МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт математики и механики им. Н.И. Лобачевского

подписано электронно-цифровой подписью

Программа дисциплины

Асимптотические методы решения задач механики М1.ДВ.3

Направление подготовки: 010800.68 - Механика и математическое моделирование
Профиль подготовки: Механика жидкости, газа и плазмы
Квалификация выпускника: магистр
Форма обучения: <u>очное</u>
Язык обучения: <u>русский</u>
Автор(ы):

Егоров А.Г. Рецензент(ы): Коноплев Ю.Г.

\sim	СП		\sim D	Λ L	\sim
CO	1 71	ΑL	,UD	ΑГ	IU

COI MACODATIO.	
Заведующий(ая) кафедрой: Егоров А. Г. Протокол заседания кафедры No от "	"201г
Учебно-методическая комиссия Института Протокол заседания УМК No от "	а математики и механики им. Н.И. Лобачевского : _" 201г
Регистрационный No 817219614	
	Казань

2014

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННО АНАЛИТИЧЕСКАЯ СИСТЕМА КНО

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) заведующий кафедрой, д.н. (с.н.с.) Егоров А.Г. Кафедра аэрогидромеханики отделение механики , Andrey.egorov@kpfu.ru

1. Цели освоения дисциплины

Целями освоения дисциплины "Асимптотические методы решения задач механики" является изучение и практическое освоение методов исследования зависящих от малого параметра интегралов, интегральных уравнений, обыкновенных дифференциальных уравнений, уравнений в частных производных. Изложение ведется на примерах из теоретической механики, механики жидкости, теории фильтрации. Особое внимание уделяется сингулярным задачам с малым параметром. Рассматриваются методы сращивания асимптотических разложений, метод растянутых координат, метод многих масштабов, техника ВКБ построения асимптотических разложений. Обсуждается метод гомогенизации и его возможности применительно к механике пористых сред.

Основной упор сделан на вопросы практического использования методов асимптотического анализа в задачах механики

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " М1.ДВ.3 Общенаучный" основной образовательной программы 010800.68 Механика и математическое моделирование и относится к дисциплинам по выбору. Осваивается на 2 курсе, 3 семестр.

Дисциплина входит в вариативную часть профессионального цикла. Для ее освоения нужны первоначальные знания из курсов математического анализа, дифференциальных уравнений, уравнений в частных производных, теоретической механики, механики сплошной среды, теории фильтрации. Получаемые знания, умения и навыки необходимы для практического использования методов асимптотического анализа в задачах механики, и используются при выполнении магистерских диссертаций по направлению "механика и математическое моделирование".

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-8 (общекультурные компетенции)	способностью к проявлению инициативы и лидерских качеств
ПК-1 (профессиональные компетенции)	Обладать способностью к определению закономерностей, а также инструментальных средств данной области знания
ПК-3 (профессиональные компетенции)	способностью к интенсивной научно-исследовательской и научно-изыскательской деятельности
ПК-4 (профессиональные компетенции)	способность к применению методов математического и алгоритмического моделирования при решении теоретических и прикладных задач
ПК-9 (профессиональные компетенции)	умением ориентироваться в современных алгоритмах компьютерной математики, совершенствовать, углублять и развивать математическую теорию и физико-механические модели, лежащие в их основе

Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-12 (профессиональные компетенции)	Обладать глубоким понимание сути точности фундаментального знания
ПК-19 (профессиональные компетенции)	умением извлекать актуальную научно-техническую информацию из электронных библиотек, реферативных журналов

В результате освоения дисциплины студент:

- 4. должен демонстрировать способность и готовность: приобрести навыки использования асимптотических методов в задачах механики.
- 4. должен демонстрировать способность и готовность: ориентироваться в особенностях применения общих методов асимптотического анализа к исследованию конкретных задач механики,
- 4. должен демонстрировать способность и готовность:

обладать теоретическими знаниями об общих методах асимптотического анализа интегралов, обыкновенных дифференциальных уравнений и уравнений в частных производных

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 4 зачетных(ые) единиц(ы) 144 часа(ов).

