МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт физики

подписано электронно-цифровой подписью

Программа дисциплины

Автоматизация научного эксперимента М2.ДВ.4

Направление подготовки: 011800.68 - Радиофизика
Профиль подготовки: Электромагнитные волны в средах
Квалификация выпускника: магистр
Форма обучения: <u>очное</u>
Язык обучения: русский
Автор(ы):
Рябченко Е.Ю.
Рецензент(ы):
Насыров И.А.
СОГЛАСОВАНО:
Заведующий(ая) кафедрой: Шерстюков О. Н. Протокол заседания кафедры No от ""
Viagora viagora viagora valuadora Musaria do valuadora

Заведующий(ая) кафедрой: Шерстюков О. Н.
Протокол заседания кафедры No ____ от "____" _____ 201__г
Учебно-методическая комиссия Института физики:
Протокол заседания УМК No ____ от "____" _____ 201__г
Регистрационный No 624614

Казань 2014

Содержание

- 1. Цели освоения дисциплины
- 2. Место дисциплины в структуре основной образовательной программы
- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля
- 4. Структура и содержание дисциплины/ модуля
- 5. Образовательные технологии, включая интерактивные формы обучения
- 6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов
- 7. Литература
- 8. Интернет-ресурсы
- 9. Материально-техническое обеспечение дисциплины/модуля согласно утвержденному учебному плану

Программу дисциплины разработал(а)(и) доцент, к.н. Рябченко Е.Ю. Кафедра радиофизики Отделение радиофизики и информационных систем, Eugene.Ryabchenko@kpfu.ru

1. Цели освоения дисциплины

Целями дисциплины "Автоматизация научного эксперимента" является изучение:

- 1) принципов построения современных систем сбора и обработки данных различного назначения;
- 2) особенностей аппаратной реализации и протоколов современных интерфейсов управления измерительными приборами и интерфейсов передачи данных;
- 3) принципов построения аналого-цифровых и цифро-аналоговых преобразователей.

2. Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Данная учебная дисциплина включена в раздел " M2.ДВ.4 Профессиональный" основной образовательной программы 011800.68 Радиофизика и относится к дисциплинам по выбору. Осваивается на 2 курсе, 3 семестр.

Дисциплина относится к базовой части общенаучного цикла образовательного стандарта третьего поколения по направлению 011800 - радиофизика.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины /модуля

В результате освоения дисциплины формируются следующие компетенции:

Шифр компетенции	Расшифровка приобретаемой компетенции
ОК-10 (общекультурные компетенции)	способностью использовать базовые знания и навыки управления информацией для решения исследовательских профессиональных задач, соблюдать основные требования информационной безопасности, защиты государственной тайны
ОК-3 (общекультурные компетенции)	способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности знания и умения, в том числе в новых областях, непосредственно не связанных со сферой деятельности, расширять и углублять свое научное мировоззрение
ОК-5 (общекультурные компетенции)	способностью выдвигать новые идеи
ПК-1 (профессиональные компетенции)	способностью к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимыми для решения научно-исследовательских задач (в соответствии со своим профилем подготовки)
ПК-2 (профессиональные компетенции)	способностью к свободному владению профессионально-профилированными знаниями в области, использованию современных компьютерных сетей, программных продуктов и ресурсов Интернет для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки
ПК-3 (профессиональные компетенции)	способностью использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики

Шифр компетенции	Расшифровка приобретаемой компетенции
пк-э (профессиональные компетенции)	способностью применять на практике навыки составления и оформления научно-технической документации, научных отчетов, обзоров, докладов и статей (в соответствии с профилем подготовки)

В результате освоения дисциплины студент:

1. должен знать:

Основные физические и технические принципы, лежащие в основе современных измерительных систем, а также систем сбора экспериментальных данных.

2. должен уметь:

Ориентироваться в устройстве и основных характеристиках современных измерительных систем, используемых в научном эксперименте.

3. должен владеть:

Знаниями и умениями, позволяющими разрабатывать оптимальные автоматизированные системы измерений и контроля в физическом эксперименте с применением современной элементной базы и измерительной техники.

4. должен демонстрировать способность и готовность:

разрабатывать схемы научного эксперимента на основе имеющейся приборной и элементной базы, сопрягать измерительное оборудование с различными стандартизированными интерфейса, разрабатывать необходимое программное обеспечение для автоматизации и управления экспериментом

4. Структура и содержание дисциплины/ модуля

Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы) 72 часа(ов).

Форма промежуточного контроля дисциплины зачет в 3 семестре.

