МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт фундаментальной медицины и биологии

подписано электронно-цифровой подписью

Программа дисциплины

Принципы организации и разработки баз данных М2.ДВ.3

Направление подготовки: 020400.68 - Биология

Профиль подготовки: <u>Биоинформатика</u> Квалификация выпускника: <u>магистр</u>

Форма обучения: <u>очное</u> Язык обучения: <u>русский</u>

Автор(ы):

Пинягина О.В. Рецензент(ы): Бандеров В.В.

\sim	СΠ		\sim	٦D	Λ.	ч	\frown	١,
CO	1 /1	А	U	JD	А	п	U	ų

Заведующий (ая) кафедрой: Мисса Протокол заседания кафедры No			201г	
Учебно-методическая комиссия Ин Протокол заседания УМК No	іститута фу от ""_	ундамента	льной медицины 201г	и биологии:
Регистрационный No 849419914				
	Казань)		

2014

ЭЛЕКТРОННЫЙ УНИВЕРСИТЕТ

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. (доцент) Пинягина О.В. кафедра анализа данных и исследования операций отделение фундаментальной информатики и информационных технологий, Olga.Piniaquina@kpfu.ru

1. Цели освоения дисциплины

Целью преподавания дисциплины "Принципы организации и разработки баз данных" является формирование у студентов теоретических знаний в области управления, хранения и обработки данных, а также практических навыков по использованию эффективных систем хранения и обработки данных на основе полученных знаний.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.ДВ.3 Профессиональный" основной образовательной программы 020400.68 Биология и относится к дисциплинам по выбору. Осваивается на 1 курсе, 1 семестр.

Дисциплина "Принципы организации и разработки баз данных" изучается на первом году обучения в магистратуре. Данная дисциплина является логическим продолжением ряда курсов, изученных студентами по программе магистратуры направления "Биоинформатика", включая "Дополнительные главы математики". "Основы теории алгоритмов"," "Архитектура высокопроизводительных вычислительных систем".

В результате освоения данного курса предполагается создание у студентов упорядоченной системы знаний о реальных возможностях современных баз данных, формирование целостного представления о современных возможностях и перспективах развития со-временных СУБД.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-6 (общекультурные компетенции)	способен самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности
ПК-10 (профессиональные компетенции)	глубоко понимает и творчески использует в научной и производственно-технологической деятельности знания фундаментальных и прикладных разделов специальных дисциплин магистерской программы
ПК-2 (профессиональные компетенции)	знает и использует основные теории, концепции и принципы в избранной области деятельности, способен к системному мышлению
ПК-3 (профессиональные компетенции)	самостоятельно анализирует имеющуюся информацию, выявляет фундаментальные проблемы, ставит задачу и выполняет полевые, лабораторные биологические исследования при решении конкретных задач по специализации с использованием современной аппаратуры и вычислительных средств, демонстрирует ответственность за качество работ и научную достоверность результатов

В результате освоения дисциплины студент:

1. должен знать:

возможности, перспективы и проблемы использования систем управления базами данных;

2. должен уметь:

применять навыки использования языка SQL для формулирования и выполнения запросов к базам данных.

3. должен владеть:

теоретическими знаниями о технологиях программирования для баз данных, об основах использования клиент-серверных приложений;

4. должен демонстрировать способность и готовность:

Применять полученные теоретические знания и практические навыки работы с современными системами управления базами данных.

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 3 зачетных(ые) единиц(ы) 108 часа(ов).

Форма промежуточного контроля дисциплины зачет в 1 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
	МОДУЛЯ			Лекции	Практические занятия	Лабораторные работы	-
1.	Тема 1. Введение в базы данных (БД).	1		1	0	0	домашнее задание
2.	Тема 2. Проектирование баз данных.	1		1	1	0	домашнее задание
3.	Тема 3. Реляционная алгебра.	1		2	1	0	домашнее задание
4.	Тема 4. Теория нормализации.	1		2	2	0	домашнее задание
5.	Тема 5. Языковые средства современных СУБД.	1		2	10	0	домашнее задание

N	Раздел Дисциплины/	Семестр	Неделя семестра	(в часах)			Текущие формы контроля
	Модуля			Лекции	Практические занятия	Лабораторные работы	•
6	Тема 6. Безопасность БД.	1		2	0	_	домашнее задание
	Тема . Итоговая форма контроля	1		0	0	0	зачет
	Итого			10	14	0	

4.2 Содержание дисциплины

Тема 1. Введение в базы данных (БД).

лекционное занятие (1 часа(ов)):

Рассматриваются предпосылки для возникновения и история создания баз данных.

Тема 2. Проектирование баз данных.

лекционное занятие (1 часа(ов)):

Рассматриваются основы проектирования баз данных с использованием ER-моделей. Основные понятия ER-моделей: сущность, атрибут, связь. Типы связей "1:1", "1:М", "М:М".

