями, на правильное понимание которых следует обратить особое внимание, является понятие кубита, квантовой суперпозиции, явления запутанности, интерференции, квантового параллелизма, др.
самостоя- тельная работа	При изучении курса рекомендуется уделять внимание правильному пониманию изучаемых понятий. Решение предлагаемых упражнений служат проверке правильности усвоения материала. При подготовке к устному опросу следует прочитать конспект лекций, при необходимости обратиться к литературе из списка основной и дополнительной литературы. Хорошему закреплению материала способствует систематическое выполнение домашних заданий. В течение семестра предусмотрена контрольная работа. При подготовке в контрольной работе следует пользоваться конспектом лекций и рекомендованной литературой.

Вид работ	Методические рекомендации
зачет	Зачет проводится в устной форме. Билеты, предлагаемые на зачете, содержат один теоретический вопрос по курсу прочитанных лекций и одну задачу, подобную тем, что рассматривались на занятиях. При подготовке к зачету могут быть использованы учебное пособия (Гайнутдинова А.Ф. Основы квантовых вычислений. Учебное пособие. Казань: Изд-во КГУ 2009г 100с., Гайнутдинова А.Ф. Квантовые модели вычислений (учебное пособие) Казань: Отечество, 2016 104 с. 104 с.). Также имеется Сборник задач и упражнения по курсу 'Основы квантовых вычислений'. Методическое пособие / А.Ф.Гайнутдинова Казань:Казан. Ун-т, 2014 28с. Учебное пособие и сборник задач может быть полезно как для магистров, слушающих курс лекций по квантовым вычислениям, так и аспирантов, ведущих исследования в области квантовой информатики.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем, представлен в Приложении 3 к рабочей программе дисциплины (модуля).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Материально-техническое обеспечение образовательного процесса по дисциплине (модулю) включает в себя следующие компоненты:

Помещения для самостоятельной работы обучающихся, укомплектованные специализированной мебелью (столы и стулья) и оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду КФУ.

Учебные аудитории для контактной работы с преподавателем, укомплектованные специализированной мебелью (столы и стулья).

Компьютер и принтер для распечатки раздаточных материалов.

Мультимедийная аудитория.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:

- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной, за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;

- продолжительности выступления обучающегося при защите курсовой работы - не более чем на 15 минут.

Программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению 10.04.01 "Информационная безопасность" и магистерской программе "Информационная безопасность автоматизированных систем".

Приложение 2 к рабочей программе дисциплины (модуля) Б1.В.ДВ.01.02 Квантовые вычисления и связь

Перечень литературы, необходимой для освоения дисциплины (модуля)

Направление подготовки: 10.04.01 - Информационная безопасность

Профиль подготовки: Информационная безопасность автоматизированных систем

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2023

Основная литература:

- 1. Марченков, С.С. Основы теории булевых функций. [Электронный ресурс] ? Электрон. дан. ? М.: Физматлит, 2014. ? 136 с. ? Режим доступа: http://e.lanbook.com/book/59714
- 2. Квантовые модели вычислений : учебное пособие / Казан. федер. ун-т ; [сост. А. Ф. Гайнутдинова] .? Казань : [Отечество], 2016 .? 104 с. : ил. ; 21 .? Библиогр.: с. 103-104 (18 назв.), 100.
- 3. Байков, Ю.А. Квантовая механика. [Электронный ресурс] / Ю.А. Байков, В.М. Кузнецов. ? Электрон. дан. ? М.: Издательство 'Лаборатория знаний', 2015. ? 294 с. ? Режим доступа: http://e.lanbook.com/book/70719

Дополнительная литература:

- 1. Нильсен, Майкл А. Квантовые вычисления и квантовая информация: перевод с английского / М. Нильсен, И. Чанг; Пер. под ред. М. Н. Вялого, П. М. Островского с предисл. К. А. Валиева .? Москва: Мир, 2006 .? 824 с.: ил.; 25 см.? Загл. и авт. ориг.: Quantum computation and Quantum information/Michael A. Nielsen & Isaac L. Chuang .? Библиогр.: с. 785-809 .? Предм. указ.: 810-815. Оригинал перевода: Quantum computation and Quantuminformation / Michael A. Nielsen & Isaac L. Chuang.
- 2. Гольдин Л. Л. Квантовая физика. Вводный курс / Гольдин Л.Л., Новикова Г.И. Долгопрудный: Интеллект, 2016. 480 с.: ISBN 978-5-91559-199-7

http://znanium.com/catalog.php?bookinfo=552465

3.. Бройль, Луи Луи де Бройль. Избранные научные труды. Т. 1. Становление квантовой физики: работы 1921 - 1934 годов [Электронный ресурс] / Луи де Бройль. - М.: Логос, 2010. - 556 с. - ISBN 978-5-98704-505-3.http://znanium.com/catalog.php?bookinfo=468215

Приложение 3 к рабочей программе дисциплины (модуля) Б1.В.ДВ.01.02 Квантовые вычисления и связь

Перечень информационных технологий, используемых для освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

Направление подготовки: 10.04.01 - Информационная безопасность

Профиль подготовки: Информационная безопасность автоматизированных систем

Квалификация выпускника: магистр

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Год начала обучения по образовательной программе: 2023

Освоение дисциплины (модуля) предполагает использование следующего программного обеспечения и информационно-справочных систем:

Операционная система Microsoft Windows 7 Профессиональная или Windows XP (Volume License)

Пакет офисного программного обеспечения Microsoft Office 365 или Microsoft Office Professional plus 2010

Браузер Mozilla Firefox

Браузер Google Chrome

Adobe Reader XI или Adobe Acrobat Reader DC

Kaspersky Endpoint Security для Windows

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен обучающимся. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебные пособия, учебно-методические комплексы, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего образования (ФГОС ВО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен обучающимся. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