Суммарно по дисциплине можно получить 100 баллов, из них текущая работа оценивается в 50 баллов, итоговая форма контроля - в 50 баллов. Минимальное количество для допуска к зачету 28 баллов.

86 баллов и более - "отлично" (отл.);

71-85 баллов - "хорошо" (хор.);

55-70 баллов - "удовлетворительно" (удов.);

54 балла и менее - "неудовлетворительно" (неуд.).

4.1 Структура и содержание аудиторной работы по дисциплине/ модулю Тематический план дисциплины/модуля

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	Виды и часы аудиторной работы, их трудоемкость (в часах)			Текущие формы контроля
				Лекции	Практические занятия	Лабораторные работы	-
1.	Тема 1. Принцип автоматизации эксперимента. Топологии сетей сбора информации. Интерфейсы передачи данных и модель OSI.	3	1	2	0	0	

N	Раздел Дисциплины/ Модуля	Семестр	Неделя семестра	ы (в часах)			Текущие формы контроля
				Лекции	Практические занятия	, Лабораторные работы	•
	Тема 2. Основы построения аппаратного обеспечения. Схемотехника логических элементов ТТЛ, ТТЛШ и КМОП.	3	2,3	4	0	0	
3.	Тема 3. Современные параллельные интерфейсы передачи данных.	3	4	2	0	0	
4.	Тема 4. Современные последовательные интерфейсы передачи данных.	3	5,6,7	6	0	0	
- 1	Тема 5. Применение последовательных интерфейсов RS-232 и RS-485 в микроконтроллерных системах автоматизации.	3	8	0	4	0	
6.	Тема 6. Аналого-цифровые и цифро-аналоговые преобразователи.	3	9,10	0	6	0	
	Тема 7. Автоматизация управления измерительными приборами в эксперименте.	3	11	0	4	0	
	Тема . Итоговая форма контроля	3		0	0	0	зачет
	Итого			14	14	0	

4.2 Содержание дисциплины

Тема 1. Принцип автоматизации эксперимента. Топологии сетей сбора информации. Интерфейсы передачи данных и модель OSI.

лекционное занятие (2 часа(ов)):

Принцип автоматизации процесса измерений и эксперимента. Структура системы сбора данных и управления. Топологии сетей сбора информации. Понятие интерфейса, протокола, сетевого адреса и их место в модели OSI. Датчики, аналого-цифровые преобразователи, цифро-аналоговые преобразователи.

Тема 2. Основы построения аппаратного обеспечения. Схемотехника логических элементов ТТЛ, ТТЛШ и КМОП.

лекционное занятие (4 часа(ов)):

Основы построения аппаратного обеспечения. Схемотехника логических элементов ТТЛ, ТТЛШ и КМОП. Принцип построения шин обмена данными. Современные семейства цифровых микросхем, правила применения. Передача цифровых сигналов по длинным линиям.

Тема 3. Современные параллельные интерфейсы передачи данных. *лекционное занятие (2 часа(ов)):*

Современные параллельные интерфейсы передачи данных. Интерфейсы IEEE 1284, приборная шина GPIB. Микросхемы для организации параллельного интерфейса. Микросхема параллельного порта 8255.

Тема 4. Современные последовательные интерфейсы передачи данных. *лекционное занятие (6 часа(ов)):*

Современные последовательные интерфейсы передачи данных. Интерфейсы RS-232, RS-485, 1-Wire, дифференциальные линии передачи LVDS. Микросхемы драйверов современных последовательных интерфейсов. Обзор интерфейсов с применением технологии LVDS.

Тема 5. Применение последовательных интерфейсов RS-232 и RS-485 в микроконтроллерных системах автоматизации.

практическое занятие (4 часа(ов)):

Применение последовательных интерфейсов RS-232 и RS-485 в микроконтроллерных системах автоматизации. Микросхемы преобразователей уровней и сопряжения с линией передачи. Протоколы канального уровня. Протокол MODBUS.

Тема 6. Аналого-цифровые и цифро-аналоговые преобразователи. практическое занятие (6 часа(ов)):

Аналого-цифровые и цифро-аналоговые преобразователи. Основные параметры, классификация, типовые схемы. Микросхемы АЦП и ЦАП. АЦП время-импульсного и время-частотного типа, параллельные АЦП. Сигма-дельта АЦП. ЦАП на основе ШИМ, переключаемых конденсаторах. ЦАП на матрице R-2R.

Тема 7. Автоматизация управления измерительными приборами в эксперименте. *практическое занятие (4 часа(ов)):*

Автоматизация управления измерительными приборами в эксперименте. Стандарт команд для программируемых устройств SCPI. Интерфейс IEEE 488. Автоматизация измерений с применением сценариев.