Форма промежуточного контроля дисциплины экзамен в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N		Семестр	CEMECIDA	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	лабораторные работы	
1.	Тема 1. Введение в асимптотические методы на примере алгебраических уравнений.	3	1	1	1	0	домашнее задание
2.	Тема 2. Сходимость и асимптотичность.	3	2	2	2	0	домашнее задание

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра		Виды и ча аудиторной р их трудоемк (в часах	Текущие формы контроля	
				Лекции	Практические занятия	лабораторные работы	
3.	Тема 3. Асимптотическое исследование интегралов.	3	3	1	2	0	домашнее задание
4.	Тема 4. Регулярные возмущения в уравнениях с частными производными.	3	4	1	0	0	научный доклад
5.	Тема 5. Метод сращивания асимптотических разложений на примере модельной задачи конвекции-диффузии с преобладанием конвекции.	3	5	1	1	0	контрольная работа
6.	Тема 6. Специфика сращивания асимптотических разложений в задачах гидромеханики с неограниченными областями.	3	6	0	2	0	домашнее задание
7.	Тема 7. Последовательность вложенных пограничных слоев на примере задачи о динамическом гистерезисе.	3	7	1	1	0	домашнее задание
8.	Тема 8. Метод растянутых координат.	3	8	1	2	0	домашнее задание
9.	Тема 9. Метод многих масштабов.	3	9	1	2	0	письменная работа
10.	Тема 10. Метод гомогенизации анализа уравнений с быстро осциллирующими коэффициентами.	3	10	0	2	0	домашнее задание
11.	Тема 11. ВКБ-метод асимптотического анализа.	3	11	1	1	0	коллоквиум
12.	Тема 12. Уравнение фазового поля.	3	12	0	0	0	научный доклад

N	Раздел Дисциплины/	Семестр	Неделя семестра		Виды и часы аудиторной работы, их трудоемкость (в часах)		Текущие формы контроля
	Модуля		•	Лекции	Практические занятия	лабораторные работы	-
	Тема . Итоговая форма контроля	3		0	0	0	экзамен
	Итого			10	16	0	

4.2 Содержание дисциплины

Тема 1. Введение в асимптотические методы на примере алгебраических уравнений. *лекционное занятие (1 часа(ов)):*

Основные методы построения асимптотических решений: метод итераций и метод асимптотических разложений. Регулярно и сингулярно возмущенные задачи. Идея перенормировки.

практическое занятие (1 часа(ов)):

Асимптотический анализ алгебраических уравнений Алгоритм нахождения полезных перенормировок.

Тема 2. Сходимость и асимптотичность.

лекционное занятие (2 часа(ов)):

Понятия асимптотической последовательности, асимптотического представления, асимптотического ряда. Операции с асимптотическими рядами.

практическое занятие (2 часа(ов)):

Численное использование асимптотических рядов.

Тема 3. Асимптотическое исследование интегралов.

лекционное занятие (1 часа(ов)):

Лемма Ватсона. Метод стационарной фазы. Метод перевала. Понятие о локальных и нелокальных вкладах в интеграл. Методы вычитания и расщепления при построении асимптотических представлений интегралов.

практическое занятие (2 часа(ов)):

Вычисление электрической емкости тонкого тела. Вычисление электрической емкости диска.

Тема 4. Регулярные возмущения в уравнениях с частными производными.

лекционное занятие (1 часа(ов)):

Возмущения в уравнении, граничных условиях, положении границы. Задача о потенциале вокруг близкого к сфере тела

Тема 5. Метод сращивания асимптотических разложений на примере модельной задачи конвекции-диффузии с преобладанием конвекции.

лекционное занятие (1 часа(ов)):

Внешнее и внутреннее разложение. Область перекрытия. Сращивание разложений. Правило Ван-Дайка

практическое занятие (1 часа(ов)):

Построение равномерно пригодного асимптотического разложения. Приемы определения местоположения и толщины пограничного слоя.

Тема 6. Специфика сращивания асимптотических разложений в задачах гидромеханики с неограниченными областями.