практическое занятие (1 часа(ов)):

Рассматривается установка программного продукта MySQL Workbench. Для выбранной предметной области студенты разрабатывают ER-модель.

Тема 3. Реляционная алгебра.

лекционное занятие (2 часа(ов)):

Рассматривается реляционная модель баз данных. Основные понятия: таблица (отношение), кортеж, домен, первичный ключ. Операции: проекция, выбор, соединение, объединение, пересечение, вычитание, произведение, деление.

практическое занятие (1 часа(ов)):

Рассматриваются примеры применения операций реляционной алгебры при формулировании запросов к реляционной базе данных на основе модели "Музыканты".

Тема 4. Теория нормализации.

лекционное занятие (2 часа(ов)):

Рассматриваются основные понятия теории нормализации. Полная декомпозиция. Пятая нормальная форма. Полная функциональная зависимость. Теорема Хита. Первая, вторая, третья, Бойса-Кодда, четвертая нормальные формы.

практическое занятие (2 часа(ов)):

Рассматриваются примеры нарушения нормальных форм при неправильном проектировании реляционной модели из ER-модели.

Тема 5. Языковые средства современных СУБД.

лекционное занятие (2 часа(ов)):

Языковые средства современных СУБД. Язык SQL (язык структурированных запросов): * DDL (язык описания данных); * DML (язык манипулирования данными); * DQL (язык запро-сов к данным), его связь с реляционной алгеброй; * CCL (язык управления курсорами); * TPL (язык управления транзакция-ми); * DCL (язык управления доступом к данным). Хранимые процедуры. Триггеры. Политики ссылочной целостности. Ограничения целостности.

практическое занятие (10 часа(ов)):

Студенты: - создают базу данных из EER-модели, разработанной в рамках предыдущих заданий; - изучают возможности добавления новых строк в таблицу: добавление данных с помощью визуальных средств EER-модели, с помощью команды Insert и непосредственно в таблицы базы данных; - изучают основные возможности команды SELECT и выполняют простые запросы к свой базе данных; - изучают возможности представлений (View); - изучают хранимые процедуры и создают простые примеры хранимых процедур для своей базы данных по типу запросов с параметром; - изучают специальный тип хранимых процедур - триггеры.

Тема 6. Безопасность БД.

лекционное занятие (2 часа(ов)):

Рассматриваются основные понятия безопасности БД. Права доступа. Учетные записи, роли, пользователи, полномочия. Управление безопасностью в mySQL.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Введение в базы данных (БД).	1		подготовка домашнего задания	5	домашнее задание
2.	Тема 2. Проектирование баз данных.	1		подготовка домашнего задания	10	домашнее задание
3.	Тема 3. Реляционная алгебра.	1		подготовка домашнего задания	10	домашнее задание
4.	Тема 4. Теория нормализации.	1		подготовка домашнего задания	14	домашнее задание
5.	Тема 5. Языковые средства современных СУБД.	1		подготовка домашнего задания	40	домашнее задание
6.	Тема 6. Безопасность БД.	1		подготовка домашнего задания	5	домашнее задание
	Итого				84	

5. Образовательные технологии, включая интерактивные формы обучения

В соответствии с требованиями ФГОС удельный вес занятий, проводимых в активных и интерактивных формах, составляет не менее 40% аудиторных занятий. В процессе изучения дисциплины "принципы организации и разработки баз данных" на занятиях в компьютерном классе студенты получают навыки самостоятельной работы с системой управления базами данных MySQL.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Введение в базы данных (БД).

домашнее задание, примерные вопросы:

Студентам предлагается найти в открытых источниках данные, позволяющие качественно и количественно сравнить современные СУБД с точки зрения эффективности, распространенности, размера, областей применения.

Тема 2. Проектирование баз данных.

домашнее задание, примерные вопросы:

В рамках индивидуального проекта студенты должны выбрать предметную область, описать объекты, атрибуты и связи между ними, а также любую дополнительную информацию о предметной области, которая будет полезна для создания базы данных.

Тема 3. Реляционная алгебра.

домашнее задание, примерные вопросы:

Студентам предлагается несколько формулировок для создания запросов на языке реляционной алгебры. Предполагается применение операций проекции. выбора, соединения, объединения, пересечения, вычитания, деления и их комбинирование.

Тема 4. Теория нормализации.

домашнее задание, примерные вопросы:

Студентам предлагается готовая реляционная модель, которая содержит нарушения требований нормальных форм. Эти нарушения нужно найти и исправить с помощью теоремы Хита.

Тема 5. Языковые средства современных СУБД.