4.3 Структура и содержание самостоятельной работы дисциплины (модуля)

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
1.	Тема 1. Принцип автоматизации эксперимента. Топологии сетей сбора информации. Интерфейсы передачи данных и модель OSI.	3	l I	подготовка к устному опросу	6	устный опрос
2	Тема 2. Основы построения аппаратного обеспечения. Схемотехника логических элементов ТТЛ, ТТЛШ и КМОП.	3	l 2.3	подготовка к устному опросу	14	устный опрос

N	Раздел Дисциплины	Семестр	Неделя семестра	Виды самостоятельной работы студентов	Трудоемкость (в часах)	Формы контроля самостоятельной работы
3	Тема 3. Современные параллельные интерфейсы передачи данных.	3	1 4	подготовка к устному опросу	8	устный опрос
4	Тема 4. Современные последовательные интерфейсы передачи данных.	3	1 2 n /	подготовка к устному опросу	16	устный опрос
	Итого				44	

5. Образовательные технологии, включая интерактивные формы обучения

Курс лекций читается на основе мультимедийных технологий, практические занятия проводятся в лаборатории, оснащенной современными измерительными приборами и вычислительной техникой.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Тема 1. Принцип автоматизации эксперимента. Топологии сетей сбора информации. Интерфейсы передачи данных и модель OSI.

устный опрос, примерные вопросы:

Принцип автоматизации процесса измерений и эксперимента. Структура системы сбора данных и управления. Топологии сетей сбора информации. Понятие интерфейса, протокола, сетевого адреса и их место в модели OSI. Датчики, аналого-цифровые преобразователи, цифро-аналоговые преобразователи.

Тема 2. Основы построения аппаратного обеспечения. Схемотехника логических элементов ТТЛ, ТТЛШ и КМОП.

устный опрос, примерные вопросы:

Основы построения аппаратного обеспечения. Схемотехника логических элементов ТТЛ, ТТЛШ и КМОП. Принцип построения шин обмена данными. Современные семейства цифровых микросхем, правила применения. Передача цифровых сигналов по длинным линиям.

Тема 3. Современные параллельные интерфейсы передачи данных.

устный опрос, примерные вопросы:

Современные параллельные интерфейсы передачи данных. Интерфейсы IEEE 1284, приборная шина GPIB. Микросхемы для организации параллельного интерфейса.

Тема 4. Современные последовательные интерфейсы передачи данных.

устный опрос, примерные вопросы:

Современные последовательные интерфейсы передачи данных. Интерфейсы RS-232, RS-485, 1-Wire, дифференциальные линии передачи LVDS. Микросхемы драйверов современных последовательных интерфейсов.

- Тема 5. Применение последовательных интерфейсов RS-232 и RS-485 в микроконтроллерных системах автоматизации.
- Тема 6. Аналого-цифровые и цифро-аналоговые преобразователи.
- Тема 7. Автоматизация управления измерительными приборами в эксперименте.
- Тема. Итоговая форма контроля

Примерные вопросы к зачету:

Вопросы к зачету

- 1. Принцип автоматизации процесса измерений и эксперимента. Комплекс из управляющего контроллера (компьютера), интерфейсов передачи данных и управления, АЦП/ЦАП, датчиков.
- 2. Схемотехника традиционного логического элемента ТТЛ "И-НЕ"
- 3. Стандартные логические уровни ТТЛ. Входные и выходные токи. Нагрузочная способность элементов ТТЛ (из таблицы).
- 4. Элементы КМОП. Выходной каскад, логические уровни, входные и выходные токи, нагрузочная способность. Традиционные серии логики КМОП (из таблицы).
- 5. Обзор и сравнение различных серий логики ТТЛ и КМОП, совместимость логических элементов (таблица).
- 6. Схемотехника шины данных. Элементы с открытым коллектором и элементы с тремя состояниями. Примеры микросхем (из справочника).
- 7. Передача цифровых сигналов по длинным линиям. Помехозащищенность. Триггеры Шмитта и специализированные буферные микросхемы.
- 8. Дифференциальные линии передачи. Примеры микросхем (из справочника). Интерфейсы, в которых применяются дифференциальные линии.
- 9. Дифференциальные линии передачи по технологии LVDS: электрические параметры и характеристики, область применения.
- 10. Понятие интерфейса и протокола. Классификация интерфейсов обмена информацией. Простейший параллельный интерфейс. Структура микросхемы KP580BB55A (Intel 8255A).
- 11. Традиционный LPT-порт компьютера IBM PC/AT. Регистры порта, назначение бит.
- 12. Интерфейс Centronics. Назначение сигнальных линий, протокол работы и временные диаграммы для режима SPP.
- 13. Режим ЕРР параллельного порта ПК: основные характеристики, временные диаграммы.
- 14. Последовательные интерфейсы. Асинхронный последовательный интерфейс RS-232. Временные диаграммы и электрические параметры. Микросхемы сопряжения с микросхемами стандартной логики (ТТЛ или КМОП).
- 15. Интерфейсы RS-422, RS-423, RS-485, токовая петля. Электрические параметры, способы применения, протоколы.
- 16. Программно-аппаратная реализация интерфейса RS-232C на основе асинхронного приемо-передатчика UART.
- 17. Последовательные шины USB, FireWire (IEEE 1394), I2C, SPI, CAN, 1-Wire. Сравнение характеристик и область применения.
- 18. Шина 1-Wire: аппаратная реализация, электрическая эквивалентная схема, паразитное питание.
- 19. Временные диаграммы сигналов однопроводной шины 1-Wire (циклы чтения и записи).
- 20. Шина USB 1.0: схемотехника, характеристики, электрические параметры.