практическое занятие (2 часа(ов)):

Модельные одномерные задачи с логарифмическими особенностями. Приемы выбора асимптотических последовательностей. Обтекание сферы и цилиндра при малых числах Рейнольдса

Тема 7. Последовательность вложенных пограничных слоев на примере задачи о динамическом гистерезисе.

лекционное занятие (1 часа(ов)):

Структура вложенных пограничных слоев. Приемы сращивания разложений при наличии вложенных пограничных слоев

практическое занятие (1 часа(ов)):

Асимптотическое решение задачи о динамическом гистерезисе

Тема 8. Метод растянутых координат.

лекционное занятие (1 часа(ов)):

Основная идея метода растянутых координат . Задача Лайтхилла.

практическое занятие (2 часа(ов)):

Осциллятор Дюффинга со слабой нелинейностью. Задача о малоамплитудных волнах на мелкой воде. Вычисление времени опрокидывания волны.

Тема 9. Метод многих масштабов.

лекционное занятие (1 часа(ов)):

Основная идея метода многих масштабов. Осциллятор Ван-дер-Поля.

практическое занятие (2 часа(ов)):

Задача о параметрическом резонансе.

Тема 10. Метод гомогенизации анализа уравнений с быстро осциллирующими коэффициентами.

практическое занятие (2 часа(ов)):

Построение формального асимптотического разложения. Задачи на ячейке. Эффективные характеристики среды. Вариационные методы построения двусторонних оценок для эффективных характеристик. 1-ая и 2-ая формулы Дыхне.

Тема 11. ВКБ-метод асимптотического анализа.

лекционное занятие (1 часа(ов)):

ВКБ-метод асимптотического анализа. Идея и возможности метода. Формальное асимптотическое разложение. Точки поворота.

практическое занятие (1 часа(ов)):

Уравнение Шредингера для гармонического осциллятора.

Тема 12. Уравнение фазового поля.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
	Тема 1. Введение в асимптотические методы на примере алгебраических уравнений.	3	1	подготовка домашнего задания	ı b	домашнее задание
2.	Тема 2. Сходимость и асимптотичность.	3	2	подготовка домашнего задания	ı n	домашнее задание
3.	Тема 3. Асимптотическое исследование интегралов.	3	3	подготовка домашнего задания	1 4	домашнее задание

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
4.	Тема 4. Регулярные возмущения в уравнениях с частными производными.	3		подготовка к научному докладу	14	научный доклад
5.	Тема 5. Метод сращивания асимптотических разложений на примере модельной задачи конвекции-диффузии с преобладанием конвекции.	3		подготовка к контрольной работе	4	контрольная работа
6.	Тема 6. Специфика сращивания асимптотических разложений в задачах гидромеханики с неограниченными областями.	3	6	подготовка домашнего задания	4	домашнее задание
7.	Тема 7. Последовательность вложенных пограничных слоев на примере задачи о динамическом гистерезисе.	3	7	подготовка домашнего задания	4	домашнее задание
8.	Тема 8. Метод растянутых координат.	3	8	подготовка домашнего задания	8	домашнее задание
9.	Тема 9. Метод многих масштабов.	3		подготовка к письменной работе	10	письменная работа
	Тема 10. Метод гомогенизации анализа уравнений с быстро осциллирующими коэффициентами.	3	10	подготовка домашнего задания	10	домашнее задание
11.	Тема 11. ВКБ-метод асимптотического анализа.	3		подготовка к коллоквиуму	10	коллоквиум
12.	Тема 12. Уравнение фазового поля.	3		подготовка к научному докладу	20	научный доклад
	Итого				100	

5. Образовательные технологии, включая интерактивные формы обучения

активные и интерактивные формы, лекции, семинарские занятия, контрольная работа, экзамен. В течение учебного года студенты решают задачи, указанные преподавателем, к каждому семинару, самостоятельно изучают и докладывают на семинарах отдельные темы курса. К экзамену допускаются студенты, сдавшие все задачи и показавшие положительные результаты по текущей работе в течение семестра.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение в асимптотические методы на примере алгебраических уравнений.