домашнее задание, примерные вопросы:

В рамках индивидуального проекта студенты - создают EER-модели в среде mySQL Workbench на основе описания предметной области, выбранной при выполнении предыдущих заданий; - добавляют новые строки в таблицы базы данных (обязательно применять команду Insert); - выполняют сложные запросы к свой базе данных (с использованием подзапросов, группировок, агрегирующих функций, выборки из нескольких таблиц и т.п); - создают представления для своей базы данных, проверяют, являются ли полученные представления обновляемыми; - создают хранимые процедуры и триггеры для своей базы данных.

Тема 6. Безопасность БД.

домашнее задание, примерные вопросы:

В среде mySQL Workbench следует создать по крайней мере одного пользователя и одну роль, назначить права доступа с ограничениями и протестировать работу данного пользователя с базой данных.

Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Примерные варианты билетов на зачет:

Билет 1.

- 1. Операции реляционной алгебры объединение, пересечение.
- 2. База данных турагентства содержит информацию о поездках своих туристов:

Страны (КодСтраны, Название)

Туристы (КодТуриста, ФИО, Паспорт, ДатаРождения)

Поездки (КодСтраны, КодТуриста, ДатаНачала, ДатаОкончания)

Получить список туристов, которые посещали все страны. Запрос напишите на SQL.

Билет 2.

- 1. Третья нормальная форма.
- 2. База данных библиотеки содержит информацию о читателях и выдачах книг:

Книги (КодКниги, Название, Автор, Жанр, ГодИздания)

Читатели (НомерБилета, ФИО, ДатаРождения)

Выдачи (КодКниги, НомерБилета, ДатаВыдачи, СрокВозврата)

Получить список читателей, которые читают только книги жанра "Детектив". Запрос напишите на реляционной алгебре.

7.1. Основная литература:

Основная литература:

Практикум по курсу "Базы данных" : [учебное пособие] / О. В. Пинягина, И. А. Фукин ; Казан. (Приволж.)федер. ун-т .? Казань : Казанский университет, 2012 .? 91с.

Пирогов, В. Ю. Информационные системы и базы данных: организация и проектирование: учеб. пособие / В. Ю. Пирогов. ? СПб.: БХВ-Петербург, 2009. ? 528 с. - Режим доступа: http://znanium.com/bookread.php?book=350672

Математические методы анализа и распознавания генетической информации: Монография / В.М. Гупал. - М.: ИЦ РИОР: НИЦ Инфра-М, 2012. - 154 с.: - Режим доступа: http://znanium.com/bookread.php?book=309338

7.2. Дополнительная литература:

Дополнительная литература:

Математический анализ генетического кода/ Козлов Н.Н. - "Бином. Лаборатория знаний. 2012 --215 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=8792 и http://e.lanbook.com/view/book/8792/page2/

7.3. Интернет-ресурсы:

Портал mySQL.com(англ.) - http://www.mysql.com/

Портал mysql.ru(pyc.) - http://mysql.ru/

Портал SQL.ru - http://sql.ru

Электронный учебник - http://kek.ksu.ru/eos/mysql/index.html

Электронный учебник "Базы данных" на сайте кафедры экономической кибернетики - http://kek.ksu.ru/eos/bd/index.html

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Принципы организации и разработки баз данных" предполагает использование следующего материально-технического обеспечения:

Мультимедийная аудитория, вместимостью более 60 человек. Мультимедийная аудитория состоит из интегрированных инженерных систем с единой системой управления, оснащенная современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов. Типовая комплектация мультимедийной аудитории состоит из: мультимедийного проектора, автоматизированного проекционного экрана, акустической системы, а также интерактивной трибуны преподавателя, включающей тач-скрин монитор с диагональю не менее 22 дюймов, персональный компьютер (с техническими характеристиками не ниже Intel Core i3-2100, DDR3 4096Mb, 500Gb), конференц-микрофон, беспроводной микрофон, блок управления оборудованием, интерфейсы подключения: USB, audio, HDMI. Интерактивная трибуна преподавателя является ключевым элементом управления, объединяющим все устройства в единую систему, и служит полноценным рабочим местом преподавателя. Преподаватель имеет возможность легко управлять всей системой, не отходя от трибуны, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть интернет. Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "КнигаФонд", доступ к которой предоставлен студентам. Электронно-библиотечная система "КнигаФонд" реализует легальное хранение, распространение и защиту цифрового контента учебно-методической литературы для вузов с условием обязательного соблюдения авторских и смежных прав. КнигаФонд обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям новых ФГОС ВПО.

Программа СУБД MySQL является бесплатной для использования и не требует лицензии. Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 020400.68 "Биология" и магистерской программе Биоинформатика.

Программа дисциплины "Принципы организации и разработки баз данных"; 020400.68 Биология; доцент, к.н. (доцент) Пинягина О.В.

Автор(ы):	
Пинягина О.В.	
""	201 г.
Рецензент(ы): Бандеров В.В.	
"_"	201 г.