7.1. Основная литература:

1. Угрюмов, Е.П. Цифровая схемотехника: учеб. пособие для вузов / Е.П. Угрюмов. - 3-е изд., перераб. и доп. - СПб.: БХВ-Петербург, 2010. - 809 с. http://znanium.com/bookread.php?book=350426

- 2. Микушин, А.В. Цифровые устройства и микропроцессоры: учеб. пособие / А. В. Микушин, А. М. Сажнев, В. И. Сединин. СПб.: БХВ-Петербург, 2010. 832 с. http://znanium.com/bookread.php?book=350706
- 3. Хоровиц, П. Искусство схемотехники: перевод с английского / П. Хоровиц, У. Хилл; Пер. Б. Н. Бронина [и др.]. Издание 7-е. Москва: Мир: БИНОМ, 2011. 704 с. (55 экз.)
- 4. Сергиенко, А.Б. Цифровая обработка сигналов: учеб. пособие. 3-е изд. СПб.: БХВ-Петербург, 2011. 768 с. http://znanium.com/bookread.php?book=354905

7.2. Дополнительная литература:

- 1. Гук, М. Аппаратные средства ІВМ РС: Энциклопедия / М. Гук. Издание 2-е. Санкт-Петербург: Питер, 2003. 928 с.
- 2. Щука, А.А. Электроника / А.А. Щука. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2008. 751 с. http://znanium.com/bookread.php?book=350420
- 3. Амосов В.В. Схемотехника и средства проектирования цифровых устройств / В.В. Амосов. СПб.: БХВ-Петербург, 2007. 542 c. http://znanium.com/bookread.php?book=350296

7.3. Интернет-ресурсы:

Информационный материал по технологии 1-Wire - http://www.elin.ru/1-Wire/ Информационный портал по приборным интерфейсам GPIB/IEEE488 - http://www.gpib.ru/ Лекционный курс "Периферийные устройства вычислительной техники" - http://www.intuit.ru/studies/courses/3460/702/info

Учебный материал по технологии LVDS - http://kit-e.ru/articles/interface/2001_04_52.php Учебный материал по цифро-аналоговым преобразователям - http://www.limi.ru/dacs/dacsindex.htm

8. Материально-техническое обеспечение дисциплины(модуля)

Освоение дисциплины "Автоматизация научного эксперимента" предполагает использование следующего материально-технического обеспечения:

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети КФУ и находятся в едином домене.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе "ZNANIUM.COM", доступ к которой предоставлен студентам. ЭБС "ZNANIUM.COM" содержит произведения крупнейших российских учёных, руководителей государственных органов, преподавателей ведущих вузов страны, высококвалифицированных специалистов в различных сферах бизнеса. Фонд библиотеки сформирован с учетом всех изменений образовательных стандартов и включает учебники, учебные пособия, УМК, монографии, авторефераты, диссертации, энциклопедии, словари и справочники, законодательно-нормативные документы, специальные периодические издания и издания, выпускаемые издательствами вузов. В настоящее время ЭБС ZNANIUM.COM соответствует всем требованиям федеральных государственных образовательных стандартов высшего профессионального образования (ФГОС ВПО) нового поколения.

Вычислительный терминальный класс под управлением OC Solaris

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению 011800.68 "Радиофизика" и магистерской программе Электромагнитные волны в средах.

Автор(ы):	
Рябченко Е.Ю	•
" "	_ 201 г.
Рецензент(ы): Насыров И.А.	
""	_ 201 г.