домашнее задание, примерные вопросы:

Регулярно и сингулярно возмущенные задачи. Идея перенормировки. Алгоритм нахождения полезных перенормировок.

Тема 2. Сходимость и асимптотичность.

домашнее задание, примерные вопросы:

Численное использование асимптотических рядов.

Тема 3. Асимптотическое исследование интегралов.

домашнее задание, примерные вопросы:

Методы вычитания и расщепления при построении асимптотических представлений интегралов. Вычисление электрической емкости тонкого тела.

Тема 4. Регулярные возмущения в уравнениях с частными производными.

научный доклад, примерные вопросы:

Задача о потенциале вокруг близкого к сфере тела. Задача о форме медленно вращающегося самогравитирующего тела

Тема 5. Метод сращивания асимптотических разложений на примере модельной задачи конвекции-диффузии с преобладанием конвекции.

контрольная работа, примерные вопросы:

Внешнее и внутреннее разложение. Область перекрытия. Сращивание разложений. Правило Ван-Дайка. Построение равномерно пригодного асимптотического разложения. Приемы определения местоположения и толщины пограничного слоя.

Тема 6. Специфика сращивания асимптотических разложений в задачах гидромеханики с неограниченными областями.

домашнее задание, примерные вопросы:

Обтекание сферы и цилиндра при малых числах Рейнольдса

Тема 7. Последовательность вложенных пограничных слоев на примере задачи о динамическом гистерезисе.

домашнее задание, примерные вопросы:

Асимптотическое решение задачи о динамическом гистерезисе

Тема 8. Метод растянутых координат.

домашнее задание, примерные вопросы:

Осциллятор Дюффинга со слабой нелинейностью. Задача о малоамплитудных волнах на мелкой воде. Вычисление времени опрокидывания волны.

Тема 9. Метод многих масштабов.

письменная работа, примерные вопросы:

Осциллятор Ван-дер-Поля. Задача о параметрическом резонансе.

Тема 10. Метод гомогенизации анализа уравнений с быстро осциллирующими коэффициентами.

домашнее задание, примерные вопросы:

Построение формального асимптотического разложения. Задачи на ячейке. Эффективные характеристики среды. Вариационные методы построения двусторонних оценок для эффективных характеристик. 1-ая и 2-ая формулы Дыхне. Гипотеза Ландау-Матерона.

Тема 11. ВКБ-метод асимптотического анализа.

коллоквиум, примерные вопросы:

ВКБ-метод асимптотического анализа уравнение Шредингера для гармонического осциллятора.

Тема 12. Уравнение фазового поля.

научный доклад, примерные вопросы:

Уравнение фазового поля. Задачи Хеле-Шоу, Стефана как асимптотический предел уравнений фазового поля.

Тема. Итоговая форма контроля

Примерные вопросы к экзамену:

все виды текущего контроля успеваемости и аттестации по итогам освоения дисциплины оцениваются по 100-балльной рейтинговой системе, принятой к КФУ.

Примерные экзаменационные вопросы

- 1) Основные методы построения асимптотических решений : метод итераций и метод асимптотических разложений.
- 2) Понятия асимптотической последовательности, асимптотического представления, асимптотического ряда.
- 3) Регулярные возмущения в уравнениях с частными производными. Задача о форме медленно вращающегося самогравитирующего тела
- 4) Лемма Ватсона. Метод стационарной фазы.
- 5) Методы вычитания и расщепления при построении асимптотических представлений интегралов.
- 6) Внешнее и внутреннее разложение. Область перекрытия. Сращивание разложений. Правило Ван-Дайка.
- 7) Специфика сращивания асимптотических разложений в задачах гидромеханики с неограниченными областями.
- 8) Обтекание сферы и цилиндра при малых числах Рейнольдса
- 9) Асимптотическое решение задачи о динамическом гистерезисе
- 10) Метод растянутых координат. Основная идея метода. Задача Лайтхилла. Осциллятор Дюффинга со слабой нелинейностью.
- 11) Задача о малоамплитудных волнах на мелкой воде. Вычисление времени опрокидывания волны.
- 12) Основная идея метода многих масштабов. Осциллятор Ван-дер-Поля.
- 13) Метод гомогенизации анализа уравнений с быстро осциллирующими коэффициентами.
- 14) 1-ая и 2-ая формулы Дыхне. Гипотеза Ландау-Матерона.
- 15) ВКБ-метод асимптотического анализа. Точки поворота.

7.1. Основная литература:

Механика сплошной среды, Нигматулин, Роберт Искандерович, 2014г.

Михасев Г.И. Товстик П.Е. Локализованные колебания и волны в тонких оболочках. Асимптотические методы. Изд-во "Лань". 2009, 292 с.

http://e.lanbook.com/books/element.php?pl1 id=2264

Высоцкий Л.И., Коперник Г.Р., Высоцкий И.С. Математическое и физическое моделирование потенциальных течений жидкости. Изд-во "Лань". 2014, 64 с.

http://e.lanbook.com/books/element.php?pl1 id=44842

7.2. Дополнительная литература:

Покровский В.В. Механика. Методы решения задач: учебное пособие. - М.: БИНОМ. Лаборатория знаний, 2012 - 253 с.

http://e.lanbook.com/view/book/8713

Найфэ А. Введение в методы возмущений. - М.: Мир, 1984, - 535 с.

Найфэ А. Х. Методы возмущений. - М.: Мир, 1976. - 455 с.

7.3. Интернет-ресурсы:

альбом течений жидкости и газа . AN ALBUM OF FLUID MOTION - - www.imec.msu.ru/content/nio/VanDaik/vd main.html

Георесурсы. - Научно-технический журнал - http://www.georesources.ksu.ru

Гидрогазодинамика: Учебное пособие / А.А. Кудинов. - М.: НИЦ ИНФРА-М, 2013. - - http://www.znanium.com/bookread.php?book=410288

Методы научного познания: Учебное пособие / С.А. Лебедев. - М.: Альфа-М: НИЦ ИНФРА-М, 2014. - 272 с - - http://www.znanium.com/bookread.php?book=450183

Научная электронная библиотека - http://elibrary.ru/

НБ им. Н.И. Лобачевского КФУ - URL:http://z3950.ksu.ru/bcover/0000685310 con.pdf

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Асимптотические методы решения задач механики" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "БиблиоРоссика", доступ к которой предоставлен студентам. В ЭБС "БиблиоРоссика "представлены коллекции актуальной научной и учебной литературы по гуманитарным наукам, включающие в себя публикации ведущих российских издательств гуманитарной литературы, издания на английском языке ведущих американских и европейских издательств, а также редкие и малотиражные издания российских региональных вузов. ЭБС "БиблиоРоссика" обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе Издательства "Лань", доступ к которой предоставлен студентам. ЭБС Издательства "Лань" включает в себя электронные версии книг издательства "Лань" и других ведущих издательств учебной литературы, а также электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. ЭБС Издательства "Лань" обеспечивает доступ к научной, учебной литературе и научным периодическим изданиям по максимальному количеству профильных направлений с соблюдением всех авторских и смежных прав.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "Консультант студента", доступ к которой предоставлен студентам. Электронная библиотечная система "Консультант студента" предоставляет полнотекстовый доступ к современной учебной литературе по основным дисциплинам, изучаемым в медицинских вузах (представлены издания как чисто медицинского профиля, так и по естественным, точным и общественным наукам). ЭБС предоставляет вузу наиболее полные комплекты необходимой литературы в соответствии с требованиями государственных образовательных стандартов с соблюдением авторских и смежных прав.

учебные аудитории для проведения лекционных и семинарских занятий

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 010800.68 "Механика и математическое моделирование" и магистерской программе Механика жидкости, газа и плазмы .

Автор(ы): Егоров А.Г.			
"	_201_	_ г.	
Рецензент(ы): Коноплев Ю.Г.			
" "	201_	г.	